1
|
Alanazi M, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Batiha GES. The protective effect of amylin in type 2 diabetes: Yes or no. Eur J Pharmacol 2025; 996:177593. [PMID: 40187597 DOI: 10.1016/j.ejphar.2025.177593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Amylin, which is also called a human islet amyloid polypeptide, is a peptide hormone made up of 37 amino acids that is released from pancreatic β cells. It helps keep blood sugar levels stable by controlling the release of insulin and glucagon. Various studies have indicated its involvement in the pathogenesis of type 2 diabetes (T2D) through the induction of apoptosis in pancreatic cells. Conversely, other studies found that amylin plays a critical role in the pathogenesis of T2D by affecting the release of insulin and glucagon. Therefore, amylin has protective and detrimental effects on the pathogenesis of T2D. Consequently, this review aims to discuss the beneficial and detrimental roles of amylin in T2D.
Collapse
Affiliation(s)
- Mansour Alanazi
- Department of Internal Medicine, College of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO. Box13 Kufa, Najaf, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Abioye RO, Yiridoe MS, Wang C, Avis TJ, Ahmed TAE, Hammami R, Udenigwe CC. Cross-domain binding of anti-fibrillation peptide TNGQ to islet amyloid polypeptide provides cytoprotective effects in giant unilamellar vesicles and pancreatic β-cells. Food Funct 2024; 15:12047-12057. [PMID: 39564793 DOI: 10.1039/d4fo03322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Islet amyloid polypeptide (IAPP) fibrillation induces β-cell dysfunction and toxicity in patients with type 2 diabetes. Cytotoxicity is caused by the ability of IAPP fibrils and fibrillar intermediates to permeate the cellular membrane of pancreatic β-cells, trigger endoplasmic reticular stress, induce reactive oxygen species production, and upregulate apoptosis-related genes. Thus, inhibition of IAPP fibrillation is of great interest for preventing associated cytotoxicity. In this study, the cellular protective effects of three anti-fibrillation tetrapeptides, YMSV, MANT, and TNGQ, against IAPP fibrillation-induced membrane leakage in giant unilamellar vesicles (GUVs) and toxicity in RIN-m cells were evaluated. The anti-fibrillation activity of TNGQ translated to cytoprotective effects as it resulted in a 69.0 ± 7.9% decrease in calcein release in GUVs and a significant increase in cell viability from 6.4 ± 6.4% with IAPP to 47.5 ± 3.8% with the addition of TNGQ. MANT slightly inhibited IAPP-induced GUV leakage and increased cell viability. In contrast, the protective effect of YMSV against IAPP fibrillation-induced membrane damage in GUVs was completely diminished in β-cells. Molecular docking of pentameric IAPP showed that Asn21 and Asn22 of IAPP are important for inhibitor binding, which, coupled with the cross-domain binding interactions of TNGQ, explains its stronger anti-fibrillation and cytoprotective effects than MANT and YMSV. These findings provide insights into the functional significance of peptide-IAPP binding interactions in mitigating fibrillation and IAPP fibrillation-induced cytotoxicity.
Collapse
Affiliation(s)
- Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Martha S Yiridoe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada.
| | - Chenyang Wang
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tyler J Avis
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
3
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
4
|
Xiang C, Sun Y, Luo Y, Xie C, Huang W, Jones KL, Horowitz M, Sun Z, Rayner CK, Ma J, Wu T. Gastric emptying is slower in women than men with type 2 diabetes and impacts on postprandial glycaemia. Diabetes Obes Metab 2024; 26:3119-3127. [PMID: 38698649 DOI: 10.1111/dom.15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
AIM To evaluate sex differences in gastric emptying and the glycaemic response to a glucose drink and a high carbohydrate meal in type 2 diabetes (T2D). METHODS In cohort 1, 70 newly diagnosed, treatment-naïve Chinese patients with T2D (44 men) recruited from a diabetes outpatient clinic ingested a 75-g glucose drink containing 150 mg 13C-acetate. In cohort 2, 101 Australian patients with T2D (67 male) recruited from the community, managed by diet and/or metformin monotherapy, ingested a semi-solid mashed potato meal, labelled with 100 μl 13C-octanoic acid. Breath samples were collected over 3 and 4 h, respectively, for assessment of gastric emptying, and venous blood was sampled for evaluation of glycaemia (with and without adjustment for each participant's estimated total blood volume). RESULTS Gastric emptying was slower in female than male subjects in both cohorts (both p < .01). Multiple linear regression analyses revealed that gastric emptying was independently associated with sex (both p < .05). Without adjustment for blood volume, the glycaemic responses to oral glucose and the mixed meal were greater in female subjects (both p < .001). However, after adjustment for blood volume, the glycaemic responses were greater in men (both p < .05). CONCLUSIONS Gastric emptying is slower in women than men with T2D, associated with a reduced blood volume-adjusted glycaemic response to oral glucose and a mixed meal in women. These observations highlight the sex difference in postprandial glucose handling, which is relevant to the personalized management of postprandial glycaemia in T2D.
Collapse
Affiliation(s)
- Chunjie Xiang
- Institute of Diabetes, Southeast University, Nanjing, China
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yong Luo
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Zilin Sun
- Institute of Diabetes, Southeast University, Nanjing, China
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tongzhi Wu
- Institute of Diabetes, Southeast University, Nanjing, China
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Tarhan M, Hartl T, Shchyglo O, Colitti-Klausnitzer J, Kuhla A, Breuer TM, Manahan-Vaughan D. Changes in hippocampal volume, synaptic plasticity and amylin sensitivity in an animal model of type 2 diabetes are associated with increased vulnerability to amyloid-beta in advancing age. Front Aging Neurosci 2024; 16:1373477. [PMID: 38974903 PMCID: PMC11224464 DOI: 10.3389/fnagi.2024.1373477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Type-2 diabetes (T2D) is a metabolic disorder that is considered a risk factor for Alzheimer's disease (AD). Cognitive impairment can arise due to hypoglycemia associated with T2D, and hyperamylinemia associated with insulin resistance can enhance AD pathology. We explored whether changes occur in the hippocampus in aging (6-12 months old) female V-Lep○b-/- transgenic (tg) mice, comprising an animal model of T2D. We also investigated whether an increase in vulnerability to Aβ (1-42), a known pathological hallmark of AD, is evident. Using magnetic resonance imaging we detected significant decreases in hippocampal brain volume in female tg-mice compared to wild-type (wt) littermates. Long-term potentiation (LTP) was impaired in tg compared to wt mice. Treatment of the hippocampus with Aβ (1-42) elicited a stronger debilitation of LTP in tg compared to wt mice. Treatment with an amylin antagonist (AC187) significantly enhanced LTP in wt and tg mice, and rescued LTP in Aβ (1-42)-treated tg mice. Taken together our data indicate that a T2D-like state results in an increased vulnerability of the hippocampus to the debilitating effects of Aβ (1-42) and that effects are mediated in part by changes in amylin receptor signaling.
Collapse
Affiliation(s)
- Melih Tarhan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Tim Hartl
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | | | - Angela Kuhla
- Rudolf Zenker Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | | | - Denise Manahan-Vaughan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| |
Collapse
|
6
|
Abioye RO, Udenigwe CC. Structural basis and functional significance of food-derived inhibitors of islet amyloid polypeptide fibrillation toward antidiabetic effects. Curr Opin Food Sci 2024; 56:101146. [DOI: 10.1016/j.cofs.2024.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Pati B, Sendh S, Sahu B, Pani S, Jena N, Bal NC. Recent advancements in pharmacological strategies to modulate energy balance for combating obesity. RSC Med Chem 2023; 14:1429-1445. [PMID: 37593583 PMCID: PMC10429841 DOI: 10.1039/d3md00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
Collapse
Affiliation(s)
- Benudhara Pati
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Satyabrata Sendh
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Sunil Pani
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Nivedita Jena
- Institute of Life Science, DBT ILS Bioincubator Bhubaneswar Odisha 751021-India
| | - Naresh Chandra Bal
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| |
Collapse
|
8
|
Yang YY, Ren YT, Jia MY, Bai CY, Liang XT, Gao HL, Zhong ML, Wang T, Guo C. The human islet amyloid polypeptide reduces hippocampal tauopathy and behavioral impairments in P301S mice without inducing neurotoxicity or seeding amyloid aggregation. Exp Neurol 2023; 362:114346. [PMID: 36750170 DOI: 10.1016/j.expneurol.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that human islet amyloid polypeptide (h-IAPP) accumulates in the brains of Alzheimer's disease (AD) patients and may interact with Aβ or microtubule associated protein tau to associate with the neurodegenerative process. Increasing evidence indicates a potential protective effect of h-IAPP against Aβ-induced neurotoxicity in AD mouse models. However, a direct therapeutic effect of h-IAPP supplementation on tauopathy has not been established. Here, we found that long-term h-IAPP treatment attenuated tau hyperphosphorylation levels and induced neuroinflammation and oxidative damage, prevented synaptic loss and neuronal degeneration in the hippocampus, and alleviated behavioral deficits in P301S transgenic mice (a mouse model of tauopathy). Restoration of insulin sensitization, glucose/energy metabolism, and activated BDNF signaling also contributed to the underlying mechanisms. These findings suggest that seemly h-IAPP has promise for the treatment of neurodegenerative disorders with tauopathy, such as AD.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Liaoning Cheng Da Biotechnology Co., Ltd, Shenyang 110179, China
| | - Yan-Tao Ren
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Meng-Yu Jia
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chen-Yang Bai
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiu-Ting Liang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Hui-Ling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Man-Li Zhong
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Tao Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
9
|
Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. Int J Mol Sci 2022; 23:6144. [PMID: 35682821 PMCID: PMC9181591 DOI: 10.3390/ijms23116144] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Cognitive dysfunctions such as mild cognitive impairment (MCI), Alzheimer's disease (AD), and other forms of dementia are recognized as common comorbidities of type 2 diabetes mellitus (T2DM). Currently, there are no disease-modifying therapies or definitive clinical diagnostic and prognostic tools for dementia, and the mechanisms underpinning the link between T2DM and cognitive dysfunction remain equivocal. Some of the suggested pathophysiological mechanisms underlying cognitive decline in diabetes patients include hyperglycemia, insulin resistance and altered insulin signaling, neuroinflammation, cerebral microvascular injury, and buildup of cerebral amyloid and tau proteins. Given the skyrocketing global rates of diabetes and neurodegenerative disorders, there is an urgent need to discover novel biomarkers relevant to the co-morbidity of both conditions to guide future diagnostic approaches. This review aims to provide a comprehensive background of the potential risk factors, the identified biomarkers of diabetes-related cognitive decrements, and the underlying processes of diabetes-associated cognitive dysfunction. Aging, poor glycemic control, hypoglycemia and hyperglycemic episodes, depression, and vascular complications are associated with increased risk of dementia. Conclusive research studies that have attempted to find specific biomarkers are limited. However, the most frequent considerations in such investigations are related to C reactive protein, tau protein, brain-derived neurotrophic factor, advanced glycation end products, glycosylated hemoglobin, and adipokines.
Collapse
Affiliation(s)
- Hanan Ehtewish
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
| | - Abdelilah Arredouani
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Omar El-Agnaf
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| |
Collapse
|
10
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
11
|
Dehestani B, Stratford NR, le Roux CW. Amylin as a Future Obesity Treatment. J Obes Metab Syndr 2021; 30:320-325. [PMID: 34929674 PMCID: PMC8735818 DOI: 10.7570/jomes21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is defined as abnormal or excessive fat accumulation that contributes to detrimental health impacts. One-third of the population suffers from obesity, and it is important to consider obesity as a chronic disease requiring chronic treatment. Amylin is co-secreted with insulin from β pancreatic cells upon nutrient delivery to the small intestine as a satiety signal, acts upon sub-cortical homeostatic and hedonic brain regions, slows gastric emptying, and suppresses post-prandial glucagon responses to meals. Therefore, new pharmacological amylin analogues can be used as potential anti-obesity medications in individuals who are overweight or obese. In this narrative review, we analyse the efficacy, potency, and safety of amylin analogues. The synthetic amylin analogue pramlintide is an approved treatment for diabetes mellitus which promotes better glycaemic control and small but significant weight loss. AM833 (cagrilintide), an investigational novel long-acting acylated amylin analogue, acts as a non-selective amylin receptor. This calcitonin G protein-coupled receptor agonist can serve as an attractive novel treatment for obesity, resulting in reduction of food intake and significant weight loss in a dose-dependent manner.
Collapse
Affiliation(s)
- Babak Dehestani
- Department of Metabolic Medicine, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Nicholas Rs Stratford
- Department of Metabolic Medicine, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Carel W le Roux
- Department of Metabolic Medicine, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Role of Receptors in Relation to Plaques and Tangles in Alzheimer's Disease Pathology. Int J Mol Sci 2021; 22:ijms222312987. [PMID: 34884789 PMCID: PMC8657621 DOI: 10.3390/ijms222312987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the identification of Aβ plaques and NFTs as biomarkers for Alzheimer’s disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients’ mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.
Collapse
|
13
|
Marinho TDS, Martins FF, Cardoso LEDM, Aguila MB, Mandarim-de-Lacerda CA. Pancreatic islet cells disarray, apoptosis, and proliferation in obese mice. The role of Semaglutide treatment. Biochimie 2021; 193:126-136. [PMID: 34742857 DOI: 10.1016/j.biochi.2021.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
There are significant injuries of pancreatic islets due to obesity and insulin resistance. Therefore, GLP-1 receptor agonists like Semaglutide might benefit the islet structural remodeling and its endocrine function in diet-induced obese mice. One-month-old male C57BL/6 mice were allotted into two dietary groups (n = 60/group) and fed for 16 weeks a control diet (C) or a high‒fat diet (HF). Then, for an additional four weeks, the main groups were resampled to include treatment (Semaglutide, S, 40 μg/kg), or paired feed with the treated group (PF), totaling six groups (n = 20/group): C, CS, CPF, HF, HFS, HFPF. Biochemistry, stereology, immunohistochemistry/immunofluorescence, confocal microscopy, and RT-qPCR were used in the study. The mouse model reproduced metabolism and bodily changes due to diet-induced obesity. Pancreatic islet hypertrophy was observed with alpha- and beta-cell remodeling, cell disarray, and apoptosis. Semaglutide increased islet cell proliferation and recovered islet size and alpha- and beta-cell masses. The changes include recovery of glucose and hormone levels, reduction of pro-inflammatory markers, improvement of pancreatic duodenal homeobox 1 (PDX-1), glucose transporter 2 (GLUT-2), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAF-A), and peroxisome proliferator-activated receptors (PPAR) -gamma. In conclusion, damage to the pancreatic islet caused by insulin resistance and the attempt to adapt the islet of obese mice involved different pathways, especially the pro-inflammatory pathway, PDX1, and PPAR-alpha and gamma. Semaglutide showed beneficial effects on these pathways, reducing the lesion on the islet. However, the weight loss influence of Semaglutide was of little relevance in the pancreatic islet.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabiane Ferreira Martins
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo de Macedo Cardoso
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Wang JW, Chen PY, Huang HH, Yeh C, Chen SC, Lee WJ, Chen CY. Change of plasma amylin after bariatric surgery challenged by oral glucose is associated with remission of type 2 diabetes mellitus. J Chin Med Assoc 2021; 84:1001-1006. [PMID: 34393186 DOI: 10.1097/jcma.0000000000000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gastric bypass (GB) and sleeve gastrectomy (SG) were found to achieve different remission rates in the treatment of type 2 diabetes (T2DM). The alteration in several gut hormones after bariatric surgery has been demonstrated to play a key role for T2DM remission. Nevertheless, amylin, one of the diabetes-associated peptides, so far has an undetermined position on T2DM remission after bariatric surgery. METHODS Sixty eligible patients with T2DM (GB, 30; SG, 30) were initially enrolled in the hospital-based randomized trial. Twenty patients (GB, 10; SG, 10) who met the inclusion criteria and agreed to undergo 75-g oral glucose tolerance test (OGTT) were recruited. The recruited subjects underwent anthropometric measurements, routine laboratory tests, and 75-g OGTT before and 1 year after bariatric surgery. Enzyme immunoassays for plasma amylin were analyzed. RESULTS All subjects that underwent GB and half of those who underwent SG achieved T2DM remission. Plasma amylin levels significantly decreased 60-90 min after OGTT in the GB group (p < 0.05) and 30-60 minutes after OGTT in the SG group (p < 0.05). Significantly decreased plasma amylin levels were observed at 30-90 minutes after OGTT in the noncomplete remitters of the GB group (p < 0.05). Plasma amylin levels initially increased (p < 0.05) within 30 minutes after OGTT and then decreased (p < 0.05) in the next 30-minute interval in the nonremitters of the SG group. CONCLUSION Postoral glucose challenge amylin levels could be as one of the parameters to evaluate T2DM remission after bariatric surgery, especially in those after SG.
Collapse
Affiliation(s)
- Jiunn-Wei Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Division of Gastroenterology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pei-Yu Chen
- Department of Emergency & Critical Care Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chun Yeh
- Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Shu-Chun Chen
- Department of Nursing, Chang-Gung Institute of Technology, Taoyuan, Taiwan, ROC
| | - Wei-Jei Lee
- Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan, ROC
- Taiwan Society for Metabolic and Bariatric Surgery, Taoyuan Taiwan, ROC
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine and Institute of Emergency and Critical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Taiwan Association for the Study of Small Intestinal Diseases, Taoyuan, Taiwan, ROC
- Chinese Taipei Society for the Study of Obesity, Taipei, Taiwan, ROC
| |
Collapse
|
15
|
Saneyasu T, Ueno M, Nagata K, Kewan A, Honda K, Kamisoyama H. Central administration of insulin and refeeding lead to Akt and ERK phosphorylation in the chicken medulla. Neurosci Lett 2021; 758:136008. [PMID: 34098027 DOI: 10.1016/j.neulet.2021.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate whether medullary cellular signaling pathways contribute to feeding regulation in chickens. Fasting inhibited the phosphorylated protein and its rates of ERK but not Akt in the chicken medulla, while refeeding promoted Akt and ERK. Intraperitoneal administration of sulfate cholecystokinin 8 did not affect medullary Akt and ERK phosphorylation in chickens. Intracerebroventricular administration of insulin significantly induced the phosphorylation of Akt and ERK in the chicken medulla. These findings suggest that the medullary Akt and ERK pathways are involved in the appetite-suppressive pathway of insulin in chickens.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Mizuki Ueno
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kanami Nagata
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ahmed Kewan
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Involvement of amylin B-H2S-connexin 43 signaling pathway in vascular dysfunction and enhanced ischemia-reperfusion-induced myocardial injury in diabetic rats. Biosci Rep 2021; 40:224904. [PMID: 32436936 PMCID: PMC7280474 DOI: 10.1042/bsr20194154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to investigate the role of amylin, H2S, and connexin 43 in vascular dysfunction and enhanced ischemia–reperfusion (I/R)-induced myocardial injury in diabetic rats. A single dose of streptozotocin (65 mg/kg) was employed to induce diabetes mellitus. After 8 weeks, there was a significant decrease in the plasma levels of amylin, an increase in I/R injury to isolated hearts (increase in CK-MB and cardiac troponin release) on the Langendorff apparatus. Moreover, there was a significant impairment in vascular endothelium function as assessed by quantifying acetylcholine-induced relaxation in norepinephrine-precontracted mesenteric arteries. There was also a marked decrease in the expression of H2S and connexin 43 in the hearts following I/R injury in diabetic rats. Treatment with amylin agonist, pramlintide (100 and 200 µg/kg), and H2S donor, NaHS (10 and 20 μmol/kg) for 2 weeks improved the vascular endothelium function, abolished enhanced myocardial injury and restored the levels of H2S along with connexin 43 in diabetic animals. However, pramlintide and NaHS failed to produce these effects the presence of gap junction blocker, carbenoxolone (20 and 40 mg/kg). Carbenoxolone also abolished the myocardial levels of connexin 43 without affecting the plasma levels of amylin and myocardial levels of H2S. The decrease in the amylin levels with a consequent reduction in H2S and connexin 43 may contribute to inducing vascular dysfunction and enhancing I/R-induced myocardial injury in diabetic rats.
Collapse
|
18
|
Wasana Jayaweera S, Surano S, Pettersson N, Oskarsson E, Lettius L, Gharibyan AL, Anan I, Olofsson A. Mechanisms of Transthyretin Inhibition of IAPP Amyloid Formation. Biomolecules 2021; 11:biom11030411. [PMID: 33802170 PMCID: PMC8001701 DOI: 10.3390/biom11030411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-formation by the islet amyloid polypeptide (IAPP), produced by the β-cells in the human pancreas, has been associated with the development of type II diabetes mellitus (T2DM). The human plasma-protein transthyretin (TTR), a well-known amyloid-inhibiting protein, is interestingly also expressed within the IAPP producing β-cells. In the present study, we have characterized the ability of TTR to interfere with IAPP amyloid-formation, both in terms of its intrinsic stability as well as with regard to the effect of TTR-stabilizing drugs. The results show that TTR can prolong the lag-phase as well as impair elongation in the course of IAPP-amyloid formation. We also show that the interfering ability correlates inversely with the thermodynamic stability of TTR, while no such correlation was observed as a function of kinetic stability. Furthermore, we demonstrate that the ability of TTR to interfere is maintained also at the low pH environment within the IAPP-containing granules of the pancreatic β-cells. However, at both neutral and low pH, the addition of TTR-stabilizing drugs partly impaired its efficacy. Taken together, these results expose mechanisms of TTR-mediated inhibition of IAPP amyloid-formation and highlights a potential therapeutic target to prevent the onset of T2DM.
Collapse
Affiliation(s)
- Sanduni Wasana Jayaweera
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Solmaz Surano
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Nina Pettersson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Elvira Oskarsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Lovisa Lettius
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Anna L. Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Intissar Anan
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
- Correspondence: ; Tel.: +46-70-354-3301
| |
Collapse
|
19
|
Na H, Tian H, Zhang Z, Li Q, Yang JB, Mcparland L, Gan Q, Qiu WQ. Oral Amylin Treatment Reduces the Pathological Cascade of Alzheimer's Disease in a Mouse Model. Am J Alzheimers Dis Other Demen 2021; 36:15333175211012867. [PMID: 34137273 PMCID: PMC10623958 DOI: 10.1177/15333175211012867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Intraperitoneal injection of amylin or its analog reduces Alzheimer's disease (AD) pathology in the brains. However, self-injecting amylin analogs is difficult for patients due to cognitive deficits. This work aims to study the effects of amylin on the brain could be achieved by oral delivery as some study reported that amylin receptor may be present in the gastrointestinal tract. A 6-week course of oral amylin treatment reduced components of AD pathology, including the levels of amyloid-β, phosphorylated tau, and ionized calcium binding adaptor molecule 1. The treatment reduced active forms of cyclin-dependent kinase 5. Oral amylin treatment led to improvements in social deficit in AD mouse. Using immunofluorescence, we observed the amylin receptor complexed with the calcitonin receptor and receptor activity-modifying proteins in the enteric neurons. The study suggests the potential of the oral delivery of amylin analogs for the treatment of AD and other neurodegenerative diseases through enteric neurons.
Collapse
Affiliation(s)
- Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qiang Li
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Nursing School, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jack B. Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Liam Mcparland
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Ho G, Takamatsu Y, Wada R, Sugama S, Waragai M, Takenouchi T, Masliah E, Hashimoto M. Connecting Alzheimer's Disease With Diabetes Mellitus Through Amyloidogenic Evolvability. Front Aging Neurosci 2020; 12:576192. [PMID: 33192467 PMCID: PMC7655535 DOI: 10.3389/fnagi.2020.576192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has been clearlylinked to oxidative stress and amylin amyloidosis in pancreatic β-cells. Yet despite extensive investigation, the biological significance of this is not fully understood. Recently, we proposed that Alzheimer's disease (AD)-relevant amyloidogenic proteins (APs), such as amyloid-β (Aβ) and tau, might be involved in evolvability against diverse stressors in the brain. Given the analogous cellular stress environments shared by both T2DM and AD, the objective of this study is to explore T2DM pathogenesis from the viewpoint of amyloidogenic evolvability. Similar to AD-related APs, protofibrillar amylin might confer resistance against the multiple stressors in β-cells and be transmitted to offspring to deliver stress information, in the absence of which, type 1 DM (T1DM) in offspring might develop. On the contrary, T2DM may be manifested through an antagonistic pleiotropy mechanism during parental aging. Such evolvability-associated processes might be affected by parental diabetic conditions, including T1DM and T2DM. Furthermore, the T2DM-mediated increase in AD risk during aging might be attributed to an interaction of amylin with AD-related APs through evolvability, in which amylin protofibrillar formation presumably caused by adiponectin (APN) resistance could increase protofibril formation of AD-related APs in evolvability and subsequently lead to T2DM promotion of AD through antagonistic pleiotropy in aging. This suggests that targeting APN combined with an anti-T2DM agent might be therapeutic against neurodegeneration. Collectively, T1DM and T2DM might be linked through amylin evolvability, and a better understanding of amyloidogenic evolvability might also reveal clues to therapeutic interventions for AD comorbid with T2DM.
Collapse
Affiliation(s)
- Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, United States
| | | | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Masaaki Waragai
- PCND Neuroscience Research Institute, Poway, CA, United States
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
21
|
Grigolon RB, Brietzke E, Trevizol AP, McIntyre RS, Mansur RB. Caloric restriction, resting metabolic rate and cognitive performance in Non-obese adults: A post-hoc analysis from CALERIE study. J Psychiatr Res 2020; 128:16-22. [PMID: 32485641 DOI: 10.1016/j.jpsychires.2020.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Physical activity (PA) has been proposed as a determinant of cognitive function and is one component of energy balance (EB). EB is the difference between energy intake (EI) and the total daily energy expenditure (TDEE). TDEE is a combination of resting metabolic rate (RMR), thermic effect of food and PA. The potential role of each of these components on cognitive function has not yet been systemically investigated. We aim to evaluate the association between each component of EB on cognition, using baseline and longitudinal data from a clinical trial of caloric restriction (CR). This is a parallel-group, randomized clinical trial comparing two years of 25% CR with two years of ad libitum diet (AL), with 220 healthy volunteers of both sex, aged between 21 and 50 years and initial BMI ≥ 22 kg/m2 and <28 kg/m2. Body weight, fat mass (FM), fat-free mass (FFM), and bone mineral content were evaluated, as well as RMR, TDEE, cognitive performance and baseline energy intake. A 30 min/day of a moderate level on a minimum of 5 days/week was advised as PA measure. Longitudinal analysis demonstrated that the influence of CR in the improvement of cognitive performance was moderated by changes in RMR, suggesting that in individuals submitted to CR, the cognitive performance and the RMR improved proportionally, independently of changes in EI and body mass. EB and homeostasis are crucial to modulate the RMR. Moreover, RMR presents an important influence on cognitive function in individuals submitted to CR in a long term.
Collapse
Affiliation(s)
- Ruth Bartelli Grigolon
- Post-Graduation Program in Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elisa Brietzke
- Post-Graduation Program in Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada; Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alisson Paulino Trevizol
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; Brain and Cognition Foundation, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Distributed amylin receptor signaling and its influence on motivated behavior. Physiol Behav 2020; 222:112958. [DOI: 10.1016/j.physbeh.2020.112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
|
23
|
Madhusudhanan J, Suresh G, Devanathan V. Neurodegeneration in type 2 diabetes: Alzheimer's as a case study. Brain Behav 2020; 10:e01577. [PMID: 32170854 PMCID: PMC7218246 DOI: 10.1002/brb3.1577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Rigorous research in the last few years has shown that in addition to the classical mechanism of neurodegeneration, certain unconventional mechanisms may also lead to neurodegenerative disease. One of them is a widely studied metabolic disorder: type 2 diabetes mellitus (T2DM). We now have a clear understanding of glucose-mediated neurodegeneration, mostly from studies in Alzheimer's disease (AD) models. AD is recognized to be significantly associated with hyperglycemia, even earning the term "type 3 diabetes." Here, we review first the pathophysiology of AD, both from the perspective of classical protein accumulation, as well as the newer T2DM-dependent mechanisms supported by findings from patients with T2DM. Secondly, we review the different pathways through which neurodegeneration is aggravated in hyperglycemic conditions taking AD as a case study. Finally, some of the current advances in AD management as a result of recent research developments in metabolic disorders-driven neurodegeneration are also discussed. METHODS Relevant literatures found from PubMed search were reviewed. RESULTS Apart from the known causes of AD, type 2 diabetes opens a new window to the AD pathology in several ways. It is a bidirectional interaction, of which, the molecular and signaling mechanisms are recently studied. This is our attempt to connect all of them to draw a complete mechanistic explanation for the neurodegeneration in T2DM. Refer to Figure 3. CONCLUSION The perspective of AD as a classical neurodegenerative disease is changing, and it is now being looked at from a zoomed-out perspective. The correlation between T2DM and AD is something observed and studied extensively. It is promising to know that there are certain advances in AD management following these studies.
Collapse
Affiliation(s)
- Jalaja Madhusudhanan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Gowthaman Suresh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
24
|
Fan K, Li Q, Pan D, Liu H, Li P, Hai R, Du C. Effects of amylin on food intake and body weight via sympathetic innervation of the interscapular brown adipose tissue. Nutr Neurosci 2020; 25:343-355. [PMID: 32338170 DOI: 10.1080/1028415x.2020.1752998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Amylin acts on the lateral dorsal tegmental nucleus (LDT), resulting in anorexic and weight-loss effects and activates thermogenesis in the interscapular brown adipose tissue (IBAT). In addition, it induces neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT)-mediated feeding. However, the influence of the intact sympathetic nervous system (SNS) in mediating amylin's effects has not been fully characterised. We investigated whether extracellular signal-regulated kinase (ERK), nNOS, and ChAT activities in the LDT are responsible for amylin's anorexigenic effects and whether this requires an intact SNS.Methods: C57BL/6J mice [wild-type (WT), sham, and sympathetic denervation of IBAT] were used. Food consumption, body weight, and distribution of pERK, nNOS, and ChAT positive neurons in the brain were examined following acute and chronic amylin administration.Results: Food intake was significantly decreased in WT and sham animals following acute amylin injection, but not in the denervated mice. Chronic amylin reduced body weight and serum glucose levels after 6 weeks, but increased insulin levels; no changes were observed in the denervated mice. Acute amylin increased the expression of nNOS, ChAT, and uncoupling protein-1 in the IBAT of WT and sham mice, while no changes were observed in the denervated mice and pERK from the above effect.Conclusions: Intact SNS of IBAT influences amylin-induced suppression of food intake and body weight, thus affecting nNOS and ChAT signalling in the LDT and locus coeruleus.
Collapse
Affiliation(s)
- Kuikui Fan
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Qiang Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Deng Pan
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Haodong Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Penghui Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, People's Republic of China
| | - Chenguang Du
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.,Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, People's Republic of China
| |
Collapse
|
25
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
26
|
Zhu H, Tao Q, Ang TFA, Massaro J, Gan Q, Salim S, Zhu RY, Kolachalama VB, Zhang X, Devine S, Auerbach SH, DeCarli C, Au R, Qiu WQ. Association of Plasma Amylin Concentration With Alzheimer Disease and Brain Structure in Older Adults. JAMA Netw Open 2019; 2:e199826. [PMID: 31433485 PMCID: PMC6707010 DOI: 10.1001/jamanetworkopen.2019.9826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Preclinical studies suggest that amylin has a U-shaped dose-response association with risk of Alzheimer disease (AD). The association of plasma amylin with AD in humans is unknown. OBJECTIVES To measure amylin concentration in plasma by using enzyme-linked immunosorbent assay and to study the association between plasma amylin, incidence of AD, and brain structure in humans. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Framingham Heart Study offspring cohort from 1998 to 2015. Using a Monte Carlo approach, participants were divided into 3 plasma amylin concentration groups: (1) low (<75 pmol/L), (2) high (75-2800 pmol/L), and (3) extremely high (≥2800 pmol/L). Data analyses were conducted October 5, 2017, to December 18, 2018. EXPOSURES Baseline plasma amylin concentrations at examination 7. MAIN OUTCOMES AND MEASURES Incidence of dementia or AD and brain volumetric measures from structural magnetic resonance imaging data. RESULTS From the Framingham Heart Study offspring cohort, 3061 participants (mean [SD] age at baseline, 61.0 [9.5] years; 1653 [54.0%] women) who had plasma amylin measurements, dementia incidence, and brain volume measurements on record were included in this study. The distribution of plasma amylin concentrations was highly skewed (median [interquartile range], 7.5 [4.6-18.9] pmol/L; mean [SD], 302.3 [1941.0] pmol/L; range, 0.03-44 623.7 pmol/L). Compared with the low plasma amylin concentration group, the high plasma amylin concentration group had a lower rate of AD incidence (2.3% vs 5.6%; P = .04), but the extremely high plasma amylin concentration group had a higher rate of AD incidence (14.3%; P < .001). After adjusting for age, sex, education, body mass index, diabetes, cardiovascular disease, high-density lipoprotein level, and APOE4, high plasma amylin was not associated with decreased AD risk (hazard ratio, 0.42 [95% CI, 0.16-1.14]; P = .09) but was positively associated with volume of gray matter in the temporal lobe (β = 0.17 [SE, 0.05]; P < .001). In contrast, extremely high plasma amylin concentration was associated with a higher AD risk (hazard ratio, 2.51 [95% CI, 1.38-4.57]; P = .003) but not associated with temporal lobe volume (β = 0.02 [SE, 0.07]; P = .82). CONCLUSIONS AND RELEVANCE This study found that plasma amylin concentration was associated with AD incidence and brain structure with a U-shaped pattern. These findings are consistent with preclinical findings that suggest amylin is a neuropeptide that is physiological; however, at extremely high concentrations, it may lead to amylin aggregation and therefore may be a risk factor for AD.
Collapse
Affiliation(s)
- Haihao Zhu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Qiushan Tao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Ting Fang Alvin Ang
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts
| | - Joseph Massaro
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Qini Gan
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Saraf Salim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Rui-ying Zhu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | | | - Xiaoling Zhang
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sheral Devine
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Sanford H. Auerbach
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Charles DeCarli
- Alzheimer’s Disease Center, University of California Davis Medical Center, Sacramento
| | - Rhoda Au
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
27
|
Pappachan JM, Fernandez CJ, Chacko EC. Diabesity and antidiabetic drugs. Mol Aspects Med 2019; 66:3-12. [PMID: 30391234 DOI: 10.1016/j.mam.2018.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of "diabesity" - diabetes related to obesity - has increased tremendously over the past few decades because of the global obesity epidemic. Although bariatric surgery is the best treatment option for patients with diabesity, a majority of patients are managed only with antidiabetic drugs for various reasons. Diabetes control with antidiabetic agents may affect diabesity outcomes positively or negatively because of their effects on body weight and other metabolic parameters. For this reason, rational use of anti-diabetic medications is imperative to optimise long-term management of diabesity. Understanding the molecular mechanisms of antidiabetic drugs and/or drug combinations on diabesity outcomes are therefore important not only for the basic scientists but also for clinicians. This review explores the molecular signalling cascades of antidiabetic medications in the management of diabesity.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology, Diabetes& Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, LE21 9QS, United Kingdom.
| | - Cornelius J Fernandez
- Department of Endocrinology, Diabetes& Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, LE21 9QS, United Kingdom
| | - Elias C Chacko
- Department of Endocrinology & Diabetes, Jersey Hospital, Jersey, JE1 4SE, United Kingdom
| |
Collapse
|
28
|
Pan F, He X, Feng J, Cui W, Gao L, Li M, Yang H, Wang C, Hu Y. Peptidome analysis reveals the involvement of endogenous peptides in mouse pancreatic dysfunction with aging. J Cell Physiol 2019; 234:14090-14099. [PMID: 30618084 DOI: 10.1002/jcp.28098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023]
Abstract
Type 2 diabetes (T2D) is a glucose regulation disorder that has significantly enhanced mortality and the global disease burden. The prevalence of T2D has increased worldwide and is higher in the elderly. The function of pancreatic islets decreases with age, which is one important reason for the occurrence of diabetes in the elderly. Recently, peptidome analysis has attracted attention. However, the role of age-related peptides in pancreatic dysfunction has not been investigated extensively. Here, we conducted a comparison of endogenous peptides between pancreas from adult and aging mice by liquid chromatography tandem mass spectrometry (LC-MS/MS). A total of 2,089 peptides originating from 1,280 protein precursors were identified, of which 232 were upregulated and 183 were downregulated in the aging mice (fold change ≥ 2 and p < 0.05), suggesting that the expression of pancreatic peptides in mice varied with age. The molecular weight of most peptides was <3.0 kDa, and the isoelectric point distribution had a bimodal characteristic. Further analysis of cleavage site patterns indicated that proteases cleaved pancreatic proteins according to their rules. Moreover, Gene Ontology and pathway analyses showed that the differentially expressed peptides potentially had specific effects on pancreatic dysfunction. Some differential peptides were located within the domains of precursor proteins that were closely associated with the development of diabetes. We believe that our research may advance the current understanding of pancreas-derived peptides and that certain peptides may be involved in the etiology of diabetes.
Collapse
Affiliation(s)
- Fenghui Pan
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan He
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Feng
- Department of Laboratory and Inspection Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, Jiangsu, China
| | - Wenxia Cui
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Gao
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Man Li
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Gan Q, Yao H, Na H, Ballance H, Tao Q, Leung L, Tian H, Zhu H, Wolozin B, Qiu WQ. Effects of Amylin Against Amyloid-β-Induced Tauopathy and Synapse Loss in Primary Neurons. J Alzheimers Dis 2019; 70:1025-1040. [PMID: 31306122 PMCID: PMC6833957 DOI: 10.3233/jad-190161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent studies demonstrate that peripheral amylin treatment reduces pathology in mouse models of Alzheimer's disease (AD). However, soluble and aggregated amylin are distinct species; while amylin is a physiological neuropeptide, amylin aggregation is a pathological factor for diabetes. We thus hypothesized that because of their similarity in secondary structures, amylin antagonizes amyloid-β peptide (Aβ)-induced AD pathology in neurons with a dose-dependent pattern. To test the hypothesis, we conducted both in vitro and in vivo experiments with different doses of amylin and with its analog, pramlintide. Here we report that a high concentration of either Aβ or amylin alone induced tau phosphorylation (pTau) in primary neurons. Interestingly, with a low concentration, amylin had direct effects to reverse the Aβ-induced pTau, as well as damaged neuronal synapses and neurite disorganization. However, when the concentration was high (10.24 μM), amylin lost the effects against the Aβ-induced cellular AD pathology and, together with Aβ, worsened tauopathy in neurons. In the 5XFAD AD mouse model, daily peripheral amylin treatment with a low dose (200 μg/kg) more effectively reduced amyloid burden, and increased synapse, but with a high dose (800 μg/kg), it more effectively reduced tauopathy. Correspondingly, amylin treatment improved learning and memory in these mice. It demonstrates that amylin has a dose-dependent U-shape effect against AD pathogenesis. Within a physiological range, amylin is a neuroprotective hormone against AD in neurons; but when both Aβ and amylin concentrations are elevated, imbalance of Aβ and amylin may contribute to brain AD pathogenesis.
Collapse
Affiliation(s)
- Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Hongbo Yao
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Heather Ballance
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Qiushan Tao
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Lorene Leung
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Haihao Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Yang J, Sun Y, Xu F, Liu W, Mai Y, Hayashi T, Hattori S, Ushiki-Kaku Y, Onodera S, Tashiro SI, Ikejima T. Silibinin ameliorates amylin-induced pancreatic β-cell apoptosis partly via upregulation of GLP-1R/PKA pathway. Mol Cell Biochem 2018; 452:83-94. [DOI: 10.1007/s11010-018-3414-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
|
31
|
Mietlicki-Baase EG. Amylin in Alzheimer's disease: Pathological peptide or potential treatment? Neuropharmacology 2018; 136:287-297. [PMID: 29233636 PMCID: PMC5994175 DOI: 10.1016/j.neuropharm.2017.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease for which we currently lack effective treatments or a cure. The pancreatic peptide hormone amylin has recently garnered interest as a potential pharmacological target for the treatment of AD. A number of studies have demonstrated that amylin and amylin analogs like the FDA-approved diabetes drug pramlintide can reduce amyloid burden in the brain and improve cognitive symptoms of AD. However, other data suggest that amylin may have pathological effects in AD due to its propensity to misfold and aggregate under certain conditions. Here, the literature supporting a beneficial versus harmful role of amylin in AD is reviewed. Additionally, several critical gaps in the literature are discussed, such as our limited understanding of the amylin system during aging and in disease states, as well as complexities of amylin receptor signaling and of changing pathophysiology during AD progression that might underlie the seemingly conflicting or contradictory results in the amylin/AD literature. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
32
|
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175:4060-4071. [PMID: 29394497 DOI: 10.1111/bph.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Paul J Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Michael A Statnick
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Francis S Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
33
|
Abstract
Amylin is a 37 amino acid peptide hormone that is closely related to calcitonin gene-related peptide (CGRP). Amylin and CGRP share a receptor and are reported to have several similar biological actions. Given the important role of CGRP in migraine and intense efforts to develop drugs against this target, it is important to consider potential areas of overlap between the amylin and CGRP systems. This short review provides a brief introduction to amylin biology, the use of an amylin analog to treat diabetes, and consideration of whether amylin could have any role in headache disorders. Finally, this review informs readers about the AMY1 (amylin subtype 1) receptor, which is a dual receptor for amylin and CGRP and potentially plays a role in the bioactivity of both of these peptides.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
34
|
Otto-Buczkowska E, Jainta N. Pharmacological Treatment in Diabetes Mellitus Type 1 - Insulin and What Else? Int J Endocrinol Metab 2018; 16:e13008. [PMID: 29696037 PMCID: PMC5903388 DOI: 10.5812/ijem.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
The basis of treatment in autoimmune diabetes is insulin therapy; however, many clinical cases have proven that this method does not solve all problems. Trials of causal treatment including blocking the autoimmune processes and insulin-producing cells transplants were carried out. Those methods require more research to be concerned as efficient and safe ways of treatment in type 1 diabetes. The use of non-insulin adjunct treatment is a new trend. It has been successfully used in laboratories as well as clinical trials. Metformin is the most widely used drug, together with sodium-glucose co-transporters 2 (SGLT2) inhibitors, amylin analogues, glucagon-like peptide 1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors. The results of administration of these medicaments give good outcomes in patients with diabetes mellitus type 1. Most likely, in the near future, they will progressively be used in both adult and adolescent patients with type 1 diabetes. Further multicenter, randomized studies are required to evaluate the efficacy of treatment and long term safety of these drugs.
Collapse
Affiliation(s)
- Ewa Otto-Buczkowska
- Medical Specialist Centre in Gliwice, Poland
- Corresponding author: Ewa Otto-Buczkowska MD PhD, Jasnogorska 16/2144-100 Gliwice, Poland. E-mail:
| | | |
Collapse
|
35
|
Fu W, Vukojevic V, Patel A, Soudy R, MacTavish D, Westaway D, Kaur K, Goncharuk V, Jhamandas J. Role of microglial amylin receptors in mediating beta amyloid (Aβ)-induced inflammation. J Neuroinflammation 2017; 14:199. [PMID: 28985759 PMCID: PMC5639602 DOI: 10.1186/s12974-017-0972-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Neuroinflammation in the brain consequent to activation of microglia is viewed as an important component of Alzheimer’s disease (AD) pathology. Amyloid beta (Aβ) protein is known to activate microglia and unleash an inflammatory cascade that eventually results in neuronal dysfunction and death. In this study, we sought to identify the presence of amylin receptors on human fetal and murine microglia and determine whether Aβ activation of the inflammasome complex and subsequent release of cytokines is mediated through these receptors. Methods The presence of dimeric components of the amylin receptor (calcitonin receptor and receptor activity modifying protein 3) were first immunohistochemically identified on microglia. Purified human fetal microglial (HFM) cultures were incubated with an in vivo microglial marker, DyLight 594-conjugated tomato lectin, and loaded with the membrane-permeant green fluorescent dye, Fluo-8L-AM for measurements of intracellular calcium [Ca2+]i. HFM and BV-2 cells were primed with lipopolysaccharide and then exposed to either human amylin or soluble oligomeric Aβ1–42 prior to treatment with and without the amylin receptor antagonist, AC253. Changes in the inflammasome complex, NLRP3 and caspase-1, were examined in treated cell cultures with Western blot and fluorometric assays. RT-PCR measurements were performed to assess cytokine release. Finally, in vivo studies were performed in transgenic mouse model of AD (5xFAD) to examine the effects of systemic administration of AC253 on markers of neuroinflammation in the brain. Results Acute applications of human amylin or Aβ1–42 resulted in an increase in [Ca2+]i that could be blocked by the amylin receptor antagonist, AC253. Activation of the NLRP3 and caspase-1 and subsequent release of cytokines, TNFα and IL-1β, was diminished by AC253 pretreatment of HFMs and BV2 cells. In vivo, intraperitoneal administration of AC253 resulted in a reduction in microglial markers (Iba-1 and CD68), caspase-1, TNFα, and IL-1β. These reductions in inflammatory markers were accompanied by reduction in amyloid plaque and size in the brains of 5xFAD mice compared to controls. Conclusion Microglial amylin receptors mediate Aβ-evoked inflammation, and amylin receptor antagonists therefore offer an attractive therapeutic target for intervention in AD. Electronic supplementary material The online version of this article (10.1186/s12974-017-0972-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Vlatka Vukojevic
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.,Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - David MacTavish
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - David Westaway
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Kamaljit Kaur
- Chapman University School of Pharmacy, Irvine, CA, USA
| | | | - Jack Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
36
|
Amylin Receptor: A Potential Therapeutic Target for Alzheimer's Disease. Trends Mol Med 2017; 23:709-720. [PMID: 28694141 DOI: 10.1016/j.molmed.2017.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/29/2023]
Abstract
Alzheimer'sdisease (AD) is a progressive neurodegenerative disorder, characterized by senile plaques constituting extracellular deposits of β-amyloid (Aβ) fibrils. Since Aβ accumulation in the brain is considered an early event preceding, by decades, cognitive dysfunction, disease-modifying treatments are aimed at facilitating clearance of this protein from the brain or ameliorating its toxic effects. Recent studies have identified the amylin receptor as a capable mediator of the deleterious actions of Aβ and furthermore, administration of amylin receptor-based peptides has been shown to improve spatial memory and learning in transgenic mouse models of AD. Here, by discussing available evidence, we posit that the amylin receptor could be considered a potential therapeutic target for AD, and present the rationale for using amylin receptor antagonists to treat this debilitating condition.
Collapse
|
37
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
38
|
Zhu H, Xue X, Wang E, Wallack M, Na H, Hooker JM, Kowall N, Tao Q, Stein TD, Wolozin B, Qiu WQ. Amylin receptor ligands reduce the pathological cascade of Alzheimer's disease. Neuropharmacology 2017; 119:170-181. [PMID: 28363773 DOI: 10.1016/j.neuropharm.2017.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 01/01/2023]
Abstract
Amylin is an important gut-brain axis hormone. Since amylin and amyloid-β peptide (Aβ) share similar β sheet secondary structure despite not having the same primary sequences, we hypothesized that the accumulation of Aβ in the brains of subjects with Alzheimer's disease (AD) might compete with amylin for binding to the amylin receptor (AmR). If true, adding exogenous amylin type peptides would compete with Aβ and reduce the AD pathological cascade, improving cognition. Here we report that a 10-week course of peripheral treatment with human amylin significantly reduced multiple different markers associated with AD pathology, including reducing levels of phospho-tau, insoluble tau, two inflammatory markers (Iba1 and CD68), as well as cerebral Aβ. Amylin treatment also led to improvements in learning and memory in two AD mouse models. Mechanistic studies showed that an amylin receptor antagonist successfully antagonized some protective effects of amylin in vivo, suggesting that the protective effects of amylin require interaction with its cognate receptor. Comparison of signaling cascades emanating from AmR suggest that amylin electively suppresses activation of the CDK5 pathway by Aβ. Treatment with amylin significantly reduced CDK5 signaling in a receptor dependent manner, dramatically decreasing the levels of p25, the active form of CDK5 with a corresponding reduction in tau phosphorylation. This is the first report documenting the ability of amylin treatment to reduce tauopathy and inflammation in animal models of AD. The data suggest that the clinical analog of amylin, pramlintide, might exhibit utility as a therapeutic agent for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haihao Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Xiehua Xue
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Affiliated Rehabilitation Hospital of Fujian, TCM University, China
| | - Erming Wang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Max Wallack
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Harvard Medical School, USA
| | - Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jacob M Hooker
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA; Harvard Medical School, USA
| | - Neil Kowall
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
McFarlane SI, Mielke MM, Uglialoro A, Keating SM, Holman S, Minkoff H, Crystal HA, Gustafson DR. Ghrelin, Amylin, Gastric Inhibitory Peptide and Cognition in Middle-Aged HIV-Infected and Uninfected Women: The Women's Interagency HIV Study. JOURNAL OF NEUROLOGY & NEUROPHYSIOLOGY 2017; 8:413. [PMID: 28690913 PMCID: PMC5497768 DOI: 10.4172/2155-9562.1000413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore the gut-brain axis by examining gut hormone levels and cognitive test scores in women with (HIV+) and without (HIV-) HIV infection. DESIGN/METHODS Participants included 356 women (248 HIV+, 108 at risk HIV-) in the Brooklyn Women's Interagency HIV Study (WIHS) with measured levels of ghrelin, amylin and gastric inhibitory peptide (GIP), also known as glucose-dependent insulinotropic polypeptide. Cross-sectional analyses using linear regression models estimated the relationship between gut hormones and Trails A, Trails B, Stroop interference time, Stroop word recall, Stroop color naming and reading, and Symbol Digit Modalities Test (SDMT) with consideration for age, HIV infection status, Wide Range Achievement Test score (WRAT), CD4 count, insulin resistance, drug use, and race/ethnicity. RESULTS Among women at mid-life with chronic (at least 10 years) HIV infection or among those at risk, ghrelin, amylin and GIP were differentially related to cognitive test performance by cognitive domain. Better performance on cognitive tests was generally associated with higher ghrelin, amylin and GIP levels. However, the strength of association varied, as did significance level by HIV status. CONCLUSION Previous analyses in WIHS participants have suggested that higher BMI, waist, and WHR are associated with better cognitive function among women at mid-life with HIV infection. This study indicates that higher gut hormone levels are also associated with better cognition. Gut hormones may provide additional mechanistic insights regarding the association between obesity and Type 2 diabetes and cognition in middle-aged HIV+ and at risk HIV- women. In addition, measuring these hormones longitudinally would add to the understanding of mechanisms of actions of these hormones and their use as potential clinical tools for early identification and intervention on cognitive decline in this vulnerable population.
Collapse
Affiliation(s)
- Samy I McFarlane
- Department of Medicine, Division of Endocrinology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Division of Epidemiology, and Department of Neurology Mayo Clinic, Rochester, MN, USA
| | - Anthony Uglialoro
- Empire Clinical Research Program (ECRIP) fellow, Department of Neurology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | | | - Susan Holman
- Department of Medicine/STAR Program, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Howard Minkoff
- Maimonides Hospital, Brooklyn, NY, USA
- Department of Obstetrics and Gynecology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Howard A Crystal
- Department of Neurology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Deborah R Gustafson
- Department of Neurology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
- Neuropsychiatric Epidemiology Unit, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|