1
|
Agarwal K, Luk JW, Stangl BL, Schwandt ML, Momenan R, Goldman D, Diazgranados N, Kareken DA, Leggio L, Ramchandani VA, Joseph PV. Parosmia Is Positively Associated With Problematic Drinking, as Is Phantosmia With Depressive Symptoms. J Addict Med 2024; 18:567-573. [PMID: 38776446 PMCID: PMC11446663 DOI: 10.1097/adm.0000000000001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Alcohol use disorder (AUD) is a global health problem with significant negative consequences, including preventable deaths. Although olfactory dysfunction is associated with chronic alcohol drinking, the relationship among specific types of olfactory deficits, depressive symptoms, and problematic drinking remains to be explored. Here, we examined the prevalence of olfactory distortion (parosmia) and hallucination (phantosmia) and assessed their associations with problematic drinking and depressive symptoms. METHODS In April-June 2022, 250 participants across the spectrum of AUD were recruited for assessment in the National Institute on Alcohol Abuse and Alcoholism COVID-19 Pandemic Impact on Alcohol study. Surveys covered self-reported olfactory function, depressive symptoms, and problematic drinking, with key measures assessed, including the Alcohol Use Disorders Identification Test and the Patient Health Questionnaire. Predictors in the analysis included parosmia and phantosmia, with covariates comprising age, sex, socioeconomic status, race, ethnicity, COVID-19 infection status, and smoking status. RESULTS Among 250 individuals, 5.2% experienced parosmia and 4.4% reported phantosmia. Parosmia was associated with higher Alcohol Use Disorders Identification Test scores (β = 7.14; 95% confidence interval = 3.31, 10.96; P < 0.001), whereas phantosmia was linked to higher Patient Health Questionnaire scores (β = 3.32; 95% confidence interval = 0.22, 6.42; P = 0.03). These associations persisted in both the full sample and the subset of participants without COVID-19. CONCLUSIONS Our study highlights strong existing links among olfactory deficits, problem drinking, and depressive symptoms, underscoring the need to assess smell impairments in clinical settings. Future research should explore these connections further to develop new treatments for individuals with AUD and depression.
Collapse
|
2
|
Santos MJ, Correia E, Vilela A. Exploring the Impact of α-Amylase Enzyme Activity and pH on Flavor Perception of Alcoholic Drinks. Foods 2023; 12:foods12051018. [PMID: 36900535 PMCID: PMC10000705 DOI: 10.3390/foods12051018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
The introduction of a drink in the mouth and the action of saliva and enzymes cause the perception of basic tastes and some aromas perceived in a retro-nasal way. Thus, this study aimed to evaluate the influence of the type of alcoholic beverage (beer, wine, and brandy) on lingual lipase and α-amylase activity and in-mouth pH. It was possible to see that the pH values (drink and saliva) differed significantly from the pH values of the initial drinks. Moreover, the α-amylase activity was significantly higher when the panel members tasted a colorless brandy, namely Grappa. Red wine and wood-aged brandy also induced greater α-amylase activity than white wine and blonde beer. Additionally, tawny port wine induced greater α-amylase activity than red wine. The flavor characteristics of red wines due to skin maceration and the contact of the brandy with the wood can cause a synergistic effect between beverages considered "tastier" and the activity of human α-amylase. We can conclude that saliva-beverage chemical interactions may depend on the saliva composition but also on the chemical composition of the beverage, namely its constitution in acids, alcohol concentration, and tannin content. This work is an important contribution to the e-flavor project, the development of a sensor system capable of mimicking the human perception of flavor. Furthermore, a better understanding of saliva-drink interactions allow us to comprehend which and how salivary parameters can contribute to taste and flavor perception.
Collapse
Affiliation(s)
- Maria João Santos
- Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre (CQ-VR), Department of Agronomy (DAgro), School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
3
|
Abstract
Ethanol is the most commonly used toxic chemical in human cultures. Ethanol predominantly damages the brain causing various neurological disorders. Astrocytes are important cellular targets of ethanol in the brain and are involved in alcoholic symptoms. Recent studies have revealed the diversity of astrocyte populations in the brain. However, it is unclear how the different astrocyte populations respond to an excess of ethanol. Here we examined the effect of binge ethanol levels on astrocytes in the mouse brainstem and cerebellum. Ethanol administration for four consecutive days increased the glial fibrillary acidic protein (GFAP)-immunoreactive signals in the spinal tract of the trigeminal nerve (stTN) and reticular nucleus (RN). Another astrocyte marker, aquaporin 4 (AQP4), was also increased in the stTN with a pattern similar to that of GFAP. However, in the RN, the immunoreactive signals of AQP4 were different from that of GFAP and were not changed by ethanol administration. In the cerebellum, GFAP-positive signals were found in all four astrocytic populations, and those in the Bergmann glia were selectively eliminated by ethanol administration. We next examined the effect of estradiol on the ethanol-induced changes in astrocytic immunoreactive signals. The administration of estradiol alone increased the AQP4-immunoreactivity in the stTN with a pattern similar to that of ethanol, whereas the co-administration of estradiol and ethanol suppressed the intensity of the AQP4-positive signals. Thus, binge levels of ethanol intake selectively affect astrocyte populations in the brainstem and cerebellum. Sex hormones can affect the ethanol-induced neurotoxicity via modulation of astrocyte reactivity.
Collapse
Affiliation(s)
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| |
Collapse
|
4
|
Li CS, Chung KM, Kim KN, Cho YK. Influences of ethanol and temperature on sucrose-evoked response of gustatory neurons in the hamster solitary nucleus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:603-611. [PMID: 34697271 PMCID: PMC8552825 DOI: 10.4196/kjpp.2021.25.6.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
Taste-responsive neurons in the nucleus of the solitary tract (NST), the first gustatory nucleus, often respond to thermal or mechanical stimulation. Alcohol, not a typical taste modality, is a rewarding stimulus. In this study, we aimed to investigate the effects of ethanol (EtOH) and/or temperature as stimuli to the tongue on the activity of taste-responsive neurons in hamster NST. In the first set of experiments, we recorded the activity of 113 gustatory NST neurons in urethane-anesthetized hamsters and evaluated responses to four basic taste stimuli, 25% EtOH, and 40°C and 4°C distilled water (dH2O). Sixty cells responded to 25% EtOH, with most of them also being sucrose sensitive. The response to 25% EtOH was significantly correlated with the sucrose-evoked response. A significant correlation was also observed between sucrose- and 40°C dH2O- and between 25% EtOH- and 40°C dH2O-evoked firings. In a subset of the cells, we evaluated neuronal activities in response to a series of EtOH concentrations, alone and in combination with 32 mM sucrose (EtOH/Suc) at room temperature (RT, 22°C–23°C), 40°C, and 4°C. Neuronal responses to EtOH at RT and 40°C increased as the concentrations increased. The firing rates to EtOH/Suc were greater than those to EtOH or sucrose alone. The responses were enhanced when solutions were applied at 40°C but diminished at 4°C. In summary, EtOH activates most sucrose-responsive NST gustatory cells, and the concomitant presence of sucrose or warm temperatures enhance this response. Our findings may contribute to elucidate the neural mechanisms underlying appetitive alcohol consumption.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ki-Myung Chung
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Kyung-Nyun Kim
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Young-Kyung Cho
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
5
|
Wukitsch TJ, Cain ME. The effects of voluntary adolescent alcohol consumption on alcohol taste reactivity in Long Evans rats. Psychopharmacology (Berl) 2021; 238:1713-1728. [PMID: 33660081 PMCID: PMC8141039 DOI: 10.1007/s00213-021-05805-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/22/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE The relationship between age, ethanol intake, and the hedonic value of ethanol is key to understanding the motivation to consume ethanol. OBJECTIVE It is uncertain whether ethanol drinking during adolescence changes ethanol's hedonic value into adulthood. METHODS The current study compared voluntary intermittent ethanol consumption (IAE; 2-bottle choice; 20%v/v) among adolescent and adult Long-Evans rats to examine the effects of age and IAE on taste reactivity in adulthood. For taste reactivity, orally infused fluids included water, ethanol (5, 20, and 40%v/v), and sucrose (0.01, 0.1, 1M). RESULTS IAE results indicate that adolescents drank more ethanol during IAE but had a lower rate of change in ethanol consumption across time than adults due to initially high adolescent drinking. During taste reactivity testing for ethanol, IAE rats had greater hedonic responding, less aversive responding, and a more positive relationship between hedonic responses and ethanol concentration than water-receiving control rats. Hedonic responses had positive, while aversive responses had negative relationships with ethanol concentration and total ethanol consumed during IAE. Adolescent+IAE rats displayed less hedonic and more aversive responses to ethanol than Adult+IAE rats. Sucrose responding was unrelated to ethanol consumption. CONCLUSIONS These results suggest that ethanol consumption influences the future hedonic and aversive value of ethanol in a way that makes ethanol more palatable with greater prior consumption. However, it appears that those drinking ethanol as adolescents may be more resistant to this palatability shift than those first drinking as adults, suggesting different mechanisms of vulnerability to consumption escalation for adolescents and adults.
Collapse
Affiliation(s)
- Thomas J Wukitsch
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS, 66506-5302, USA.
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS, 66506-5302, USA
| |
Collapse
|
6
|
Saba LM, Hoffman PL, Homanics GE, Mahaffey S, Daulatabad SV, Janga SC, Tabakoff B. A long non-coding RNA (Lrap) modulates brain gene expression and levels of alcohol consumption in rats. GENES BRAIN AND BEHAVIOR 2020; 20:e12698. [PMID: 32893479 PMCID: PMC7900948 DOI: 10.1111/gbb.12698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
LncRNAs are important regulators of quantitative and qualitative features of the transcriptome. We have used QTL and other statistical analyses to identify a gene coexpression module associated with alcohol consumption. The "hub gene" of this module, Lrap (Long non-coding RNA for alcohol preference), was an unannotated transcript resembling a lncRNA. We used partial correlation analyses to establish that Lrap is a major contributor to the integrity of the coexpression module. Using CRISPR/Cas9 technology, we disrupted an exon of Lrap in Wistar rats. Measures of alcohol consumption in wild type, heterozygous and knockout rats showed that disruption of Lrap produced increases in alcohol consumption/alcohol preference. The disruption of Lrap also produced changes in expression of over 700 other transcripts. Furthermore, it became apparent that Lrap may have a function in alternative splicing of the affected transcripts. The GO category of "Response to Ethanol" emerged as one of the top candidates in an enrichment analysis of the differentially expressed transcripts. We validate the role of Lrap as a mediator of alcohol consumption by rats, and also implicate Lrap as a modifier of the expression and splicing of a large number of brain transcripts. A defined subset of these transcripts significantly impacts alcohol consumption by rats (and possibly humans). Our work shows the pleiotropic nature of non-coding elements of the genome, the power of network analysis in identifying the critical elements influencing phenotypes, and the fact that not all changes produced by genetic editing are critical for the concomitant changes in phenotype.
Collapse
Affiliation(s)
- Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paula L Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregg E Homanics
- Departments of Anesthesiology, Neurobiology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Swapna Vidhur Daulatabad
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Affiliation(s)
- Gretchen A. Guttman
- Department of Food Science & Technology The Ohio State University Columbus Ohio
| | - Ashley M. Soldavini
- Department of Food Science & Technology The Ohio State University Columbus Ohio
| | | |
Collapse
|
8
|
Brancato A, Lavanco G, Cavallaro A, Plescia F, Cannizzaro C. Acetaldehyde, Motivation and Stress: Behavioral Evidence of an Addictive ménage à trois. Front Behav Neurosci 2017; 11:23. [PMID: 28232795 PMCID: PMC5299001 DOI: 10.3389/fnbeh.2017.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
Acetaldehyde (ACD) contributes to alcohol's psychoactive effects through its own rewarding properties. Recent studies shed light on the behavioral correlates of ACD administration and the possible interactions with key neurotransmitters for motivation, reward and stress-related response, such as dopamine and endocannabinoids. This mini review article critically examines ACD psychoactive properties, focusing on behavioral investigations able to unveil ACD motivational effects and their pharmacological modulation in vivo. Similarly to alcohol, rats spontaneously drink ACD, whose presence is detected in the brain following chronic self-administration paradigm. ACD motivational properties are demonstrated by operant paradigms tailored to model several drug-related behaviors, such as induction and maintenance of operant self-administration, extinction, relapse and punishment resistance. ACD-related addictive-like behaviors are sensitive to pharmacological manipulations of dopamine and endocannabinoid signaling. Interestingly, the ACD-dopamine-endocannabinoids relationship also contributes to neuroplastic alterations of the NPYergic system, a stress-related peptide critically involved in alcohol abuse. The understanding of the ménage-a-trois among ACD, reward- and stress-related circuits holds promising potential for the development of novel pharmacological approaches aimed at reducing alcohol abuse.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| |
Collapse
|
9
|
Deak T, Hunt PS. Early ontogeny as a unique developmental epoch for learning, memory and consequences of alcohol exposure: A Festschrift to honor the work of Dr. Norman E. Spear. Physiol Behav 2015; 148:1-5. [PMID: 26066730 PMCID: PMC4783627 DOI: 10.1016/j.physbeh.2015.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Pamela S Hunt
- Department of Psychology, College of William and Mary, Williamsburg, VA 23187-8795, United States
| |
Collapse
|
10
|
Abstract
INTRODUCTION This mini-review discusses some of the parallels between rodent neurophysiological and human psychophysical data concerning temperature effects on sweet taste. METHODS AND PURPOSE "Sweet" is an innately rewarding taste sensation that is associated in part with foods that contain calories in the form of sugars. Humans and other mammals can show unconditioned preference for select sweet stimuli. Such preference is poised to influence diet selection and, in turn, nutritional status, which underscores the importance of delineating the physiological mechanisms for sweet taste with respect to their influence on human health. Advances in our knowledge of the biology of sweet taste in humans have arisen in part through studies on mechanisms of gustatory processing in rodent models. Along this line, recent work has revealed there are operational parallels in neural systems for sweet taste between mice and humans, as indexed by similarities in the effects of temperature on central neurophysiological and psychophysical responses to sucrose in these species. Such association strengthens the postulate that rodents can serve as effective models of particular mechanisms of appetitive taste processing. Data supporting this link are discussed here, as are rodent and human data that shed light on relationships between mechanisms for sweet taste and ingestive disorders, such as alcohol abuse. RESULTS AND CONCLUSIONS Rodent models have utility for understanding mechanisms of taste processing that may pertain to human flavor perception. Importantly, there are limitations to generalizing data from rodents, albeit parallels across species do exist.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, 1-405-325-2365 (office), 1-405-325-7560 (fax)
| |
Collapse
|