1
|
Sharova O, Smiyan O, Borén T. Immunological effects of cerebral palsy and rehabilitation exercises in children. Brain Behav Immun Health 2021; 18:100365. [PMID: 34704080 PMCID: PMC8522480 DOI: 10.1016/j.bbih.2021.100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
Cerebral palsy (CP) is a group of motor disorders caused by non-progressive lesions of the premature brain with lifelong pathophysiological consequences that include dysregulation of innate immunity. Persistent inflammation with increased levels of circulating pro-inflammatory tumor necrosis factor alpha (TNF-a) is negatively associated with rehabilitation outcome in children with CP. Because of the crosstalk between innate and adaptive immunity, we investigated the effect of CP and rehabilitation exercises on the adaptive immune system in children with CP by measuring the levels of CD3+, CD4+, CD8+ Т-cells, and CD22+ B-cells and the levels of immunoglobulins. Children with CP had higher levels of CD3+, CD4+, CD8+ Т-cells, and CD22+ B-cells compared to healthy children, and the rehabilitation exercise programs produced better outcomes in terms of increased gains in motor function at an earlier age. Rehabilitation exercises performed over a month resulted in significantly decreased levels of IgA in serum and reduced numbers of B-lymphocytes and reduced IgM levels. Our study suggests that rehabilitation programs with a focus on neuroplasticity and physical exercises in children with CP can reduce both cellular and humoral immune responses. Children with CP demonstrate increased levels of T and B cells. Rehabilitation exercises helped balance immune responses.
Collapse
Affiliation(s)
- Oleksandra Sharova
- Department of Pediatrics, Sumy State University, 40031, Sumy, Ukraine
- Corresponding author.
| | - Oleksandr Smiyan
- Department of Pediatrics, Sumy State University, 40031, Sumy, Ukraine
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
2
|
Donovan T, Bain AL, Tu W, Pyne DB, Rao S. Influence of Exercise on Exhausted and Senescent T Cells: A Systematic Review. Front Physiol 2021; 12:668327. [PMID: 34489717 PMCID: PMC8417807 DOI: 10.3389/fphys.2021.668327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
The impaired effector function of exhausted and senescent T cells is implicated in cancer progression and inadequate vaccine responses. Exercise has been shown to improve cancer therapy and vaccine efficacy, most likely by improving immune function. However, given inconsistent terminology and definitions, the interactions between exercise and exhausted and senescent T cells remain unclear. We therefore performed a systematic review to investigate the effect of exercise on senescent and exhausted CD8+ T cell populations clearly defined by protein surface markers. Thirty articles were included, with the majority (n = 24) reporting senescent T cell populations defined according to a variety of surface markers. Repeated exercise was shown to be beneficial through limiting the accumulation of senescent and exhausted CD8+ T cells. This outcome is likely related to exercise-induced preferential mobilization of senescent T cells promoting apoptosis in the peripheral blood compartment. Future studies need to determine the clinical relevance of this effect in cancer prevention and vaccine efficacy. Data regarding exercise and exhausted T cells are limited due to a lack of available high-quality studies. Future studies require the control of confounding variables such as sex and cytomegalovirus (CMV) status, and consistent definitions of exhausted and senescent T cell populations to improve comparisons between studies and interventions.
Collapse
Affiliation(s)
- Thomasina Donovan
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.,Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amanda L Bain
- Gene Regulation and Translational Medicine Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wenjuan Tu
- Gene Regulation and Translational Medicine Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Batatinha H, Tavares-Silva E, Leite GSF, Resende AS, Albuquerque JAT, Arslanian C, Fock RA, Lancha AH, Lira FS, Krüger K, Thomatieli-Santos R, Rosa-Neto JC. Probiotic supplementation in marathonists and its impact on lymphocyte population and function after a marathon: a randomized placebo-controlled double-blind study. Sci Rep 2020; 10:18777. [PMID: 33139757 PMCID: PMC7608678 DOI: 10.1038/s41598-020-75464-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Probiotic supplementation arises as playing an immune-stimulatory role. High-intensity and -volume exercise can inhibit immune cell function, which threatens athletic performance and recovery. We hypothesized that 30 days of probiotic supplementation could stabilize the immune system of athletes preventing immune suppression after a marathon race. Twenty-seven male marathonists were double-blinded randomly into probiotic (Bifidobacterium-animalis-subsp.-Lactis (10 × 109) and Lactobacillus-Acidophilus (10 × 109) + 5 g of maltodextrin) and placebo (5 g of maltodextrin) group. They received 30 sachets and supplemented 1 portion/day during 30 days before the race. Blood were collected 30 days before (rest), 1 day before (pre), 1 h after (post) and 5 days after the race (recovery). Both chronic and acute exercise modulated a different T lymphocyte population (CD3+CD4−CD8− T-cells), increasing pre-race, decreasing post and returning to rest values at the recovery. The total number of CD8 T cell and the memory subsets statistically decreased only in the placebo group post-race. Pro-inflammatory cytokine production by stimulated lymphocytes decreased in the probiotic group after the supplementation period. 30 days of probiotic supplementation maintained CD8 T cell and effector memory cell population and played an immunomodulatory role in stimulated lymphocytes. Both, training and marathon modulated a non-classical lymphocyte population regardless of probiotic supplementation.
Collapse
Affiliation(s)
- Helena Batatinha
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil. .,Department of Cell and Developmental Biology, University of São Paulo,, 1524, Prof Lineu Prestes Av., Sao Paulo, SP, 05508-000, Brazil.
| | - Edgar Tavares-Silva
- Programa de pós-graduação em psicobiologia, Universidade Federal de São Paulo, Santos, Brazil
| | - Geovana S F Leite
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Ayane S Resende
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - José A T Albuquerque
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Arslanian
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo A Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio H Lancha
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ronaldo Thomatieli-Santos
- Programa de pós-graduação em psicobiologia, Universidade Federal de São Paulo, Santos, Brazil.,Department of Bioscience, Universidade Federal de São Paulo, Santos, Brazil
| | - José C Rosa-Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
4
|
Campbell JP, Turner JE. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front Immunol 2018; 9:648. [PMID: 29713319 PMCID: PMC5911985 DOI: 10.3389/fimmu.2018.00648] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Collapse
Affiliation(s)
- John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
5
|
Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4234765. [PMID: 28751932 PMCID: PMC5511671 DOI: 10.1155/2017/4234765] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
Moderate intensity aerobic exercise training or regular physical activity is beneficial for immune function. For example, some evidence shows that individuals with an active lifestyle exhibit stronger immune responses to vaccination compared to those who are inactive. Encouragingly, poor vaccine responses, which are characteristic of an ageing immune system, can be improved by single or repeated bouts of exercise. In addition, exercise-induced lymphocytosis, and the subsequent lymphocytopenia, is thought to facilitate immune surveillance, whereby lymphocytes search tissues for antigens derived from viruses, bacteria, or malignant transformation. Aerobic exercise training is anti-inflammatory and is linked to lower morbidity and mortality from diseases with infectious, immunological, and inflammatory aetiologies, including cancer. These observations have led to the view that aerobic exercise training might counter the age-associated decline in immune function, referred to as immunosenescence. This article summarises the aspects of immune function that are sensitive to exercise-induced change, highlighting the observations which have stimulated the idea that aerobic exercise training could prevent, limit, or delay immunosenescence, perhaps even restoring aged immune profiles. These potential exercise-induced anti-immunosenescence effects might contribute to the mechanisms by which active lifestyles reduce the risk of developing cancer and perhaps benefit patients undergoing cancer therapy.
Collapse
|