1
|
Viejo-Romero M, Whalley HC, Shen X, Stolicyn A, Smith DJ, Howard DM. An epidemiological study of season of birth, mental health, and neuroimaging in the UK Biobank. PLoS One 2024; 19:e0300449. [PMID: 38776272 PMCID: PMC11111058 DOI: 10.1371/journal.pone.0300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Environmental exposures during the perinatal period are known to have a long-term effect on adult physical and mental health. One such influential environmental exposure is the time of year of birth which affects the amount of daylight, nutrients, and viral load that an individual is exposed to within this key developmental period. Here, we investigate associations between season of birth (seasonality), four mental health traits (n = 137,588) and multi-modal neuroimaging measures (n = 33,212) within the UK Biobank. Summer births were associated with probable recurrent Major Depressive Disorder (β = 0.026, pcorr = 0.028) and greater mean cortical thickness in temporal and occipital lobes (β = 0.013 to 0.014, pcorr<0.05). Winter births were associated with greater white matter integrity globally, in the association fibers, thalamic radiations, and six individual tracts (β = -0.013 to -0.022, pcorr<0.05). Results of sensitivity analyses adjusting for birth weight were similar, with an additional association between winter birth and white matter microstructure in the forceps minor and between summer births, greater cingulate thickness and amygdala volume. Further analyses revealed associations between probable depressive phenotypes and a range of neuroimaging measures but a paucity of interactions with seasonality. Our results suggest that seasonality of birth may affect later-life brain structure and play a role in lifetime recurrent Major Depressive Disorder. Due to the small effect sizes observed, and the lack of associations with other mental health traits, further research is required to validate birth season effects in the context of different latitudes, and by co-examining genetic and epigenetic measures to reveal informative biological pathways.
Collapse
Affiliation(s)
- Maria Viejo-Romero
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Daniel J. Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - David M. Howard
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
- Institute of Psychiatry, Social, Genetic and Developmental Psychiatry Centre, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Effects of photoperiod and diet on BDNF daily rhythms in diurnal sand rats. Behav Brain Res 2022; 418:113666. [PMID: 34808195 DOI: 10.1016/j.bbr.2021.113666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), its receptors and epigenetic modulators, are implicated in the pathophysiology of affective disorders, T2DM and the circadian system function. We used diurnal sand rats, which develop type 2 diabetes (T2DM), anxiety and depressive-like behavior under laboratory conditions. The development of these disorders is accelerated when animals are maintained under short photoperiod (5:19L:D, SP) compared to neutral photoperiod (12:12L:D, NP). We compared rhythms in plasma BDNF as well as BDNF and PER2 expression in the frontal cortex and suprachiasmatic nucleus (SCN) of sand rats acclimated to SP and NP. Acclimation to SP resulted in higher insulin levels, significantly higher glucose levels in the glucose tolerance test, and significantly higher anxiety- and depression-like behaviors compared with animals acclimated to NP. NP Animals exhibited a significant daily rhythm in plasma BDNF levels with higher levels during the night, and in BDNF expression levels in the frontal cortex and SCN. No significant BDNF rhythm was found in the plasma, frontal cortex or SCN of SP acclimated animals. We propose that in sand rats, BDNF may, at least in part, mediate the effects of circadian disruption on the development of anxiety and depressive-like behavior and T2DM.
Collapse
|
3
|
Bilu C, Kronfeld-Schor N, Zimmet P, Einat H. Sex differences in the response to circadian disruption in diurnal sand rats. Chronobiol Int 2021; 39:169-185. [PMID: 34711113 DOI: 10.1080/07420528.2021.1989448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most animal model studies on physiological functions and pathologies are conducted in males. However, diseases such as depression, type 2 diabetes (T2DM) and cardiovascular disease, all show different prevalence and characteristics in females and males. Moreover, most mammal studies are conducted in nocturnal mice and rats, while modelling diurnal humans. We therefore used male and female fat sand rats (Psammomys obesus), which are diurnal in the wild, as an animal model for T2DM, to explore the effects of mild circadian disruption on behavior, glucose tolerance, cholesterol and heart weight. We found significant differences between the sexes: on average, in response to short photoperiods (SP) acclimation, males showed higher levels of depression-like behavior, lower glucose tolerance, and increased plasma cholesterol levels compared with females, with no effect on heart/body weight ratio. Females, however did show an increase in heart/body weight ratio in response to SP acclimation. We also found that regardless of sex, arrhythmic animals showed higher blood glucose levels, cholesterol levels, heart/body weight ratio, and depressive-like behavior compared with rhythmic animals. Hence, we suggest that the expression of the Circadian Syndrome could be different between males and females. Additional work with females is required to clearly delineate the specific effects in both sexes, and promote sex-based health care, prevention measures and therapies.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Noga Kronfeld-Schor
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Medicine, Monash University, Melbourne, Australia
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| |
Collapse
|
4
|
Miljanovic N, Hauck SM, van Dijk RM, Di Liberto V, Rezaei A, Potschka H. Proteomic signature of the Dravet syndrome in the genetic Scn1a-A1783V mouse model. Neurobiol Dis 2021; 157:105423. [PMID: 34144125 DOI: 10.1016/j.nbd.2021.105423] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dravet syndrome is a rare, severe pediatric epileptic encephalopathy associated with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet syndrome can provide information about the molecular consequences of the genetic deficiency and about pathophysiological mechanisms developing during the disease course. METHODS A knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was used for whole proteome, seizure, and behavioral analysis. Hippocampal tissue was dissected from two- (prior to epilepsy manifestation) and four- (following epilepsy manifestation) week-old male mice and analyzed using LC-MS/MS with label-free quantification. Proteomic data sets were subjected to bioinformatic analysis including pathway enrichment analysis. The differential expression of selected proteins was confirmed by immunohistochemical staining. RESULTS The findings confirmed an increased susceptibility to hyperthermia-associated seizures, the development of spontaneous seizures, and behavioral alterations in the novel Scn1a-A1873V mouse model of Dravet syndrome. As expected, proteomic analysis demonstrated more pronounced alterations following epilepsy manifestation. In particular, proteins involved in neurotransmitter dynamics, receptor and ion channel function, synaptic plasticity, astrogliosis, neoangiogenesis, and nitric oxide signaling showed a pronounced regulation in Dravet mice. Pathway enrichment analysis identified several significantly regulated pathways at the later time point, with pathways linked to synaptic transmission and glutamatergic signaling dominating the list. CONCLUSION In conclusion, the whole proteome analysis in a mouse model of Dravet syndrome demonstrated complex molecular alterations in the hippocampus. Some of these alterations may have an impact on excitability or may serve a compensatory function, which, however, needs to be further confirmed by future investigations. The proteomic data indicate that, due to the molecular consequences of the genetic deficiency, the pathophysiological mechanisms may become more complex during the course of the disease. As a result, the management of Dravet syndrome may need to consider further molecular and cellular alterations. Ensuing functional follow-up studies, this data set may provide valuable guidance for the future development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ali Rezaei
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
5
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Exposure to Short Photoperiod Regime Restores Spatial Cognition in Ventral Subicular Lesioned Rats: Potential Role of Hippocampal Plasticity, Glucocorticoid Receptors, and Neurogenesis. Mol Neurobiol 2021; 58:4437-4459. [PMID: 34024004 DOI: 10.1007/s12035-021-02409-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Ambient light influences our mood, behavior, and cognition. Phototherapy has been considered as an effective non-pharmacological intervention strategy in the restoration of cognitive functions following central nervous system insults. However, the cellular and molecular underpinnings of phototherapy-mediated functional recovery are yet to be studied. The present study examines the effectiveness of short photoperiod regime (SPR; 6:18-h light:dark cycle) in restoring the cognitive functions in ventral subicular lesioned rats. Bilateral ventral subicular lesion (VSL) resulted in significant impairment of spatial navigational abilities when tested in the Morris water maze (MWM) task. Further, VSL resulted in reduced expression of glucocorticoid receptors (GRs) and activity-regulated cytoskeletal (Arc) protein and suppression of neurogenesis in the hippocampus. VSL also suppressed the magnitude of long-term potentiation (LTP) in the hippocampal Schaffer collateral-CA1 synapses. However, exposure to SPR for 21 days showed significant restoration of spatial performance in the MWM task as the ventral subicular lesioned rats could deploy higher cognitive allocentric navigational strategies to reach the hidden platform. Further, SPR resulted in enhanced expression of hippocampal GR and Arc protein and neurogenesis but not hippocampal LTP suggestive of appropriate need-based SPR intervention. In conclusion, the study demonstrates the effectiveness of SPR in establishing functional recovery as well as the possible molecular and cellular basis of cognitive recovery in a rat model of neurodegeneration. Such studies provide a framework in understanding the efficacy of non-pharmacological strategies in establishing functional recovery in neurodegenerative conditions.
Collapse
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
6
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Langer E, Einat H, Stukalin Y. Similarities and dissimilarities in the effects of benzodiazepines and specific serotonin reuptake inhibitors (SSRIs) in the defensive marble burying test: A systematic review and meta-analysis. Eur Neuropsychopharmacol 2020; 36:38-49. [PMID: 32456852 DOI: 10.1016/j.euroneuro.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
One problem areas of animal models and tests for neuropsychiatric disorders is unclear reproducibility, including both internal and external validity. One way to examine external validity is with systematic reviews and meta-analyses, a standard practice in clinical research that is relatively neglected in preclinical research. Considering the need to evaluate the validity and reproducibility of frequently used animal models, this study presents a meta-analysis of the effects of prototypic benzodiazepines and specific serotonin reuptake inhibitors (SSRIs) in the mouse defensive marble burying test (MBT). These drug groups were selected because although they differ in their biological targets as well as in their clinical use, they are both commonly used for the treatment of anxiety disorders. A PubMed literature search was performed to identify studies that examined the effects of benzodiazepines (diazepam, alprazolam, chlordiazepoxide, clonazepam) or SSRIs (fluoxetine, citalopram, escitalopram, fluvoxamine, paroxetine) in the MBT in mice. For benzodiazepines, 73 experiments were included. Benzodiazepines effect size was 2.04 and Q statistics was 1959 with a significant correlation between dose and effect size (r = 0.31, p = 0.007). For SSRIs we identified 47 experiments. Effect size of SSRIs was 2.24 and Q statistics was 493.38. No correlation was found between dose and effect size (r = 0.23, p = 0.12). The current results support the external validity of the defensive marble burying test as a screening test for anxiolytic effects. However, these results indicate that significant attention should be given to the administration schedules of benzodiazepines and SSRIs.
Collapse
Affiliation(s)
- Erez Langer
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel.
| | - Yelena Stukalin
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| |
Collapse
|
9
|
Maroni MJ, Capri KM, Arruda NL, Gelineau RR, Deane HV, Concepcion HA, DeCourcey H, Monteiro De Pina IK, Cushman AV, Chasse MH, Logan RW, Seggio JA. Substrain specific behavioral responses in male C57BL/6N and C57BL/6J mice to a shortened 21-hour day and high-fat diet. Chronobiol Int 2020; 37:809-823. [PMID: 32400203 DOI: 10.1080/07420528.2020.1756840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Altered circadian rhythms have negative consequences on health and behavior. Emerging evidence suggests genetics influences the physiological and behavioral responses to circadian disruption. We investigated the effects of a 21 h day (T = 21 cycle), with high-fat diet consumption, on locomotor activity, explorative behaviors, and health in male C57BL/6J and C57BL/6N mice. Mice were exposed to either a T = 24 or T = 21 cycle and given standard rodent chow (RC) or a 60% high-fat diet (HFD) followed by behavioral assays and physiological measures. We uncovered numerous strain differences within the behavioral and physiological assays, mainly that C57BL/6J mice exhibit reduced susceptibility to the obesogenic effects of (HFD) and anxiety-like behavior as well as increased circadian and novelty-induced locomotor activity compared to C57BL/6N mice. There were also substrain-specific differences in behavioral responses to the T = 21 cycle, including exploratory behaviors and circadian locomotor activity. Under the 21-h day, mice consuming RC displayed entrainment, while mice exposed to HFD exhibited a lengthening of activity rhythms. In the open-field and light-dark box, mice exposed to the T = 21 cycle had increased novelty-induced locomotor activity with no further effects of diet, suggesting daylength may affect mood-related behaviors. These results indicate that different circadian cycles impact metabolic and behavioral responses depending on genetic background, and despite circadian entrainment.
Collapse
Affiliation(s)
- Marissa J Maroni
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA.,Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Kimberly M Capri
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA.,Department of Mathematics and Statistics, Boston University , Boston, Massachusetts, USA
| | - Nicole L Arruda
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA.,Chapel Hill, Biological and Biomedical Sciences Program, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Rachel R Gelineau
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Hannah V Deane
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Holly A Concepcion
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Holly DeCourcey
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | | | - Alexis V Cushman
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Madison H Chasse
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory , Bar Harbor, Maine, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| |
Collapse
|
10
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Short photoperiod restores ventral subicular lesion‐induced deficits in affective and socio‐cognitive behavior in male Wistar rats. J Neurosci Res 2020; 98:1114-1136. [DOI: 10.1002/jnr.24601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | - Bettadapura N. Srikumar
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | | | - Bindu M. Kutty
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| |
Collapse
|
11
|
Stukalin Y, Lan A, Einat H. Revisiting the validity of the mouse tail suspension test: Systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci Biobehav Rev 2020; 112:39-47. [PMID: 32006552 DOI: 10.1016/j.neubiorev.2020.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 01/18/2023]
Abstract
Animal models in neuropsychiatric research need validation. One way to address external validity is systematic reviews and meta-analyses. The present study presents a meta-analysis of the effects of antidepressants in the mouse tail suspension test (TST). A PubMed search identified studies that examined imipramine and fluoxetine effects in the TST. Inclusion criteria were testing in the light phase; trial duration was six minutes; immobility time scored 6 or (last) 4 min; adult mice; acute intraperitoneal (IP) administration. Effect sizes (ES) were estimated using Cohen's d, heterogeneity of ES with Cochran's Q test, correlations between dose and ES with Pearson's correlation and differences between strains with Analysis of variance. Results show that antidepressants decrease immobility time in the TST and a correlation between drug dose and ES but no effects of strain. We suggest that the TST is a valid tool to quantitatively, consistently and reproducibly capture the immobility-reducing aspects of fluoxetine and imipramine and that the lack of strain effects is due to small number of experiments in many of the strains.
Collapse
Affiliation(s)
- Yelena Stukalin
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Anat Lan
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel; The open University, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel.
| |
Collapse
|
12
|
A new stress model by predatory sound produces persistent anxiety-like behaviours in male SD rats but not ICR mice. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Bilu C, Einat H, Tal-Krivisky K, Mizrahi J, Vishnevskia-Dai V, Agam G, Kronfeld-Schor N. Red white and blue - bright light effects in a diurnal rodent model for seasonal affective disorder. Chronobiol Int 2019; 36:919-926. [PMID: 30983429 DOI: 10.1080/07420528.2019.1595638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite the common use of bright light exposure for treatment of seasonal affective disorder (SAD), the underlying biology of the therapeutic effect is not clear. Moreover, there is a debate regarding the most efficacious wavelength of light for treatment. Whereas according to the traditional approach full-spectrum light is used, recent studies suggest that the critical wavelengths are within the range of blue light (460 and 484 nm). Our previous work shows that when diurnal rodents are maintained under short photoperiod they develop depression- and anxiety-like behavioral phenotype that is ameliorated by treatment with wide-spectrum bright light exposure (2500 lux at the cage, 5000 K). Our current study compares the effect of bright wide-spectrum (3,000 lux, wavelength 420- 780 nm, 5487 K), blue (1,300 lux, wavelength 420-530 nm) and red light (1,300 lux, wavelength range 600-780 nm) exposure in the fat sand rat (Psammomys Obesus) model of SAD. We report results of experiments with six groups of sand rats that were kept under various photoperiods and light treatments, and subjected to behavioral tests related to emotions: forced swim test, elevated plus maze and social interactions. Exposure to either intense wide-spectrum white light or to blue light equally ameliorated depression-like behavior whereas red light had no effect. Bright wide-spectrum white light treatment had no effect on animals maintained under neutral photoperiod, meaning that light exposure was only effective in the pathological-like state. The resemblance between the effects of bright white light and blue light suggests that intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in the underlying biology of SAD and light therapy.
Collapse
Affiliation(s)
- Carmel Bilu
- a School of Zoology , Tel-Aviv University , Tel Aviv , Israel.,b Department of Clinical Biochemistry and Pharmacology , Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Haim Einat
- c School of Behavioral Sciences , Tel Aviv-Yaffo Academic College , Tel-Aviv , Israel
| | | | - Joseph Mizrahi
- d Department of Medicine , Stony Brook University Hospital , Stony Brook , NY , USA
| | - Vicktoria Vishnevskia-Dai
- e Ocular Oncology and Autoimmune service, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine , Tel-Aviv University , Tel Aviv , Israel
| | - Galila Agam
- b Department of Clinical Biochemistry and Pharmacology , Ben-Gurion University of the Negev , Beer Sheva , Israel
| | | |
Collapse
|
14
|
Bilu C, Zimmet P, Vishnevskia-Dai V, Einat H, Agam G, Grossman E, Kronfeld-Schor N. Diurnality, Type 2 Diabetes, and Depressive-Like Behavior. J Biol Rhythms 2018; 34:69-83. [PMID: 30585103 DOI: 10.1177/0748730418819373] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although type 2 diabetes (T2DM) and depression are associated with disturbances in circadian rhythms, most studies of these diseases use nocturnal mice and rats while modeling diurnal humans. We suggest that the development of T2DM and depression are related to changes that accompany the switch from the mammalian ancestral nocturnal activity to the current diurnal one. We show that diurnal sand rats ( Psammomys obesus) held outdoors in laboratory cages (where they are exposed to natural environmental conditions) and fed a standard rodent diet do not develop T2DM in contrast to animals held indoors (where the only cycling environmental condition is light) fed the same diet. Moreover, keeping sand rats under a short photoperiod dampened behavioral and molecular daily rhythms, resulted in anxiety- and depressive-like behavior, and accelerated the development of T2DM. We suggest that the disturbed rhythms disrupt the internal temporal order and metabolic pathways controlled by feeding and the circadian system, resulting in the development of T2DM and depressive-like behavior. We further suggest that using nocturnal mice and rats as sole model animals may limit research, especially when studying circadian rhythm-related diseases.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Ramat Aviv, Israel.,Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Paul Zimmet
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Vicktoria Vishnevskia-Dai
- Ocular Oncology and Autoimmune service, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ehud Grossman
- Internal Medicine Department and Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
15
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Exposure to short photoperiod regime reduces ventral subicular lesion-induced anxiety-like behavior in Wistar rats. Physiol Behav 2016; 170:124-132. [PMID: 28017681 DOI: 10.1016/j.physbeh.2016.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 01/28/2023]
Abstract
Neurodegeneration of hippocampal structures is implicated in Alzheimer's disease (AD). Patients with AD exhibit 'sundown syndrome' featuring mood swings and anxiety. Although there are studies demonstrating circadian rhythm disruption associated with sundown phenomenon, the mechanisms underlying the emotional disturbances remain elusive. In the present study, we examined the relationship between subiculum (a key hippocampal output structure) and anxiety. Our study demonstrates that bilateral ventral subicular lesion (VSL) leads to anxiogenic behavior. In the elevated plus maze test, VSL rats made less number of entries into the open arms and spent significantly more time in the closed arms. Similarly, in the light-dark exploration test, VSL rats spent significantly more time in the dark chamber and made fewer entries into the light chamber. VSL also produced significant neurodegeneration in the paraventricular, suprachiasmatic and dorsomedial nuclei of the hypothalamus. Exposing VSL rats to a short photoperiod regime (SPR; 06/18h light-dark cycle) for 21days ameliorated the anxiety-like behavior. VSL rats on SPR also exhibited increased food consumption and higher core body temperature. Our study supports the hypothesis that the ventral subiculum regulates anxiety-like behavior and that SPR helps in the alleviation of such behavior. Even though the mechanisms underlying anxiolytic effects of light-dark cycle manipulation are yet to be elucidated, such non-pharmacological strategies can help to mitigate anxiety-like behavior. A proper understanding of the effectiveness of photoperiod manipulation will help in developing strategies in the management of emotional disturbances associated with affective and neurodegenerative disorders including AD.
Collapse
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
16
|
Horesh SJA, Sivan J, Rosenstrauch A, Tesler I, Degen AA, Kam M. Seasonal biotic and abiotic factors affecting hunting strategy in free-living Saharan sand vipers, Cerastes vipera. Behav Processes 2016; 135:40-44. [PMID: 27899311 DOI: 10.1016/j.beproc.2016.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
Sit-and-wait ambushing and active hunting are two strategies used by predators to capture prey. In snakes, hunting strategy is conserved phylogenetically; most species employ only one strategy. Active hunters encounter and capture more prey but invest more energy in hunting and have higher risks of being predated. This trade-off is important to small predators. The small Cerastes vipera employs both modes of hunting, which is unlike most viperids which use only sit-and wait ambushing. This species hibernates in October and emerges in April. Energy intake should be high prior to hibernation to overcome the non-feeding hibernation period and for reproduction on their emergence. We predicted that more individuals would hunt actively towards hibernation and an abiotic factor would trigger this response. Furthermore, since more energy is required for active hunting, we predicted that snakes in good body condition would use active hunting to a greater extent than snakes in poor body condition. To test our predictions, we tracked free-living snakes year round and determined their hunting strategy, estimated their body condition index (BCI), and calculated circannual parameters of day length as environmental cues known to affect animal behaviour. Two novel findings emerged in this study, namely, hunting strategy was affected significantly by 1) the circannual change in day length and 2) by BCI. The proportion of active hunters increased from 5% in April to over 30% in October and BCI of active foragers was higher than that of sit-and-wait foragers and, therefore, our predictions were supported. The entrainment between the proportion of active hunting and the abiotic factor is indicative of an adaptive function for choosing a hunting strategy. A trend was evident among life stages. When all life stages were present (September-October), the proportion of active foragers increased with age: 0.0% among neonates, 18.2% among juveniles and 31.4% among adults. We concluded that vulnerable small neonates used sit-and-wait ambush not only as a hunting strategy but also as a hiding technique.
Collapse
Affiliation(s)
- Sefi J A Horesh
- Mitrani Department of Desert Ecology, Institutes for Desert Research, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel; Negev Zoo, P. O. B. 4033, Beer Sheva, Israel
| | - Jaim Sivan
- Department of Life Sciences, Achva Academic College, M.P. Shikmim, 79800, Israel; Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Avi Rosenstrauch
- Department of Life Sciences, Achva Academic College, M.P. Shikmim, 79800, Israel
| | - Itay Tesler
- Negev Zoo, P. O. B. 4033, Beer Sheva, Israel; Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Institutes for Desert Research, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Institutes for Desert Research, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Michael Kam
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Institutes for Desert Research, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
17
|
Bilu C, Einat H, Kronfeld-Schor N. Utilization of Diurnal Rodents in the Research of Depression. Drug Dev Res 2016; 77:336-345. [PMID: 27654112 DOI: 10.1002/ddr.21346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preclinical Research Most neuropsychiatric research, including that related to the circadian system, is performed using nocturnal animals, mainly laboratory mice and rats. Mood disorders are known to be associated with circadian rhythm abnormalities, but the mechanisms by which circadian rhythm disruptions interact with depression remain unclear. As the circadian system of diurnal and nocturnal mammals differs, we previously suggested that the utilization of diurnal animal models may be advantageous for understanding these relations. During the last 10 years, we and others established the validity of several diurnal rodent species as a model for the interactions between circadian rhythms and depression. Diurnal rodents respond to photoperiod manipulation in a similar way to humans, the behavioral outcome is directly related to the circadian system, and treatment that is effective in patients is also effective in the model. Moreover, less effective treatments in patients are also less effective in the model. We, therefore, suggest that using diurnal animal models to study circadian rhythms-related affective disorders, such as depression, will provide new insights that will hopefully lead to the development of more effective treatments. Drug Dev Res 77 : 347-356, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carmel Bilu
- Department of Zoology Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.,Faculty of Medicine, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer, Sheva, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo College, Tel Aviv, Israel
| | - Noga Kronfeld-Schor
- Department of Zoology Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|