1
|
Cheng X, Gao Z, Liu S, Hu Y, Li W, Zhang L, Ru X. Characteristic noise of offshore wind turbine impacts the behavior and muscle physiology of sea cucumber Apostichopus japonicus. MARINE POLLUTION BULLETIN 2025; 215:117902. [PMID: 40157208 DOI: 10.1016/j.marpolbul.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Sea cucumbers plays a crucial role in maintaining ecological balance through their unique behaviors and physiological functions. However, the noise from offshore wind turbines disrupts the habitat environment of the sea cucumber, potentially altering their behavior and physiology. Nevertheless, limited research exists on how noise from offshore wind turbines affects the sea cucumbers. In our study, we explored the effects of specific wind turbine noise frequencies on the behavior and muscle metabolism of sea cucumbers through four experimental groups: control, 125 Hz, 250 Hz, and 2500 Hz. Statistical analysis of the sea cucumber's ingestion rate, fecal production rate, step frequency and total step length showed that low-frequency noise (125 Hz and 250 Hz) significantly enhanced their locomotion and feeding activity compared to the control group. Further examination demonstrated that low-frequency noise significantly changed the metabolic products in sea cucumber's muscles, altering levels of nine metabolites, excluding tetraazecyclododecane tetraacetic acid. Furthermore, four key metabolic pathways showed marked alterations: pantothenate and CoA biosynthesis, glycerophospholipid metabolism, pyrimidine metabolism, and purine metabolism. These findings demonstrate that sea cucumbers adapt behaviorally and metabolically to anthropogenic noise disturbances.
Collapse
Affiliation(s)
- Xiaochen Cheng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoming Gao
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Shuai Liu
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Yongchao Hu
- Dongying Municipal Bureau of Marine Development and Fisheries, Dongying 257067, China
| | - Wanyi Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Zhang Z, Zhou J, García Molinos J, Mammola S, Bede-Fazekas Á, Feng X, Kitazawa D, Assis J, Qiu T, Lin Q. Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:349-362. [PMID: 38827135 PMCID: PMC11136901 DOI: 10.1007/s42995-024-00226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Correlative species distribution models (SDMs) are important tools to estimate species' geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species' physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a naïve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models' sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with naïve models, the physiologically informed models successfully captured the negative influence of high temperature on A. japonicus and were less sensitive to the choice of calibration area. The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00226-0.
Collapse
Affiliation(s)
- Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301 China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301 China
| | - Jinxin Zhou
- Institute of Industrial Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8574 Japan
| | | | - Stefano Mammola
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), 28922 Verbania Pallanza, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Ákos Bede-Fazekas
- Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
- Department of Environmental and Landscape Geography, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Daisuke Kitazawa
- Institute of Industrial Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8574 Japan
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Tianlong Qiu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
Xie Q, Wang L, Yang S, Yang W, Hu J, Li W, Zhang X, Chen Z. Building adjustment capacity to cope with running water in cultured grass carp through flow stimulation conditions. Sci Rep 2024; 14:8618. [PMID: 38616216 PMCID: PMC11016539 DOI: 10.1038/s41598-024-59270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The adaptability of cultured fish to complex flow conditions is crucial for their survival after being released into the wild. Running water in natural environments poses significant challenges for the proliferation and release of cultured fish. This study aimed to investigate the effects of flow stimulation on the adjustment capacity of cultured fish to cope with running water. The target fish were cultured grass carp. An annular flume was used to conduct tests on training and control groups. The results demonstrated an enhancement in the adjustment capacity of cultured fish following appropriate flow stimulation training. (1) The trained fish exhibited a heightened preference for low-velocity areas. (2) The trained fish displayed the ability to select a route characterized by low energy consumption, predominantly following the periphery of the low-velocity area. This suggested that an appropriate flow velocity could improve the sensitivity of training fish to water flow information, and their adjustment capacity to cope with running water improved to a certain extent. A higher adjustment capacity allowed them to process flow rate information rapidly and identify a migration strategy with lower energy consumption. This study provides a useful reference for enhancing the survival rate of grass carp through stock enhancement initiatives and contributes to the sustainability of freshwater ecosystems.
Collapse
Affiliation(s)
- Qingrong Xie
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China
| | - Li Wang
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China.
| | - Shengfa Yang
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China.
| | - Wei Yang
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China
| | - Jiang Hu
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China
| | - Wenjie Li
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China
| | - Xianbing Zhang
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China
| | - Ziwei Chen
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Xufudadao 66, Chongqing, 400074, China
| |
Collapse
|
4
|
Hu F, Wang H, Tian R, Wu G, Wang L, Chang Y, Zhao C. Artificial reefs reduce the adverse effects of mud and transport stress on behaviors of the sea cucumber Apostichopus japonicus. Sci Rep 2023; 13:9576. [PMID: 37311947 DOI: 10.1038/s41598-023-36791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Poor survival of seeds reduces the production efficiency of the sea cucumber Apostichopus japonicus in pond culture. We investigated the effects of sea mud on the movement-related behaviors of A. japonicus with different body sizes. Mud significantly decreased crawling behavior and wall-reaching behavior in small seeds (~ 1 g of body weight), but not in the large ones (~ 2.5 g of body weight). These behaviors were significantly greater in the large seeds of A. japonicus than those in the small individuals when they were both on the mud. This clearly suggests that mud has negative effects on the movement-related behaviors of small seeds, but not on large individuals. We further assessed the effects of inevitable transport stress on the movement-related behaviors of A. japonicus on mud. Significantly poorer performances in crawling behavior, wall-reaching behavior and struggling behavior were observed in stressed A. japonicus (both sizes) than those in unstressed groups. These new findings indicate that transport stress further increases the adverse effects on the movement-related behaviors of A. japonicus on mud. Moreover, we investigated whether adverse effects can be reduced when individuals are directly seeded onto artificial reefs. Crawling behavior, wall-reaching behavior and struggling behavior in stressed A. japonicus (both sizes) seeded onto artificial reefs were significantly greater than those on mud, whereas artificial reefs did not significantly improve the crawling and struggling behaviors of unstressed small seeds. These results collectively indicate that mud and transport stress show negative impacts on the movement-related behaviors of sea cucumbers. Artificial reefs greatly reduce these adverse effects and probably contribute to improving the production efficiency of sea cucumbers in pond culture.
Collapse
Affiliation(s)
- Fangyuan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Huiyan Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Ruihuan Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Guo Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Gao X, Lyu M, Zhang M, Lin S, Ke C. Structural characteristics of orexin receptor type 2 in Pacific abalone and its diurnal expression pattern after fasting and re-feeding. Int J Biol Macromol 2023; 229:873-884. [PMID: 36587646 DOI: 10.1016/j.ijbiomac.2022.12.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Pacific abalone (Haliotis discus hannai) is a typical nocturnal organism. To examine the circadian expression pattern of orexin receptor type 2 (OX2R) and its potential effect on the feeding behavior of abalone, the coding region sequence of OX2R that is 1215 bp in length and encodes 404 amino acids was first cloned using the rapid amplification of cDNA ends technique. A recombinant expression vector was constructed for H. discus hannai based on the OX2R protein, obtaining a recombinant protein with a molecular weight of 46 kDa. Polyclonal antibody was prepared with the purified recombinant protein used as the antigen, and the antibody titer of ≥512 K was detected by enzyme-linked immunosorbent assay. The expression levels of OX2R determined using western blotting were highest in the intestinal tract (P < 0.05), but they were not significantly different from the levels in the pedal. Immunofluorescence experiments affirmed that OX2R was widely expressed in the columnar cells of the intestinal mucosal epithelium. To further account for the relationship between the onset of feeding behavior and the expression level of OX2R in abalone, the circadian expression characteristics of OX2R were analyzed by dissecting the intestinal tissues after three days of normal feeding and fasting and following the refeeding treatment. The expression levels of OX2R in the refeeding group were significantly higher than those in the normal feeding and fasting groups at any time point (P < 0.05). The cosine curve analysis revealed that the expression levels of OX2R lost rhythmicity after fasting. Based on the quantification of behavioral data for abalone after fasting and refeeding, the cumulative movement distance and movement duration in each group followed a significant cosine rhythm (P < 0.05), which is consistent with abalone's nocturnal ecological habits. However, the cumulative movement distance and movement duration in the fasting group were significantly lower than those in the normal feeding and refeeding groups (P < 0.05). The peak phases of the cumulative movement distance and movement duration in the refeeding group (ZT08:22 and ZT08:44) shifted backward compared to the normal feeding group (ZT07:33 and ZT07:39). The above results first identified the structural characteristics and circadian expression patterns of OX2R in the marine mollusk abalone, which may reveal the molecular mechanism behind the generation of a feeding rhythm in marine nocturnal organisms and serve as a tool helping to maintain the diversity of marine benthic resources.
Collapse
Affiliation(s)
- Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Guo X, Zhang L, Xiao K. Effect of Kisspeptin-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Animals (Basel) 2023; 13:ani13040705. [PMID: 36830492 PMCID: PMC9951865 DOI: 10.3390/ani13040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 02/19/2023] Open
Abstract
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic regulation. In this study, we evaluated how KPs affected locomotor behavior in one control group and two treatment groups (AjK1 and AjK2). We discovered that AjK1 had a significant dose effect, primarily by shortening the stride length and duration of movement to reduce the sea cucumber movement distance, whereas AjK2 had little inhibitory effect at the same dose. The levels of phosphatidylethanolamine (PE), phosphatidylcholine (PC), uridine, glycine, and L-serine in the longitudinal muscle of A. japonicus treated with AjK1 differed significantly from those of the control, which may explain the observed changes in locomotor behavior. Treatment with AjK2 induced changes in aspartate levels. Our results imply that AjK1 is more likely than AjK2 to have a role in the regulation of A. japonicus locomotion.
Collapse
Affiliation(s)
- Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities. Sci Rep 2022; 12:13493. [PMID: 35931770 PMCID: PMC9356045 DOI: 10.1038/s41598-022-17793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the importance of flow velocity in marine ecosystems, molecular mechanisms of the water flow induced behavioral and growth changes remain largely unknown in sea urchins. The present study compared the gene expressions of the sea urchin Mesocentrotus nudus at high flow velocities (10 cm/s and 20 cm/s) and low flow velocity (2 cm/s) using transcriptomes. A total of 490 and 470 differentially expressed genes (DEGs) were discovered at 10 cm/s and 20 cm/s, respectively. There were 235 up-regulated and 255 down-regulated genes at 10 cm/s, 213 up-regulated and 257 down-regulated genes at 20 cm/s, compared with sea urchins at 2 cm/s. Further, there were 72 overlapped DEGs involved in regulation at both 10 cm/s and 20 cm/s. Gene Ontology (GO) functional annotation showed that DEGs were mainly enriched to cellular process, cell part, binding, and metabolism process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that DEGs were enriched in three pathways related to amino acid metabolism and lipid metabolism. A number of genes related to growth and metabolism of sea urchins were mobilized in high flow velocity environment. We further highlighted a muscle-associated gene ankyrin-1, which is correlated with the movement of tube feet at different flow velocities. The present study provides valuable information on the molecular mechanisms of changed behaviors and growth when sea urchins are exposed to high flow velocity.
Collapse
|
8
|
Ding K, Zhang L, Fan X, Zhuo P, Feng Q, Zhang S, Guo X, Liu X. Influence of an L-type SALMFamide neuropeptide on locomotory performance and muscle physiology in the sea cucumber Apostichopus japonicus. J Exp Biol 2021; 224:272337. [PMID: 34477872 DOI: 10.1242/jeb.242566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Neuropeptides in the SALMFamide family serve as muscle relaxants in echinoderms and may affect locomotion, as the motor behavior in sea cucumbers involves alternating contraction and extension of the body wall, which is under the control of longitudinal muscle. We evaluated the effect of an L-type SALMFamide neuropeptide (LSA) on locomotory performance of Apostichopus japonicus. We also investigated the metabolites of longitudinal muscle tissue using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to assess the potential physiological mechanisms underlying the effect of LSA. The hourly distance, cumulative duration and number of steps moved significantly increased in sea cucumbers in the fourth hour after injection with LSA. Also, the treatment enhanced the mean and maximum velocity by 9.8% and 17.8%, respectively, and increased the average stride by 12.4%. Levels of 27 metabolites in longitudinal muscle changed after LSA administration, and the increased concentration of pantothenic acid, arachidonic acid and lysophosphatidylethanolamine, and the altered phosphatidylethanolamine/phosphatidylcholine ratio are potential physiological mechanisms that could explain the observed effect of LSA on locomotor behavior in A. japonicus.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China.,Shandong Province Key Laboratory of Experimental Marine Biology, 266071 Qingdao, China
| | - Xinhao Fan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Pengji Zhuo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiming Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuangyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| |
Collapse
|
9
|
Li X, Wang C, Li N, Gao Y, Ju Z, Liao G, Xiong D. Combined Effects of Elevated Temperature and Crude Oil Pollution on Oxidative Stress and Apoptosis in Sea Cucumber ( Apostichopus japonicus, Selenka). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020801. [PMID: 33477823 PMCID: PMC7832845 DOI: 10.3390/ijerph18020801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber.
Collapse
Affiliation(s)
- Xishan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Nan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Yali Gao
- School of Marine Engineering, Jimei University, Xiamen 361021, China;
| | - Zhonglei Ju
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Guoxiang Liao
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
- Correspondence: ; Tel.: +86-0411-8478-3810
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| |
Collapse
|
10
|
Ding K, Zhang L, Fan X, Guo X, Liu X, Yang H. The Effect of Pedal Peptide-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Front Physiol 2020; 11:559348. [PMID: 33192555 PMCID: PMC7642236 DOI: 10.3389/fphys.2020.559348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neuropeptides are endogenous active substances that are present in nervous tissues and participate in behavioral and physiological processes of the animal system. Locomotor behavior is basic to predation, escape, reproduction in animals, and neuropeptides play an important role in locomotion. In this study, the function of pedal peptide-type neuropeptide (PDP) in the process of locomotor behavior of the sea cucumber Apostichopus japonicus was evaluated. The locomotor behavior of A. japonicus was recorded by infrared camera before and after PDP administration, and muscle physiology was studied by ultra performance liquid chromatography and quadrupole time-off-light mass spectrometry (UPLC-Q-TOF-MS) to clarify the potential physiological mechanisms. The results showed that PDP enhanced the cumulative duration of moving significantly at the 7th h after injection, and reduced the mean and maximum velocity by 16.90 and 14.22% in A. japonicus. The data of muscle metabolomics suggested that some significantly changed metabolites were related to locomotor behavior of sea cucumbers. The decreases of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) might result in the increases of lysophosphatidylcholines (lysoPC) and lysophosphatidylethanolamine (lysoPE), and suggested the change of fluidity and permeability in the muscle cell membrane, which would affect the physiology and function of muscle cells, and finally alter the locomotor behavior. In addition, the increased level of arachidonic acid (ARA) might activate K+ ion channels and then affect the signaling of muscle cells, or promote the sensitivity of muscle cells to Ca2+ and then result in the contractility of longitudinal muscles in sea cucumbers. ARA was also involved in the linoleic acid metabolism which was the only pathway that disturbed significantly after PDP administration. In conclusion, PDP participated in the regulation of locomotor behavior in the sea cucumber, and the decreased PE and PC, increased lysoPC, lysoPE and ARA might be the potential physiological mechanisms that responsible for behavioral effects of PDP in A. japonicus.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xinhao Fan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
11
|
Brundu G, Farina S, Domenici P. Going back into the wild: the behavioural effects of raising sea urchins in captivity. CONSERVATION PHYSIOLOGY 2020; 8:coaa015. [PMID: 32587698 PMCID: PMC7304559 DOI: 10.1093/conphys/coaa015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Sea urchin harvesting has rapidly expanded in the last decades. Since many sea urchin species play important ecological role, large-scale commercial sea urchin fisheries can have complex effects on benthic communities. In many temperate regions, overharvesting has compromised marine ecosystems to such an extent that reintroduction of sea urchins raised in captivity may be a valid solution for the enhancement of depleted marine wild populations. In some regions of the Mediterranean Sea, improving the growth efficiency of captive sea urchin Paracentrotus lividus to be reintroduced has become a widespread practice. However, no study has yet considered the potential behavioural effects of raising sea urchins in captivity when they are introduced in the natural environment. This study provides information about the behavioural effects of captivity on P. lividus in terms of locomotion performance, a trait that can be fundamental for responding to predators and for relocation after environmental disturbances such as currents and waves. Movements of captive-born and wild sea urchins were video-recorded and compared in (i) total exposure to external cues, (ii) partial exposure to external cues and (iii) absence of external cues. Latency of locomotion, average speed and average velocity of sea urchins showed significant differences with respect to the level of exposure and their origin (i.e. wild vs. captive-born). Our results demonstrate that captive-born sea urchins in the wild showed long latency and slower locomotor performance when compared to wild sea urchins. Conversely, the straightness-of-path and locomotion direction of captive-born and wild sea urchins were similar in natural settings. Our results therefore suggest that captive-born sea urchins suffer the negative effects of captivity when introduced in a natural environment. Understanding the factors that decrease the performance of sea urchin will be important for developing procedures aimed at minimizing the negative effect of captivity before release into the wild.
Collapse
Affiliation(s)
- G Brundu
- IMC-International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| | - S Farina
- IMC-International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| | - P Domenici
- IAS- Institute of Anthropic Impact and Sustainability in Marine Environment, CNR, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| |
Collapse
|
12
|
Mohsen M, Zhang L, Sun L, Lin C, Wang Q, Yang H. Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113606. [PMID: 31761598 DOI: 10.1016/j.envpol.2019.113606] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) are small plastic particles less than 5 mm in diameter. MPs in the form of microfibers (MFs) are widely detected in aquatic habitats and are of high environmental concern. Despite many reports on the effects of MFs on marine animals, their effect on sea cucumbers is still unclear. In addition, our previous filed study has shown that MFs may transfer to the coelomic fluid of the sea cucumber Apostichopus japonicus (A. japonicus). Here, we show how MFs transfer to the coelomic fluid of the sea cucumber. We captured the MFs during their transfer from the water to the coelomic fluid through the respiratory tree. A. japonicus ingested in the MFs along with the water during respiration; the MFs got stuck in the respiratory tree or transferred to the coelomic fluid. The transferred MFs increased during 72 h of exposure and persisted for 72 h after the transfer to clean water. Among the immunity indices, lysozyme (LZM) levels increased in response to the transferred MFs, which confirms the defensive role of LZMs against strange substances. Additionally, non-significantly decreased levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), peroxidase (POD) and phenol oxidase (PPO) were observed at 24 h and 48 h post-exposure, suggesting minimal oxidative imbalance. Furthermore, there were no significant changes in the speed and the total distance moved by A. japonicus post MFs transfer. This study revealed that MFs transfer and accumulate in the coelomic fluid of A. japonicus.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Ding K, Zhang L, Zhang T, Yang H, Brinkman R. The Effect of Melatonin on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Front Physiol 2019; 10:221. [PMID: 30941049 PMCID: PMC6433841 DOI: 10.3389/fphys.2019.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Melatonin is a highly conserved hormone in evolutionary history. It occurs in numerous organisms and plays a role in the endocrine and immune systems. Locomotor behavior is a basic behavior in animals and is an important indicator of circadian rhythms, which are coordinated by the nervous and endocrine systems. To date, the effect of melatonin on locomotor behavior has been studied in vertebrates, including syrian hamsters, sparrows, rats, zebrafish, goldfish, and flatworms. However, there have been few studies of the effects of melatonin on locomotor behavior in marine invertebrates. The goals of present study were to show the existence of melatonin in the sea cucumber Apostichopus japonicus and to evaluate its effect on locomotor activity. In addition, muscle tissues from control and melatonin-treated sea cucumbers were tested using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to determine the changes of metabolic activity in muscle. Melatonin was present in the coelomic fluid of A. japonicus at a concentration of ∼135.0 ng/L. The total distance traveled and number steps taken over 9 h after melatonin administration decreased with increasing concentration of the melatonin dose. Mean and maximum velocity of movement and stride length and stride frequency also decreased, but their differences were not statistically significant. Overall, these results suggest that melatonin administration had a sedative effect on A. japonicus. The levels of 22 different metabolites were altered in the muscle tissues of melatonin-treated sea cucumbers. Serotonin, 9-cis retinoic acid, all-trans retinoic acid, flavin mononucleotide in muscles were downregulated after melatonin administration. Moreover, a high free fatty acid (FFA) concentration and a decrease in the adenosine 5′-triphosphate (ATP) concentration in the muscle tissues of the melatonin-treated group were detected as well. These results suggest that the sedative effect of melatonin involves some other metabolic pathways, and the reduced locomotor modulator—serotonin, inhibited fatty acid oxidation and disturbed oxidative phosphorylation are potential physiological mechanisms that result in the inhibitory effect of melatonin on locomotion in sea cucumbers.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Richard Brinkman
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
14
|
Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:143-157. [PMID: 30851504 DOI: 10.1016/j.cbd.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
The sea cucumber Apostichopus japonicus (Selenka) is a valuable economic species in Southeast Asia. It has many fascinating behavioral characteristics, such as autolysis, aestivation, regeneration, and evisceration, thus it is a notable species for studies of special behaviors. Evisceration and autotomy are controlled by the neural network and involve a complicated physiological process. The occurrence of evisceration behavior in sea cucumbers is strongly related to their environment, and it negatively impacts their economic value. Evisceration behavior plays a pivotal role in the survival of A. japonicus, and when it is induced by dramatic changes in the coastal ecological environment and the aquaculture setting it can strongly affect the economic performance of this species. Although numerous studies have focused on intestinal regeneration of A. japonicus, less is known about evisceration behavior, especially its underlying molecular mechanisms. Thus, identification of genes that regulate evisceration in the sea cucumber likely will provide a scientific explanation for this significant specific behavior. In this study, Illumina sequencing (RNA-Seq) was performed on A. japonicus specimens in three states: normal (TCQ), eviscerating (TCZ), and 3 h after evisceration (TCH). In total, 129,905 unigenes were generated with an N50 length of 2651 base pairs, and 54,787 unigenes were annotated from seven functional databases (KEGG, KOG, GO, NR, NT, Interpro, and Swiss-Prot). Additionally, 190, 191, and 320 genes were identified as differentially expressed genes (DEGs) in the comparisons of TCQ vs. TCZ, TCZ vs. TCH, and TCQ vs. TCH, respectively. These DEGs mapped to 157, 113, and 190 signaling pathways in the KEGG database, respectively. KEGG analyses also revealed that potential DEGs enriched in the categories of "environmental information processing," "organismal system," "metabolism," and "cellular processes," and they were involved in evisceration behavior in A. japonicus. These DEGs are related to muscle contraction, hormone and neurotransmitter secretion, nerve and muscle damage, energy support, cellular stress, and apoptosis. In conclusion, through our comparative analysis of A. japonicus in different stages, we identified many candidate evisceration-related genes and signaling pathways that likely are involved in evisceration behavior. These results should help further elucidate the mechanisms underlying evisceration behavior in sea cucumbers.
Collapse
|
15
|
Sun J, Hamel JF, Mercier A. Influence of flow on locomotion, feeding behaviour and spatial distribution of a suspension-feeding sea cucumber. ACTA ACUST UNITED AC 2018; 221:jeb.189597. [PMID: 30127075 DOI: 10.1242/jeb.189597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022]
Abstract
Although movement in response to environmental conditions represents a fundamental link between animal behaviour and population ecology, it is rarely investigated in suspension feeders because they are generally perceived as sessile. Here, the interplay between water flow and fine locomotor and feeding behaviours was experimentally investigated for the first time in a free-moving suspension-feeding sea cucumber (Cucumaria frondosa; Echinodermata, Holothuroidea) using time-lapse videography in a mesocosm setting. Individuals moved away from static conditions in the weakest flow treatment and fled the strongest flows (>40 cm s-1) in the more dynamic treatments. The tentacles of individuals located in areas with flows of ≥40 cm s-1 was aligned with the direction of the current, whereas in flows <40 cm s-1, they were typically perpendicular to the direction of flow. Tentacle deployment and insertion rates (i.e. feeding rate) increased with flow, from 0.95 min-1 at 10 cm s-1 to 1.13 min-1 at 40 cm s-1 Three modes of locomotion were detected. Forward crawling was most frequent at flows ≤40 cm s-1, passive rolling dominated at flows >40 cm s-1 and active rolling occurred randomly at flows between 0 and 120 cm s-1 Overall, the flow regime favoured by C . frondosa was determined to be between 21 and 40 cm s-1, under which an optimal balance between efficient food capture and energy expenditure for attachment to the bottom was presumably found. These findings provide insight into the distribution and population dynamics of suspension-feeding holothuroids, and may also assist the fisheries management and aquaculture development of commercial species.
Collapse
Affiliation(s)
- Jiamin Sun
- Department of Ocean Sciences, Memorial University, St John's, NL, Canada, A1C 5S7
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment (SEVE), St. Philips, NL, Canada, A1M 2B7
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
16
|
Reproduction affects locomotor behaviour and muscle physiology in the sea cucumber, Apostichopus japonicus. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|