1
|
Pola P, Frezza A, Gavioli EC, Calò G, Ruzza C. Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ-NOP Receptor System. Brain Sci 2024; 14:936. [PMID: 39335430 PMCID: PMC11431041 DOI: 10.3390/brainsci14090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Exposure to physical and psychological stress modulates pain transmission in a dual manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can occur in response to acute stress. On the contrary, chronic stress exposure may lead to a phenomenon named stress-induced hyperalgesia (SIH). SIH is a clinically relevant phenomenon since it has been well documented that physical and psychological stress exacerbates pain in patients with several chronic pain syndromes, including migraine. The availability of animal models of SIA and SIH is of high importance for understanding the biological mechanisms leading to these phenomena and for the identification of pharmacological targets useful to alleviate the burden of stress-exacerbated chronic pain. Among these targets, the nociceptin/orphanin FQ (N/OFQ)-N/OFQ peptide (NOP) receptor system has been identified as a key modulator of both pain transmission and stress susceptibility. This review describes first the experimental approaches to induce SIA and SIH in rodents. The second part of the manuscript summarizes the scientific evidence that suggests the N/OFQ-NOP receptor system as a player in the stress-pain interaction and candidates NOP antagonists as useful drugs to mitigate the detrimental effects of stress exposure on pain perception.
Collapse
Affiliation(s)
- Pietro Pola
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Frezza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Baghani M, Bolouri-Roudsari A, Askari R, Haghparast A. Orexin receptors in the hippocampal dentate gyrus modulated the restraint stress-induced analgesia in the animal model of chronic pain. Behav Brain Res 2024; 459:114772. [PMID: 37995966 DOI: 10.1016/j.bbr.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Previous studies have shown that stressful stimuli induced an adaptive response of reduced nociception, known as stress-induced analgesia (SIA). Since orexin neuropeptides are involved in pain modulation, and orexin neurons, primarily located in the lateral hypothalamus (LH), project to various hippocampal regions, such as the dentate gyrus (DG), the current study aimed to examine the role of orexin receptors within the DG region in the restraint SIA in the animal model of chronic pain. One hundred-thirty adult male Wistar rats (230-250 g) were unilaterally implanted with a cannula above the DG region. Animals were given SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol, 0.5 µl/rat) into the DG region as orexin-1 receptor (OX1r) and orexin-2 receptor (OX2r) antagonists, respectively, five min before exposure to a 3-hour restraint stress (RS) period. Animals were then undergone the formalin test to assess pain-related behaviors as the animal model of chronic pain. The results showed that RS produces an analgesic response during the early and late phases of the formalin test. However, intra-DG microinjection of OX1r and OX2r antagonists attenuated the restraint SIA. OX2r antagonist was more potent than OX1r antagonist in the early phase of the formalin test, while OX1r antagonist was little more effective in the late phase. Predominantly, it could be concluded that the orexinergic system in the DG region might act as a potential endogenous pain control system and a novel target for treating stress-related disorders.
Collapse
Affiliation(s)
- Matin Baghani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arad Bolouri-Roudsari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Askari
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Dent JO, Segal JP, Brécier A, Gowdy HGM, Dubois RM, Bannerman CA, Halievski K, Silva JR, Ghasemlou N. Advanced Dynamic Weight Bearing as an Observer-independent Measure of Hyperacute Hypersensitivity in Mice. Can J Pain 2023; 7:2249060. [PMID: 37885834 PMCID: PMC10599184 DOI: 10.1080/24740527.2023.2249060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/16/2023] [Indexed: 10/28/2023]
Abstract
Background Standard methods assessing pain in rodents are often observer dependent, potentially resulting in biased outcomes. Advanced dynamic weight bearing (ADWB) offers an observer-independent approach that can provide objective, reliable data in preclinical pain research. Aims The aim of this study was to characterize the use of ADWB in assessing murine responses to allyl isothiocyanate (AITC)-induced hyperacute hypersensitivity and identify best practices for use of the device. Methods Male C57BL/6J mice received intraplantar injections of saline or 0.1% AITC solution and were assessed using the ADWB system; simultaneous observer-dependent durations of paw licking and biting were measured. ADWB data were analyzed using the proprietary software from Bioseb and correlated to observer-dependent results, with parameters assessed to optimize data collected. Results ADWB detected pain-directed changes in weight and surface area distribution in AITC-treated mice, with paw weight and surface area placement correlating to paw licking and biting. Optimization of adjustable threshold parameters allowed for reduced coefficients of variability and increased duration of validated data. Conclusions The ADWB assay provides an efficient and unbiased measure of chemical-induced hyperacute hypersensitivity in mice. ADWB detection parameters influence amount of validated data and variability, a consideration for data analysis in future studies.
Collapse
Affiliation(s)
- Jayne O. Dent
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Julia P. Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Aurélie Brécier
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Hailey G. M. Gowdy
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rosalin M. Dubois
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Courtney A. Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R. Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Blockade of the orexin receptors in the ventral tegmental area could attenuate the stress-induced analgesia: A behavioral and molecular study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110639. [PMID: 36116673 DOI: 10.1016/j.pnpbp.2022.110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Exposure to stressful stimuli induces various physiological and behavioral responses, affects pain perception, and alters gene expression. Stress elicits an analgesic effect in laboratory animals, termed the "stress-induced analgesia" (SIA). Orexin neuropeptides, processed from pre-pro-orexin in the hypothalamus, release during stress and are known to be antinociceptive. The current study examined the modulatory role of the ventral tegmental area (VTA) orexinergic system in the restraint SIA and extracellular signal-regulated kinase (ERK) activation in the nucleus accumbens (NAc). Adult male Wistar rats were subjected to intra-VTA injection of orexin-1 and -2 receptor antagonists (SB334867 and TCS OX2 29; 1, 3, 10, and 30 nmol/0.3 μl, respectively) five min before a 3-h period of exposure to restraint stress (RS). Western blot analysis was also used to assess the levels of ERK and phosphorylated ERK (p-ERK) in the NAc tissues. RS exposure produced an analgesic response to the thermal pain model (Tail-flick test). RS-induced antinociception was inhibited by intra-VTA administration of SB334867 and TCS OX2 29. Moreover, in the molecular study, exposure to forced swim stress (FSS) and RS significantly enhanced the p-ERK/ERK ratio. Blockade of both orexin receptors diminished the p-ERK/ERK ratio, but this decrease was significant only in the FSS group of animals that received TCS OX2 29. Collectively, the present findings suggested the functional roles of intra-VTA orexin receptors and ERK signaling in the SIA.
Collapse
|
5
|
Strain MM, Tongkhuya S, Wienandt N, Alsadoon F, Chavez R, Daniels J, Garza T, Trevino AV, Wells K, Stark T, Clifford J, Sosanya NM. Exploring combat stress exposure effects on burn pain in a female rodent model. BMC Neurosci 2022; 23:73. [PMID: 36474149 PMCID: PMC9724288 DOI: 10.1186/s12868-022-00759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
In the military, constant physiological and psychological stress encountered by Soldiers can lead to development of the combat and operational stress reaction (COSR), which can effect pain management. Similar effects are seen in other populations subjected to high levels of stress. Using a model of COSR, our lab recently showed that four weeks of stress prior to an injury increases pain sensitivity in male rats. With the roles of women in the military expanding and recent studies indicating sex differences in stress and pain processing, this study sought to investigate how different amounts of prior stress exposure affects thermal injury-induced mechanosensitivity in a female rat model of COSR. Adult female Sprague Dawley rats were exposed to the unpredictable combat stress (UPCS) procedure for either 2 or 4 weeks. The UPCS procedure included exposure to one stressor each day for four days. The stressors include: (1) sound stress for 30 min, (2) restraint stress for 4 h, (3) cold stress for 4 h, and (4) forced swim stress for 15 min. The order of stressors was randomized weekly. Mechanical and thermal sensitivity was tested twice weekly. After the UPCS procedure, a sub-set of rats received a thermal injury while under anesthesia. The development of mechanical allodynia and thermal hyperalgesia was examined for 14 days post-burn. UPCS exposure increased mechanosensitivity after two weeks. Interestingly, with more stress exposure, females seemed to habituate to the stress, causing the stress-induced changes in mechanosensitivity to decrease by week three of UPCS. If thermal injury induction occurred during peak stress-induced mechanosensitivity, after two weeks, this resulted in increased mechanical allodynia in the injured hind paw compared to thermal injury alone. This data indicates a susceptibility to increased nociceptive sensitization when injury is sustained at peak stress reactivity. Additionally, this data indicates a sex difference in the timing of peak stress. Post-mortem examination of the prefrontal cortex (PFC) showed altered expression of p-TrkB in 4-week stressed animals given a thermal injury, suggesting a compensatory mechanism. Future work will examine treatment options for preventing stress-induced pain to maintain the effectiveness and readiness of the Warfighter.
Collapse
Affiliation(s)
- Misty M. Strain
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Sirima Tongkhuya
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Nathan Wienandt
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Farah Alsadoon
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Roger Chavez
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Jamar Daniels
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Thomas Garza
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Alex V. Trevino
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Kenney Wells
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Thomas Stark
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - John Clifford
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Natasha M. Sosanya
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| |
Collapse
|
6
|
Trask S, Mogil JS, Helmstetter FJ, Stucky CL, Sadler KE. Contextual control of conditioned pain tolerance and endogenous analgesic systems. eLife 2022; 11:75283. [PMID: 35275062 PMCID: PMC8937231 DOI: 10.7554/elife.75283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying the transition from acute to chronic pain are unclear but may involve the persistence or strengthening of pain memories acquired in part through associative learning. Contextual cues, which comprise the environment in which events occur, were recently described as a critical regulator of pain memory; both male rodents and humans exhibit increased pain sensitivity in environments recently associated with a single painful experience. It is unknown, however, how repeated exposure to an acute painful unconditioned stimulus in a distinct context modifies pain sensitivity or the expectation of pain in that environment. To answer this question, we conditioned mice to associate distinct contexts with either repeated administration of a mild visceral pain stimulus (intraperitoneal injection of acetic acid) or vehicle injection over the course of 3 days. On the final day of experiments, animals received either an acid injection or vehicle injection prior to being placed into both contexts. In this way, contextual control of pain sensitivity and pain expectation could be tested respectively. When re-exposed to the noxious stimulus in a familiar environment, both male and female mice exhibited context-dependent conditioned analgesia, a phenomenon mediated by endogenous opioid signaling. However, when expecting the presentation of a painful stimulus in a given context, males exhibited conditioned hypersensitivity whereas females exhibited endogenous opioid-mediated conditioned analgesia. These results are evidence that pain perception and engagement of endogenous opioid systems can be modified through their psychological association with environmental cues. Successful determination of the brain circuits involved in this sexually dimorphic anticipatory response may allow for the manipulation of pain memories, which may contribute to the development of chronic pain states.
Collapse
Affiliation(s)
- Sydney Trask
- Department of Psychological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Jeffrey S Mogil
- Department of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill UniversityMontrealCanada
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-MilwaukeeMilwaukeeUnited States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
7
|
Hagiwara H, Sakimura K, Abe M, Itoi K, Kamiya Y, Akema T, Funabashi T. Sex differences in pain-induced modulation of corticotropin-releasing hormone neurons in the dorsolateral part of the stria terminalis in mice. Brain Res 2021; 1773:147688. [PMID: 34644526 DOI: 10.1016/j.brainres.2021.147688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023]
Abstract
We earlier reported female-biased, sex-specific involvement of the dorsolateral bed nucleus of the stria terminalis (dl BST) in the formalin-induced pain response in rats. The present study investigated pain effects on mice behaviors. Because the dl BST is densely populated with corticotropin-releasing hormone (CRH) neurons, we examined sex differences in these parameters for the dl BST CRH neurons in male and female mice of a mouse line for which the CRH gene promoter (corticotropin-releasing factor [CRF]-Venus ΔNeo) controls the expression of the modified yellow fluorescent protein (Venus). Approximately 92% of Venus-positive cells in the dl BST were also CRH mRNA-positive, irrespective of sex. Therefore, the cells identified using Venus fluorescence were regarded as CRH neurons. A female-biased sex difference was observed in pain-induced behaviors during the interphase (5-15 min after formalin injection) but not during the later phase (phase 2, 15-60 min) in wild-type mice. In CRF-Venus ΔNeo mice, a female-biased difference was observed in either the earlier phase (phase 1, 0-5 min) or the interphase, but not in phase 2. Patch-clamp recordings taken using an acute BST slice obtained from a CRF-Venus ΔNeo mouse after formalin injection showed miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). Remarkably, the mEPSCs frequency was higher in the Venus-expressing cells of formalin-injected female mice than in vehicle-treated female mice. Male mice showed no increase in mEPSC frequency by formalin injection. Formalin injection had no effect on mEPSC or mIPSC amplitudes in either sex. Pain-induced changes in mEPSC frequency in putative CRH neurons were phase-dependent. Results show that excitatory synaptic inputs to BST CRH neurons are temporally enhanced along with behavioral sex differences in pain response, suggesting that pain signals alter the BST CRH neurons excitability in a sex-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-aza Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 950-8510, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan.
| |
Collapse
|
8
|
Sexually Dimorphic Expression of Fear-conditioned Analgesia in Rats and Associated Alterations in the Endocannabinoid System in the Periaqueductal Grey. Neuroscience 2021; 480:117-130. [PMID: 34774710 DOI: 10.1016/j.neuroscience.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system within the periaqueductal grey (PAG) has been implicated in fear-conditioned analgesia (FCA), the profound suppression of pain upon re-exposure to a context previously paired with an aversive stimulus. Since the endocannabinoid and nociceptive systems exhibit sexual dimorphism, the aim of the present study was to assess possible sex differences in the expression of FCA, fear in the presence of nociceptive tone, and associated sex-dependent alterations in the endocannabinoid system within the PAG. Male and female Sprague-Dawley rats received footshock (10 × 1s; 0.4 mA; every 60 s) or no-footshock in a conditioning arena and 23.5 h later received intraplantar injection of formalin (2.5%) under brief isoflourane anaesthetic into the right hind paw. Nociceptive and fear-related behaviours were assessed 30 min later. Levels of endocannabinoids, N-acylethanolamines and neurotransmitters in the PAG were assessed by LC-MS/MS and expression of endocannabinoid system-related proteins by Western immunoblotting. Male, but not female, rats exhibited robust FCA and greater expression of fear-related behaviours than females. Fear-conditioned formalin-treated males, but not females, had higher levels of N-oleoylethanolamine (OEA) and γ-aminobutyric acid (GABA) in the PAG, compared with non-fear-conditioned controls. There was no effect of fear conditioning on the levels of FAAH or CB1 receptor expression (CB1R) in the PAG of male or female formalin-treated rats. Non-fear-conditioned females had higher levels of CB1R and PPARγ expression than non-fear-conditioned male counterparts. In summary, our results provide evidence of sexual dimorphism in the expression of FCA and fear-related behaviours, and associated alterations in components of the endocannabinoid system and GABA within the PAG.
Collapse
|
9
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
10
|
Neuronal basis for pain- and anxiety-like behaviors in the central nucleus of the amygdala. Pain 2021; 163:e463-e475. [PMID: 34174041 DOI: 10.1097/j.pain.0000000000002389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is often accompanied by anxiety and depression disorders. Amygdala nuclei play important roles in emotional responses, fear, depression, anxiety and pain modulation. The exact mechanism of how amygdala neurons are involved in pain and anxiety is not completely understood. The central nucleus of the amygdala (CeA) contains two major subpopulations of GABAergic neurons that express somatostatin (SOM+) or protein kinase Cδ (PKCδ+). In this study, we found about 70% of pERK-positive neurons colocalized with PKCδ+ neurons in the formalin-induced pain model in mice. Optogenetic activation of PKCδ+ neurons was sufficient to induce mechanical hyperalgesia without changing anxiety-like behavior in naïve mice. Conversely, chemogenetic inhibition of PKCδ+ neurons significantly reduced the mechanical hyperalgesia in the pain model. In contrast, optogenetic inhibition of SOM+ neurons induced mechanical hyperalgesia in naïve mice and increased pERK-positive neurons mainly in PKCδ+ neurons. Optogenetic activation of SOM+ neurons slightly reduced the mechanical hyperalgesia in the pain model but did not change the mechanical sensitivity in naïve mice. Instead, it induced anxiety-like behavior. Our results suggest that the PKCδ+ and SOM+ neurons in CeA exert different functions in regulating pain- and anxiety-like behaviors in mice.
Collapse
|
11
|
Repetitive stress in mice causes migraine-like behaviors and calcitonin gene-related peptide-dependent hyperalgesic priming to a migraine trigger. Pain 2021; 161:2539-2550. [PMID: 32541386 DOI: 10.1097/j.pain.0000000000001953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Migraine is one of the most disabling disorders worldwide but the underlying mechanisms are poorly understood. Stress is consistently reported as a common trigger of migraine attacks. Here, we show that repeated stress in mice causes migraine-like behaviors that are responsive to a migraine therapeutic. Adult female and male mice were exposed to 2 hours of restraint stress for 3 consecutive days, after which they demonstrated facial mechanical hypersensitivity and facial grimace responses that were resolved by 14 days after stress. Hypersensitivity or grimace was not observed in either control animals or those stressed for only 1 day. After return to baseline, the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg) elicited mechanical hypersensitivity in stressed but not in control animals, demonstrating the presence of hyperalgesic priming. This suggests the presence of a migraine-like state, because nitric oxide donors are reliable triggers of attacks in migraine patients but not controls. The stress paradigm also caused priming responses to dural pH 7.0 treatment. The presence of this primed state after stress is not permanent because it was no longer present at 35 days after stress. Finally, mice received either the calcitonin gene-related peptide monoclonal antibody ALD405 (10 mg/kg) 24 hours before SNP or a coinjection of sumatriptan (0.6 mg/kg). ALD405, but not sumatriptan, blocked the facial hypersensitivity due to SNP. This stress paradigm in mice and the subsequent primed state caused by stress allow further preclinical investigation of mechanisms contributing to migraine, particularly those caused by common triggers of attacks.
Collapse
|
12
|
Ferreira MA, Lückemeyer DD, Macedo-Júnior SJ, Schran RG, Silva AM, Prudente AS, Tonello R, Ferreira J. Sex-dependent Cav2.3 channel contribution to the secondary hyperalgesia in a mice model of central sensitization. Brain Res 2021; 1764:147438. [PMID: 33753067 DOI: 10.1016/j.brainres.2021.147438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Central sensitization (CS) is characteristic of difficult to treat painful conditions, such as fibromyalgia and neuropathies and have sexual dimorphism involved. The calcium influx in nociceptive neurons is a key trigger for CS and the role of Cav2.1 and Cav2.2 voltage gated calcium channels (VGCC) in this role were evidenced with the use of ω-agatoxin IVA and ω-agatoxin MVIIA blockers, respectively. However, the participation of the α1 subunit of the voltage-gated channel Cav2.3, which conducts R-type currents, in CS is unknown. Furthermore, the role of sexual differences in painful conditions is still poorly understood. Thus, we investigated the role of Cav2.3 in capsaicin-induced secondary hyperalgesia in mice, which serve as a CS model predictive of the efficacy of novel analgesic drugs. Capsaicin injection in C57BL/6 mice caused secondary hyperalgesia from one to five hours after injection, and the effects were similar in male and female mice. In female but not male mice, intrathecal treatment with the Cav2.3 inhibitor SNX-482 partially and briefly reversed secondary hyperalgesia at a dose (300 pmol/site) that did not cause adverse effects. Moreover, Cav2.3 expression in the dorsal root ganglia (DRG) and spinal cord was reduced by intrathecal treatment with an antisense oligonucleotide (ASO) targeting Cav2.3 in female and male mice. However, ASO treatment was able to provide a robust and durable prevention of secondary hyperalgesia caused by capsaicin in female mice, but not in male mice. Thus, our results demonstrate that Cav2.3 inhibition, especially in female mice, has a relevant impact on a model of CS. Our results provide a proof of concept for Cav2.3 as a molecular target. In addition, the result associated to the role of differences in painful conditions linked to sex opens a range of possibilities to be explored and needs more attention. Thus, the relevance of testing Cav2.3 inhibition or knockdown in clinically relevant pain models is needed.
Collapse
Affiliation(s)
- Marcella Amorim Ferreira
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Denardin Lückemeyer
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Sérgio José Macedo-Júnior
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Inovação e Ensaios Pré-Clínicos, Florianópolis, SC, Brazil
| | - Roberta Giusti Schran
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Merian Silva
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Silveira Prudente
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, PR, Brazil
| | - Raquel Tonello
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliano Ferreira
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Kang JWM, Mor D, Keay KA. Nerve injury alters restraint-induced activation of the basolateral amygdala in male rats. Brain Struct Funct 2021; 226:1209-1227. [PMID: 33582845 DOI: 10.1007/s00429-021-02235-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
The amygdala is critical for the production of appropriate responses towards emotional or stressful stimuli. It has a characteristic neuronal activation pattern to acute stressors. Chronic pain and acute stress have each been shown to independently modulate the activity of the amygdala. Few studies have investigated the effect of pain or injury, on amygdala activation to acute stress. This study investigated the effects of a neuropathic injury on the activation response of the amygdala to an acute restraint stress. Chronic constriction injury of the right sciatic nerve (CCI) was used to create neuropathic injury and a single brief 15-min acute restraint was used as an emotional/psychological stressor. All rats received cholera toxin B (CTB) retrograde tracer injections into the medial prefrontal cortex (mPFC) to assess if the amygdala to mPFC pathway was specifically regulated by the combination of neuropathic injury and acute stress. To assess differential patterns of activity in amygdala subregions, cFos expression was used as a marker for "acute", restraint triggered neuronal activation, and FosB/ΔFosB expression was used to reveal prolonged neuronal activation/sensitisation triggered by CCI. Restraint resulted in a characteristic increase in cFos expression in the medial amygdala, which was not altered by CCI. Rats with a CCI showed increased cFos expression in the basolateral amygdala (BLA), in response to an acute restraint stress, but not in neurons projecting to the prefrontal cortex. Further, CCI rats showed an increase in FosB/ΔFosB expression which was exclusive to the BLA. This increase likely reflects sensitisation of the BLA as a consequence of nerve injury which may contribute to heightened sensitivity of BLA neurons to acute emotional/ psychological stressors.
Collapse
Affiliation(s)
- James W M Kang
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia. .,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia.
| | - David Mor
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
14
|
Argueta DA, Aich A, Lei J, Kiven S, Nguyen A, Wang Y, Gu J, Zhao W, Gupta K. β-endorphin at the intersection of pain and cancer progression: Preclinical evidence. Neurosci Lett 2020; 744:135601. [PMID: 33387660 DOI: 10.1016/j.neulet.2020.135601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
We examined the association between endogenous opioid β-endorphin, cancer progression and pain in a transgenic mouse model of breast cancer, with a rat C3(1) simian virus 40 large tumor antigen fusion gene (C3TAg). C3TAg mice develop ductal epithelial atypia at 8 weeks, progression to intra-epithelial neoplasia at 12 weeks, and invasive carcinoma with palpable tumors at 16 weeks. Consistent with invasive carcinoma at 4 months of age, C3TAg mice demonstrate a significant increase in hyperalgesia compared to younger C3TAg or control FVBN mice without tumors. Our data show that the growing tumor contributes to circulating β-endorphin. As an endogenous ligand of mu opioid receptor, β-endorphin has analgesic activity. Paradoxically, we observed an increase in pain in transgenic breast cancer mice with significantly high circulating and tumor-associated β-endorphin. Increased circulating β-endorphin correlates with increasing tumor burden. β-endorphin induced the activation of mitogenic and survival-promoting signaling pathways, MAPK/ERK 1/2, STAT3 and Akt, observed by us in human MDA-MB-231 cells suggesting a role for β-endorphin in breast cancer progression and associated pain.
Collapse
Affiliation(s)
- Donovan A Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Jianxun Lei
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Stacy Kiven
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Aithanh Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ying Wang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Anesthesia, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua Gu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, USA.
| |
Collapse
|
15
|
Bertocchi I, Oberto A, Longo A, Palanza P, Eva C. Conditional inactivation of Npy1r gene in mice induces sex-related differences of metabolic and behavioral functions. Horm Behav 2020; 125:104824. [PMID: 32755609 DOI: 10.1016/j.yhbeh.2020.104824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Sex hormone-driven differences in gene expression have been identified in experimental animals, highlighting brain neuronal populations implicated in dimorphism of metabolic and behavioral functions. Neuropeptide Y-Y1 receptor (NPY-Y1R) system is sexually dimorphic and sensitive to gonadal steroids. In the present study we compared the phenotype of male and female conditional knockout mice (Npy1rrfb mice), carrying the inactivation of Npy1r gene in excitatory neurons of the brain limbic system. Compared to their male control (Npy1r2lox) littermates, male Npy1rrfb mice exhibited hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis that is associated with anxiety and executive dysfunction, reduced body weight growth, after-fasting refeeding, white adipose tissue (WAT) mass and plasma leptin levels. Conversely, female Npy1rrfb mice displayed an anxious-like behavior but no differences in HPA axis activity, executive function and body weight, compared to control females. Moreover, conditional inactivation of Npy1r gene induced an increase of subcutaneous and gonadal WAT weight and plasma leptin levels and a compensatory decrease of Agouti-related protein immunoreactivity in the hypothalamic arcuate (ARC) nucleus in females, compared to their respective control littermates. Interestingly, Npy1r mRNA expression was reduced in the ARC and in the paraventricular hypothalamic nuclei of female, but not male mice. These results demonstrated that female mice are resilient to hormonal and metabolic effects of limbic Npy1r gene inactivation, suggesting the existence of an estrogen-dependent relay necessary to ensure the maintenance of the homeostasis, that can be mediated by hypothalamic Y1R.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43100 Parma, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy.
| |
Collapse
|
16
|
Filaretova L, Podvigina T, Yarushkina N. Physiological and Pharmacological Effects of Glucocorticoids on the Gastrointestinal Tract. Curr Pharm Des 2020; 26:2962-2970. [PMID: 32436822 DOI: 10.2174/1381612826666200521142746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
The review considers the data on the physiological and pharmacological effects of glucocorticoids on
the gastric mucosa and focuses on the gastroprotective role of stress-produced glucocorticoids as well as on the
transformation of physiological gastroprotective effects of glucocorticoids to pathological proulcerogenic consequences.
The results of experimental studies on the re-evaluation of the traditional notion that stress-produced
glucocorticoids are ulcerogenic led us to the opposite conclusion suggested that these hormones play an important
role in the maintenance of the gastric mucosal integrity. Exogenous glucocorticoids may exert both gastroprotective
and proulcerogenic effects. Initially, gastroprotective effect of dexamethasone but not corticosterone, cortisol
or prednisolone can be transformed into proulcerogenic one. The most significant factor for the transformation is
the prolongation of its action rather the dose. Gastrointestinal injury can be accompanied by changes in somatic
pain sensitivity and glucocorticoids contribute to these changes playing a physiological and pathological role.
Collapse
Affiliation(s)
- Ludmila Filaretova
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Tatiana Podvigina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Natalia Yarushkina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
17
|
Cardenas A, Caniglia J, Keljalic D, Dimitrov E. Sex differences in the development of anxiodepressive-like behavior of mice subjected to sciatic nerve cuffing. Pain 2020; 161:1861-1871. [PMID: 32701845 PMCID: PMC7502469 DOI: 10.1097/j.pain.0000000000001875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of nucleus locus ceruleus (LC) to the development of pain-associated affective behavior. Mice of both sexes were subjected to sciatic nerve cuffing, a model of peripheral nerve injury, and monitored for 45 days. Although the thermal and mechanical thresholds were equally decreased in both males and females, only the male mice developed anxiodepressive-like behavior, which was complemented by suppressed hippocampal neurogenesis. Furthermore, the LC activity was lower in males when compared with females subjected to sciatic cuffing. Next, we used a chemogenetic approach to modulate the activity of LC projections to the dentate gyrus of the hippocampus in females without cuffs and in males with sciatic cuffs. Sustained inhibition of the LC projections to the dentate gyrus for 15 days induced anxiodepressive-like behavior and reduced the hippocampal neurogenesis in females. Activation of the LC projections to the dentate gyrus for 15 days prevented the development of anxiodepressive-like behavior and increased the hippocampal neurogenesis in males with cuffs. In sum, we demonstrated that the LC projections to the hippocampus link the sensory to the affective component of neuropathic injury and that the female mice are able to dissociate the nociception from affect by maintaining robust LC activity. The work provides evidence that sex differences in LC response to pain determine the sex differences in the development of pain phenotype.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - John Caniglia
- Illinois College of Medicine, University of Illinois, 1 Illini Drive, Peoria, IL 61605
| | - Denis Keljalic
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Tel: (847) 578-8364
| |
Collapse
|
18
|
A Central Amygdala-Ventrolateral Periaqueductal Gray Matter Pathway for Pain in a Mouse Model of Depression-like Behavior. Anesthesiology 2020; 132:1175-1196. [PMID: 31996550 DOI: 10.1097/aln.0000000000003133] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanisms underlying depression-associated pain remain poorly understood. Using a mouse model of depression, the authors hypothesized that the central amygdala-periaqueductal gray circuitry is involved in pathologic nociception associated with depressive states. METHODS The authors used chronic restraint stress to create a mouse model of nociception with depressive-like behaviors. They then used retrograde tracing strategies to dissect the pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal gray. The authors performed optogenetic and chemogenetic experiments to manipulate the activity of this pathway to explore its roles for nociception. RESULTS The authors found that γ-aminobutyric acid-mediated (GABAergic) neurons from the central amygdala project onto GABAergic neurons of the ventrolateral periaqueductal gray, which, in turn, locally innervate their adjacent glutamatergic neurons. After chronic restraint stress, male mice displayed reliable nociception (control, mean ± SD: 0.34 ± 0.11 g, n = 7 mice; chronic restraint stress, 0.18 ± 0.11 g, n = 9 mice, P = 0.011). Comparable nociception phenotypes were observed in female mice. After chronic restraint stress, increased circuit activity was generated by disinhibition of glutamatergic neurons of the ventrolateral periaqueductal gray by local GABAergic interneurons via receiving enhanced central amygdala GABAergic inputs. Inhibition of this circuit increased nociception in chronic restraint stress mice (median [25th, 75th percentiles]: 0.16 [0.16, 0.16] g to 0.07 [0.04, 0.16] g, n = 7 mice per group, P < 0.001). In contrast, activation of this pathway reduced nociception (mean ± SD: 0.16 ± 0.08 g to 0.34 ± 0.13 g, n = 7 mice per group, P < 0.001). CONCLUSIONS These findings indicate that the central amygdala-ventrolateral periaqueductal gray pathway may mediate some aspects of pain symptoms under depression conditions.
Collapse
|
19
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 402] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
20
|
Mirogabalin prevents repeated restraint stress-induced dysfunction in mice. Behav Brain Res 2020; 383:112506. [PMID: 31982462 DOI: 10.1016/j.bbr.2020.112506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Gabapentinoids, which are the common analgesics, are also thought to be an effective treatment for anxiety disorder, which is one of several psychiatric disorders triggered and exacerbated by stress. The aim of the present study was to investigate whether mirogabalin, a recently launched gabapentinoid, protects multiple brain functions against repeated restraint stress. Adult male ddY mice were restrained for 7 days (repeated restraint stress: 2 h/day) or for 30 min (single restraint stress). Mirogabalin (intraperitoneal, intracerebroventricular or intrahippocampal injection) was administered prior to the restraint stress. Y-maze, elevated-plus maze and c-Fos immunohistochemistry were performed to evaluate learning function, anxiety levels and hippocampal neuronal activities, respectively, after the 7th day of the repeated restraint stress. Intestinal function was evaluated in terms of defecation, which was scored after the 5th day of repeated restraint stress and by the number of fecal pellets excreted after a single session of restraint stress. Repeated restraint stress induced memory dysfunction, anxiety-like behavior, an abnormal defecation score and increased hippocampal c-Fos expression. These changes were prevented by systemic administration of mirogabalin. Abnormal defecation was also induced by single restraint stress, and was inhibited by both systemic and central administration of mirogabalin, suggesting that the effect on the intestinal function was also mediated via the central nervous system. Enhancement of c-Fos expression by repeated stress was decreased by intrahippocampal injection of mirogabalin. Together, these observations suggest that mirogabalin protects multiple brain functions from repeated stress, which may be mediated by inhibition of hippocampal neuron hyperactivation.
Collapse
|
21
|
PGE2/EP4 receptor and TRPV1 channel are involved in repeated restraint stress-induced prolongation of sensitization pain evoked by subsequent PGE2 challenge. Brain Res 2019; 1721:146335. [PMID: 31302096 DOI: 10.1016/j.brainres.2019.146335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
Abstract
Prevalence of prior stressful experience is linked to high incidence of chronic pain. Stress, particularly repeated stress, is known to induce maladaptive neuroplasticity along peripheral and central pain transmission pathways. These maladaptive neuroplastic events facilitate sensitization of nociceptive neurons and transition from acute to chronic pain. Pro-inflammatory and pain mediators are involved in inducing neuroplasticity. Pain mediators such as prostaglandin E2 (PGE2), EP4 receptor and transient receptor potential vanilloid-1 (TRPV1) contribute to the genesis of chronic pain. In this study, we examined the role of PGE2/EP4 signaling and TRPV1 signaling in repeated restraint stress-induced prolongation of sensitization pain, a model for transition from acute to chronic pain, in both in vivo and in vitro models. We found that pre-exposure to single restraint stress induced analgesia that masked sensitization pain evoked by subsequent PGE2 challenge. However, pre-exposure to 3d consecutive restraint stress not only prolonged sensitization pain, but also increased stress hormone corticosterone (CORT) in serum, COX2 levels in paw skin, and EP4 and TRPV1 levels in dorsal root ganglion (DRG) and paw skin. Pre-exposure to CORT for 3d, not 1d, also prolonged sensitization pain evoked by PGE2. Co-injection of glucocorticoid receptor (GR) antagonist RU486, COX2 inhibitor NS-398, EP4 receptor antagonist L161,982 or TRPV1 antagonist capsazepine prevented 3d restraint stress prolonged sensitization pain evoked by PGE2. In DRG cultures, CORT increased EP4 and TRPV1 protein levels through GR activation. These data suggest that PGE2/EP4 signaling and TRPV1 signaling in peripheral pain pathway contribute to repeated stress-predisposed transition from acute to chronic pain.
Collapse
|
22
|
Ipsi- and Contralateral Moxibustion Generate Similar Analgesic Effect on Inflammatory Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1807287. [PMID: 30867668 PMCID: PMC6379872 DOI: 10.1155/2019/1807287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate whether contralateral moxibustion would generate a similar analgesic effect with ipsilateral moxibustion. Contra- and ipsilateral moxibustion were separately applied to Zusanli (ST36) acupoints of inflammatory pain mice. The analgesic effect was evaluated, respectively, by licking/biting time (LBT) of formalin-induced inflammatory pain and thermal withdrawal latency (TWL) of complete Freund's adjuvant- (CFA-) induced inflammatory pain. For formalin-induced pain, compared with formalin group, the total LBT of ipsi- and contralateral moxibustion reduced in both phase I and phase II, but there was no significant difference between ipsi- and contralateral moxibustion. For CFA-induced inflammatory pain, compared with CFA group, TWL of ipsi- and contra-Moxi groups increased immediately after moxibustion intervention; however there was no obvious difference between ipsi- and contralateral moxibustion at any timepoint. It indicated that contralateral moxibustion had a similar analgesic effect with ipsilateral moxibustion in both formalin- and CFA-induced pain. These results suggest that both ipsi- and contralateral moxibustion could be applied for pain relief.
Collapse
|
23
|
Dussor G, Boyd JT, Akopian AN. Pituitary Hormones and Orofacial Pain. Front Integr Neurosci 2018; 12:42. [PMID: 30356882 PMCID: PMC6190856 DOI: 10.3389/fnint.2018.00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Clinical and basic research on regulation of pituitary hormones, extra-pituitary release of these hormones, distribution of their receptors and cell signaling pathways recruited upon receptor binding suggests that pituitary hormones can regulate mechanisms of nociceptive transmission in multiple orofacial pain conditions. Moreover, many pituitary hormones either regulate glands that produce gonadal hormones (GnH) or are regulated by GnH. This implies that pituitary hormones may be involved in sex-dependent mechanisms of orofacial pain and could help explain why certain orofacial pain conditions are more prevalent in women than men. Overall, regulation of nociception by pituitary hormones is a relatively new and emerging area of pain research. The aims of this review article are to: (1) present an overview of clinical conditions leading to orofacial pain that are associated with alterations of serum pituitary hormone levels; (2) discuss proposed mechanisms of how pituitary hormones could regulate nociceptive transmission; and (3) outline how pituitary hormones could regulate nociception in a sex-specific fashion. Pituitary hormones are routinely used for hormonal replacement therapy, while both receptor antagonists and agonists are used to manage certain pathological conditions related to hormonal imbalance. Administration of these hormones may also have a place in the treatment of pain, including orofacial pain. Hence, understanding the involvement of pituitary hormones in orofacial pain, especially sex-dependent aspects of such pain, is essential to both optimize current therapies as well as provide novel and sex-specific pharmacology for a diversity of associated conditions.
Collapse
Affiliation(s)
- Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Jacob T Boyd
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
24
|
Neurobehavioral and biochemical modulation following administration of MgO and ZnO nanoparticles in the presence and absence of acute stress. Life Sci 2018; 203:72-82. [DOI: 10.1016/j.lfs.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/11/2022]
|
25
|
Raoof M, Ashrafganjoui E, Kooshki R, Abbasnejad M, Haghani J, Amanpour S, Zarei MR. Effect of chronic stress on capsaicin-induced dental nociception in a model of pulpitis in rats. Arch Oral Biol 2018; 85:154-159. [DOI: 10.1016/j.archoralbio.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023]
|
26
|
Andreoli M, Marketkar T, Dimitrov E. Contribution of amygdala CRF neurons to chronic pain. Exp Neurol 2017; 298:1-12. [PMID: 28830762 DOI: 10.1016/j.expneurol.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022]
Abstract
We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over-activation of amygdala CRF neurons is very likely an important contributing factor for pain chronification.
Collapse
Affiliation(s)
- Matthew Andreoli
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Tanvi Marketkar
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Eugene Dimitrov
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| |
Collapse
|
27
|
Vázquez López JL, Schild L, Günther T, Schulz S, Neurath H, Becker A. The effects of kratom on restraint-stress-induced analgesia and its mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:178-185. [PMID: 28501425 DOI: 10.1016/j.jep.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mitragyna speciosa and its extracts are called kratom (dried leaves, extract). They contain several alkaloids with an affinity for different opioid receptors. They are used in traditional medicine for the treatment of different diseases, as a substitute by opiate addicts, and to mitigate opioid withdrawal symptoms. Apart from their medical properties, they are used to enhance physical endurance and as a means of overcoming stress. PURPOSE The aim of this study was to determine the mechanisms underlying the effects of kratom on restraint-stress-induced analgesia which occurs during or following exposure to a stressful or fearful stimulus. METHODS To gain further insights into the action of kratom on stress, we conducted experiments using restraint stress as a test system and stress-induced analgesia as a test parameter. Using transgenic mu opioid-receptor (MOR) deficient mice, we studied the involvement of this receptor type. We used nor-binaltorphimine (BNT), an antagonist at kappa opioid receptors (KOR), to study functions of this type of receptor. Membrane potential assay was also employed to measure the intrinsic activity of kratom in comparison to U50,488, a highly selective kappa agonist. RESULTS Treatment with kratom diminished stress-induced analgesia in wildtype and MOR knockout animals. Pretreatment of MOR deficient mice with BNT resulted in similar effects. In comparison to U50,488, kratom exhibited negligible intrinsic activity at KOR alone. CONCLUSIONS The results suggest that the use of kratom as a pharmacological tool to mitigate withdrawal symptoms is related to its action on KOR.
Collapse
Affiliation(s)
- José Luis Vázquez López
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lorenz Schild
- Otto-von-Guericke-University, Faculty of Medicine, Department of Pathobiochemistry, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Thomas Günther
- Friedrich Schiller University Jena, Jena University Hospital, Institute of Pharmacology and Toxicology, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Stefan Schulz
- Friedrich Schiller University Jena, Jena University Hospital, Institute of Pharmacology and Toxicology, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Hartmud Neurath
- Center of Pharmacology and Toxicology, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Becker
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
28
|
Branquinho LS, Santos JA, Cardoso CAL, Mota JDS, Junior UL, Kassuya CAL, Arena AC. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:372-378. [PMID: 28109914 DOI: 10.1016/j.jep.2017.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although some of the species of the genus Piper exhibit interesting biological properties, studies on Piper glabratum Kunth are very limited. AIM OF THE STUDY This study investigated the anti-inflammatory activity and the toxicological profile of the essential oil from P. glabratum leaves (OEPG) in mice. MATERIALS AND METHODS The acute toxicity of OEPG was evaluated by oral administration to female mice as single doses of 500, 1000, 2000 or 5000mg/kg/body weight. In the subacute toxicity test, the females received 500 or 1000mg/kg/body weight of OEPG for 28 days. The anti-inflammatory potential of OEPG was evaluated using four models including pleurisy, edema, mechanical hyperalgesia and cold allodynia models in mouse paws. RESULTS No clinical signs of toxicity were observed in animals after acute treatment, which suggested that the LD50 is greater than 5000mg/kg. The subacute exposure to OEPG produced no significant changes in the hematological or biochemical parameters. Similarly, the histology of the organs and the estrus cycle displayed no marked alterations. OEPG exhibited anti-inflammatory activity as indicated by inhibition of the leukocyte migration (100, 300, 700mg/kg) and the protein extravasation into the pleural exudates (700mg/kg). After intraplantar injection of carrageenan, it was observed that the 700mg/kg dose of OEPG reduced edema formation and decreased the sensitivity to mechanical stimulation and cold. CONCLUSIONS These results demonstrate the anti-inflammatory potential of the essential oil of P. glabratum leaves in the absence of toxicity in female mice.
Collapse
Affiliation(s)
- Lidiane Schultz Branquinho
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul State, Brazil.
| | - Joyce Alencar Santos
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul State, Brazil.
| | | | - Jonas da Silva Mota
- Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul State, Brazil.
| | - Ubirajara Lanza Junior
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul State, Brazil.
| | | | - Arielle Cristina Arena
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul State, Brazil; Department of Morphology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil.
| |
Collapse
|