1
|
Graham LC, Grabowska WA, Chun Y, Risacher SL, Philip VM, Saykin AJ, Sukoff Rizzo SJ, Howell GR. Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiol Aging 2019; 80:154-172. [PMID: 31170535 PMCID: PMC7846054 DOI: 10.1016/j.neurobiolaging.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/12/2023]
Abstract
Obesity in the western world has reached epidemic proportions, and yet the long-term effects on brain health are not well understood. To address this, we performed transcriptional profiling of brain regions from a mouse model of western diet (WD)-induced obesity. Both the cortex and hippocampus from C57BL/6J (B6) mice fed either a WD or a control diet from 2 months of age to 12 months of age (equivalent to midlife in a human population) were profiled. Gene set enrichment analyses predicted that genes involved in myelin generation, inflammation, and cerebrovascular health were differentially expressed in brains from WD-fed compared to control diet-fed mice. White matter damage and cerebrovascular decline were evident in brains from WD-fed mice using immunofluorescence and electron microscopy. At the cellular level, the WD caused an increase in the numbers of oligodendrocytes and myeloid cells suggesting that a WD is perturbing myelin turnover. Encouragingly, cerebrovascular damage and white matter damage were prevented by exercising WD-fed mice despite mice still gaining a significant amount of weight. Collectively, these data show that chronic consumption of a WD in B6 mice causes obesity, neuroinflammation, and cerebrovascular and white matter damage, but these potentially damaging effects can be prevented by modifiable risk factors such as exercise.
Collapse
Affiliation(s)
- Leah C Graham
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Weronika A Grabowska
- The Jackson Laboratory, Bar Harbor, ME, USA; College of the Atlantic, Bar Harbor, ME, USA
| | - Yoona Chun
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Heese AJ, Roberts CK, Hofheins JC, Brown JD, Ruegsegger GN, Toedebusch RG, Booth FW. Rats Selectively Bred for High Voluntary Physical Activity Behavior are Not Protected from the Deleterious Metabolic Effects of a Western Diet When Sedentary. Curr Dev Nutr 2019; 3:nzz017. [PMID: 31111117 PMCID: PMC6517781 DOI: 10.1093/cdn/nzz017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Physical activity and diet are well-established modifiable factors that influence chronic disease risk. We developed a selectively bred, polygenic model for high and low voluntary running (HVR and LVR, respectively) distances. After 8 generations, large differences in running distance were noted. Despite these inherent behavioral differences in physical activity levels, it is unknown whether HVR rats would be inherently protected from diet-induced metabolic dysfunction. OBJECTIVES The aim of this study was to determine whether HVR rats without voluntary running wheels would be inherently protected from diet-induced metabolic dysfunction. METHODS Young HVR, LVR, and a wild-type (WT) control group were housed with no running wheel access and fed either a normal diet (ND) or a high-sugar/fat Western diet (WD) for 8 wk. Body weight, percentage body fat (by dual-energy X-ray absorptiometry scan), blood lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TGs), nonesterified fatty acids], and hepatic TG content were measured, and indices of insulin sensitivity were determined via an intravenous glucose tolerance test. Additionally, weekly energy intake and feed efficiency were calculated. RESULTS After 8 wk, significant differences in body weight and body fat percentage were noted in all WD animals compared with ND animals, with the LVR-WD exhibiting the greatest increase due, in part, to their enhanced feed efficiency. Lipid dysregulation was present in all WD rat lines compared with ND counterparts. Furthermore, LVR-WD rats had higher total cholesterol, HDL cholesterol, and TG concentrations, and higher areas under the curve (AUC) for insulin than HVR-WD and WT-WD, although HVR-WD animals had higher AUCglucose than both LVR-WD and WT-WD and higher LDL than WT-WD. CONCLUSIONS In the absence of high voluntary running behavior, the genetic predisposition for high running in HVR did not largely protect them from the deleterious effects of a WD compared with LVR, suggesting genetic factors influencing physical activity levels may, in part, be independent from genes influencing metabolism.
Collapse
Affiliation(s)
- Alexander J Heese
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Christian K Roberts
- Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - John C Hofheins
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Jacob D Brown
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | | | - Ryan G Toedebusch
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Frank W Booth
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
- Departments of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
- Departments of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
Greenwood BN, Fleshner M. Voluntary Wheel Running: A Useful Rodent Model for Investigating the Mechanisms of Stress Robustness and Neural Circuits of Exercise Motivation. Curr Opin Behav Sci 2019; 28:78-84. [PMID: 32766411 DOI: 10.1016/j.cobeha.2019.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite evidence that exercise reduces the negative impacts of stressor exposure and promotes stress robustness, health and well-being, most people fail to achieve recommended levels of physical activity. One reason for this failure could be our fundamental lack of understanding the brain motivational and motor circuits underlying voluntary exercise behavior. Wheel running is an animal model used to reveal mechanisms of exercise-induced stress robustness. Here we detail the strengths and weakness of wheel running as a model; and propose that running begins as a purposeful, goal-directed behavior that becomes habitual with continued access. This fresh perspective could aid in the development of novel strategies to motivate and sustain exercise behavior and maximize the stress-robust phenotype.
Collapse
Affiliation(s)
- Benjamin N Greenwood
- University of Colorado-Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364,
| | - Monika Fleshner
- University of Colorado-Boulder, Department of Integrative Physiology, Center for Neuroscience, UCB 354, Boulder, CO 80303.,University of Colorado-Boulder, Center for Neuroscience, UCB 354, Boulder, CO 80303,
| |
Collapse
|
4
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
5
|
Ruegsegger GN, Grigsby KB, Kelty TJ, Zidon TM, Childs TE, Vieira-Potter VJ, Klinkebiel DL, Matheny M, Scarpace PJ, Booth FW. Maternal Western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression. FASEB J 2017; 31:5371-5383. [PMID: 28794174 DOI: 10.1096/fj.201700389r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/30/2023]
Abstract
Prenatal overnutrition affects development into adulthood and influences risk of obesity. We assessed the transgenerational effect of maternal Western diet (WD) consumption on offspring physical activity. Voluntary wheel running was increased in juvenile (4-7 wk of age), but decreased in adult (16-19 wk of age), F1 female WD offspring In contrast, no wheel-running differences in F1 male offspring were observed. Increased wheel running in juvenile female WD offspring was associated with up-regulated dopamine receptor (DRD)-1 and -2 in the nucleus accumbens (NAc) and with down-regulated Lepr in the ventral tegmental area (VTA). Conversely, decreased wheel running by adult female WD offspring was associated with down-regulated DRD1 in the NAc and with up-regulated Lepr in the VTA. Body fat, leptin, and insulin were increased in male, but not in female, F1 WD offspring. Recombinant virus (rAAV) leptin antagonism in the VTA decreased wheel running in standard diet but not in WD F1 female offspring. Analysis of F2 offspring found no differences in wheel running or adiposity in male or female offspring, suggesting that changes in the F1 generation were related to in utero somatic reprogramming. Our findings indicate prenatal WD exposure leads to age-specific changes in voluntary physical activity in female offspring that are differentially influenced by VTA leptin antagonism.-Ruegsegger, G. N., Grigsby, K. B., Kelty, T. J., Zidon, T. M., Childs, T. E., Vieira-Potter, V. J., Klinkebiel, D. L., Matheny, M., Scarpace, P. J., Booth, F. W. Maternal Western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Terese M Zidon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - David L Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Matheny
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Phillip J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA; .,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
6
|
Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience 2016; 339:525-537. [DOI: 10.1016/j.neuroscience.2016.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 01/06/2023]
|
7
|
Ruegsegger GN, Speichinger KR, Manier JB, Younger KM, Childs TE, Booth FW. Hypothalamic Npy mRNA is correlated with increased wheel running and decreased body fat in calorie-restricted rats. Neurosci Lett 2016; 618:83-88. [PMID: 26921453 DOI: 10.1016/j.neulet.2016.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/04/2016] [Accepted: 02/21/2016] [Indexed: 01/08/2023]
Abstract
The neuro-molecular mechanisms that regulate the relationship between physical activity level, energy homeostasis regulation, and body fat are unclear. Thus, we aimed to investigate the relationship between mRNAs in the hypothalamic arcuate nucleus (ARC) related to energy homeostasis, wheel running distance, and body fat in ad lib (AL) and calorie-restricted (CR) growing rats. We hypothesized that changes in select mRNAs (Pomc, Cart, Agrp, Npy, Lepr, Insr, Mc4r, Ampk, Sirt1, Sirt3) in CR would be associated with decreases in body fat percentage and increased wheel running behavior. Male Wistar rats were given access to voluntary running wheels at 4 weeks of age and randomized into AL (n=8) and CR (70% of AL; n=7) groups at 5 weeks of age until study termination at 12 weeks of age. Body composition, serum leptin, insulin, and adiponectin, and ARC mRNA expression in AL and CR rats were assessed and correlated with week-12 running distance to examine potential relationships that may exist. By 12 weeks of age, wheel running was increased ∼3.3-fold (p=0.03) while body fat percentage was ∼2-fold lower in CR compared to AL (p=0.001). Compared to AL, ARC Npy mRNA expression was ∼2-fold greater in CR (p=0.02), while Lepr, Insr, Ampk, and Sirt1 mRNA were additionally increased in CR (p<0.05). Significant correlations existed between ARC Npy mRNA levels versus week-12 wheel running distance (r=0.81, p=0.03), body fat (r=-0.93, p<0.01), and between body fat and wheel running (r=-0.83, p=0.02) in CR, but not in AL. These results reveal possible mechanisms by which fat-brain crosstalk may influence physical activity during energy deficit. These data suggest that below a 'threshold' fat content, body fat may drive activity levels, potentially through hypothalamic Npy action.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Katherine R Speichinger
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Jacob B Manier
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Kyle M Younger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|