1
|
Scheen AJ. Weight loss therapy and addiction: Increased risk after bariatric surgery but reduced risk with GLP-1 receptor agonists. DIABETES & METABOLISM 2025; 51:101612. [PMID: 39818408 DOI: 10.1016/j.diabet.2025.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Obesity is an increasing public health problem because of its high prevalence and associated morbidity and mortality. Two weight-loss strategies are currently used, either bariatric surgery or pharmacological therapy with glucagon-like peptide-1 receptor agonists (GLP-1RAs). Preclinical studies in rodents suggested an increased risk of additive disorders after bariatric surgery contrasting with a reduced risk with GLP-1RAs. METHODS An extensive literature search to detect clinical studies that investigated the prevalence of addictive disorders (food addiction, alcohol abuse, smoking, cannabis, cocaine, opioid use) following bariatric surgery or GLP-1RA therapy in obese patients. RESULTS In observational cohort studies, the prevalence of alcohol use disorder was twofold higher after > 2 years following surgery (eleven studies, mainly with gastric bypass) whereas it was reduced roughly by half with GLP-1RA therapy (five studies, mainly with semaglutide). Similar findings were reported with other addictive disorders. An addiction transfer from food addiction to other addictive disorders is hypothesized to explain the increased risk after bariatric surgery. Several mechanisms are proposed to explain the favorable findings reported with GLP-1RAs, i.e. effects on the dopamine reward pathway, central GABA (gamma-aminobutyric acid) release, negative emotional stress associated with food/drug restriction and/or neuronal inflammation. CONCLUSION Available data from observational cohort studies confirm an increased risk of addictive disorders following bariatric surgery, contrasting with a reduced risk with GLP-1RA therapy. Both physicians and patients should be informed of the higher risk post-surgery whereas available promising results with GLP-1RAs should be confirmed in ongoing dedicated randomized controlled trials before any official indication.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|
2
|
Merkel R, Hernandez NS, Weir V, Zhang Y, Caffrey A, Rich MT, Crist RC, Reiner BC, Schmidt HD. An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking. SCIENCE ADVANCES 2025; 11:eadr5051. [PMID: 40009667 PMCID: PMC11864183 DOI: 10.1126/sciadv.adr5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
Recent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate cocaine seeking. However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown. Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius that project to the ventral tegmental area (VTA) decreased cocaine seeking. Single-nuclei transcriptomics and FISH studies revealed that GLP-1Rs are expressed primarily on GABA neurons in the VTA. Using in vivo fiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons. Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.
Collapse
Affiliation(s)
- Riley Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole S. Hernandez
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa Weir
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Vaegelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonia Caffrey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew T. Rich
- Department of Psychiatry, Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin C. Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Qeadan F, McCunn A, Tingey B. The association between glucose-dependent insulinotropic polypeptide and/or glucagon-like peptide-1 receptor agonist prescriptions and substance-related outcomes in patients with opioid and alcohol use disorders: A real-world data analysis. Addiction 2025; 120:236-250. [PMID: 39415416 PMCID: PMC11707322 DOI: 10.1111/add.16679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/29/2024] [Indexed: 10/18/2024]
Abstract
AIMS This study aimed to estimate the strength of association between prescriptions of glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon-like peptide-1 receptor agonists (GLP-1 RA) and the incidence of opioid overdose and alcohol intoxication in patients with opioid use disorder (OUD) and alcohol use disorder (AUD), respectively. This study also aimed to compare the strength of the GIP/GLP-1 RA and substance use-outcome association among patients with comorbid type 2 diabetes and obesity. DESIGN A retrospective cohort study analyzing de-identified electronic health record data from the Oracle Cerner Real-World Data. SETTING About 136 United States of America health systems, covering over 100 million patients, spanning January 2014 to September 2022. PARTICIPANTS The study included 503 747 patients with a history of OUD and 817 309 patients with a history of AUD, aged 18 years or older. MEASUREMENTS The exposure indicated the presence (one or more) or absence of GIP/GLP-1 RA prescriptions. The outcomes were the incidence rates of opioid overdose in the OUD cohort and alcohol intoxication in the AUD cohort. Potential confounders included comorbidities and demographic factors. FINDINGS Patients with GIP/GLP-1 RA prescriptions demonstrated statistically significantly lower rates of opioid overdose [adjusted incidence rate ratio (aIRR) in OUD patients: 0.60; 95% confidence interval (CI) = 0.43-0.83] and alcohol intoxication (aIRR in AUD patients: 0.50; 95% CI = 0.40-0.63) compared to those without such prescriptions. When stratified by comorbid conditions, the rate of incident opioid overdose and alcohol intoxication remained similarly protective for those prescribed GIP/GLP-1 RA among patients with OUD and AUD. CONCLUSIONS Prescriptions of glucose-dependent insulinotropic polypeptide and/or glucagon-like peptide-1 receptor agonists appear to be associated with lower rates of opioid overdose and alcohol intoxication in patients with opioid use disorder and alcohol use disorder. The protective effects are consistent across various subgroups, including patients with comorbid type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Fares Qeadan
- Parkinson School of Health Sciences and Public HealthLoyola University ChicagoMaywoodILUSA
| | - Ashlie McCunn
- Parkinson School of Health Sciences and Public HealthLoyola University ChicagoMaywoodILUSA
| | - Benjamin Tingey
- Parkinson School of Health Sciences and Public HealthLoyola University ChicagoMaywoodILUSA
| |
Collapse
|
4
|
Lengsfeld S, Probst L, Emara Y, Werlen L, Vogt DR, Bathelt C, Baur F, Caviezel B, Vukajlovic T, Fischer M, Winzeler B. Effects of the glucagon-like peptide-1 receptor agonist dulaglutide on sexuality in healthy men: a randomised, double-blind, placebo-controlled crossover study. EBioMedicine 2024; 107:105284. [PMID: 39232425 PMCID: PMC11404067 DOI: 10.1016/j.ebiom.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The reward-regulatory properties of GLP-1 are attracting increasing interest. Animal studies show that GLP-1 receptor agonists not only reduce consumption of addictive substances, but also influence sexual behaviour. We aimed to investigate the effect of dulaglutide versus placebo on sexual desire in humans. METHODS In this randomised, double-blind, placebo-controlled crossover trial, healthy eugonadal men of normal weight, aged 18-50 years with active and satisfactory sex lifes were (1:1) randomly allocated to dulaglutide or placebo for four weeks. We assessed sexual desire (Massachusetts General Hospital-Sexual Functioning Questionnaire [MGH-SFQ]), hormones of the hypothalamic-pituitary-gonadal axis (total testosterone, follicle-stimulating hormone [FSH], luteinizing hormone [LH]) and sperm parameters. Changes in these parameters were compared under dulaglutide versus placebo using paired t-tests. FINDINGS 24 out of 26 randomised participants completed the study (13 participants randomised to dulaglutide first and 13 to placebo first). No change in the MGH-SFQ was observed after four weeks of dulaglutide versus placebo (estimated difference 0.58 [95% CI -0.83 to 2.00], p-value = 0.402). Hormones of the hypothalamic-pituitary-gonadal axis (estimated differences: total testosterone (nmol/l) 0.9 [95% CI -1.5 to 3.3], FSH (IU/l) -0.2 [95% CI -0.3 to 0.0] and LH (IU/l) -0.8 [95% CI -1.5 to 0.0]) as well as sperm parameters all remained in the normal range without significant differences between the treatments. No severe adverse events occurred. INTERPRETATION In this study of healthy men, we found no evidence of negative impacts of a four-week treatment with the widely used GLP-1 receptor agonist dulaglutide on sexual desire, hypothalamic-pituitary-gonadal axis hormones or sperm parameters. FUNDING Swiss National Science Foundation (PZ00P3_193206), Gottfried and Julia Bangerter-Rhyner Foundation, Goldschmidt-Jacobson Foundation, Swiss Academy of Medical Sciences.
Collapse
Affiliation(s)
- Sophia Lengsfeld
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Leila Probst
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Yara Emara
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Laura Werlen
- Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Deborah R Vogt
- Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Cemile Bathelt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Fabienne Baur
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Brida Caviezel
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Tanja Vukajlovic
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland
| | - Manuel Fischer
- Reproductive Medicine and Gynecological Endocrinology (RME), Women's Health Clinic, University Hospital Basel, Vogesenstrasse 134, 4031 Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstrasse 8/12, 4031 Basel, Switzerland.
| |
Collapse
|
5
|
Herman RJ, Schmidt HD. Targeting GLP-1 receptors to reduce nicotine use disorder: Preclinical and clinical evidence. Physiol Behav 2024; 281:114565. [PMID: 38663460 PMCID: PMC11128349 DOI: 10.1016/j.physbeh.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Nicotine use disorder (NUD) remains a leading cause of preventable death in the U.S. Unfortunately, current FDA-approved pharmacotherapies for smoking cessation have limited efficacy and are associated with high rates of relapse. One major barrier to long-term smoking abstinence is body weight gain during withdrawal. Nicotine withdrawal-induced body weight gain can also lead to development of chronic disease states like obesity and type II diabetes mellitus. Therefore, it is critical to identify novel pharmacotherapies for NUD that decrease relapse and nicotine withdrawal symptoms including body weight gain. Recent studies demonstrate that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary nicotine taking and seeking and prevent withdrawal-induced hyperphagia and body weight gain. Emerging evidence also suggests that GLP-1R agonists improve cognitive deficits, as well as depressive- and anxiety-like behaviors, which contribute to smoking relapse during withdrawal. While further studies are necessary to fully characterize the effects of GLP-1R agonists on NUD and understand the mechanisms by which GLP-1R agonists decrease nicotine withdrawal-mediated behaviors, the current literature supports GLP-1R-based approaches to treating NUD.
Collapse
Affiliation(s)
- Rae J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Merkel R, Hernandez N, Weir V, Zhang Y, Rich MT, Crist RC, Reiner BC, Schmidt HD. An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599574. [PMID: 38979354 PMCID: PMC11230186 DOI: 10.1101/2024.06.20.599574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate the reinstatement of cocaine-seeking behavior, an animal model of relapse. However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown. Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius (NTS) that project to the ventral tegmental area (VTA) decreased cocaine reinstatement. Single nuclei transcriptomics and FISH studies revealed GLP-1Rs are expressed primarily on GABA neurons in the VTA. Using in vivo fiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons. Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a novel functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.
Collapse
|
7
|
Montoya ID, Volkow ND. IUPHAR Review: New strategies for medications to treat substance use disorders. Pharmacol Res 2024; 200:107078. [PMID: 38246477 PMCID: PMC10922847 DOI: 10.1016/j.phrs.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Substance use disorders (SUDs) and drug overdose are a public health emergency and safe and effective treatments are urgently needed. Developing new medications to treat them is expensive, time-consuming, and the probability of a compound progressing to clinical trials and obtaining FDA-approval is low. The small number of FDA-approved medications for SUDs reflects the low interest of pharmaceutical companies to invest in this area due to market forces, characteristics of the population (e.g., stigma, and socio-economic and legal disadvantages), and the high bar regulatory agencies set for new medication approval. In consequence, most research on medications is funded by government agencies, such as the National Institute on Drug Abuse (NIDA). Multiple scientific opportunities are emerging that can accelerate the discovery and development of new medications for SUDs. These include fast and efficient tools to screen new molecules, discover new medication targets, use of big data to explore large clinical data sets and artificial intelligence (AI) applications to make predictions, and precision medicine tools to individualize and optimize treatments. This review provides a general description of these new research strategies for the development of medications to treat SUDs with emphasis on the gaps and scientific opportunities. It includes a brief overview of the rising public health toll of SUDs; the justification, challenges, and opportunities to develop new medications; and a discussion of medications and treatment endpoints that are being evaluated with support from NIDA.
Collapse
Affiliation(s)
- Ivan D Montoya
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, 3 White Flint North, North Bethesda, MD 20852, United States.
| | - Nora D Volkow
- National Institute on Drug Abuse, 3 White Flint North, North Bethesda, MD 20852, United States
| |
Collapse
|
8
|
Zhang Y, Ben Nathan J, Moreno A, Merkel R, Kahng MW, Hayes MR, Reiner BC, Crist RC, Schmidt HD. Calcitonin receptor signaling in nucleus accumbens D1R- and D2R-expressing medium spiny neurons bidirectionally alters opioid taking in male rats. Neuropsychopharmacology 2023; 48:1878-1888. [PMID: 37355732 PMCID: PMC10584857 DOI: 10.1038/s41386-023-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer Ben Nathan
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda Moreno
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riley Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle W Kahng
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Arillotta D, Floresta G, Guirguis A, Corkery JM, Catalani V, Martinotti G, Sensi SL, Schifano F. GLP-1 Receptor Agonists and Related Mental Health Issues; Insights from a Range of Social Media Platforms Using a Mixed-Methods Approach. Brain Sci 2023; 13:1503. [PMID: 38002464 PMCID: PMC10669484 DOI: 10.3390/brainsci13111503] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of glucagon-like peptide-1 receptor agonists (GLP-1 RAs; semaglutide and others) now promises effective, non-invasive treatment of obesity for individuals with and without diabetes. Social media platforms' users started promoting semaglutide/Ozempic as a weight-loss treatment, and the associated increase in demand has contributed to an ongoing worldwide shortage of the drug associated with levels of non-prescribed semaglutide intake. Furthermore, recent reports emphasized some GLP-1 RA-associated risks of triggering depression and suicidal thoughts. Consistent with the above, we aimed to assess the possible impact of GLP-1 RAs on mental health as being perceived and discussed in popular open platforms with the help of a mixed-methods approach. Reddit posts yielded 12,136 comments, YouTube videos 14,515, and TikTok videos 17,059, respectively. Out of these posts/entries, most represented matches related to sleep-related issues, including insomnia (n = 620 matches); anxiety (n = 353); depression (n = 204); and mental health issues in general (n = 165). After the initiation of GLP-1 RAs, losing weight was associated with either a marked improvement or, in some cases, a deterioration, in mood; increase/decrease in anxiety/insomnia; and better control of a range of addictive behaviors. The challenges of accessing these medications were a hot topic as well. To the best of our knowledge, this is the first study documenting if and how GLP-1 RAs are perceived as affecting mood, mental health, and behaviors. Establishing a clear cause-and-effect link between metabolic diseases, depression and medications is difficult because of their possible reciprocal relationship, shared underlying mechanisms and individual differences. Further research is needed to better understand the safety profile of these molecules and their putative impact on behavioral and non-behavioral addictions.
Collapse
Affiliation(s)
- Davide Arillotta
- School of Clinical Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy;
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
| | - Giuseppe Floresta
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy
| | - Amira Guirguis
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
- Pharmacy, Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - John Martin Corkery
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
| | - Valeria Catalani
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
| | - Giovanni Martinotti
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Stefano L. Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), Institute of Advanced Biomedical Technology (ITAB), University of Chieti-Pescara, Via dei Vestini 21, 66100 Chieti, Italy
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (G.F.); (A.G.); (J.M.C.); (V.C.); (G.M.)
| |
Collapse
|
10
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Fang J, Miller P, Grigson PS. Sleep is increased by liraglutide, a glucagon-like peptide-1 receptor agonist, in rats. Brain Res Bull 2023; 192:142-155. [PMID: 36410565 DOI: 10.1016/j.brainresbull.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Sleep disturbances are prominent in drug use disorders, including those involving opioids in both humans and animals. Recent studies have shown that administration of liraglutide, a glucagon-like peptide-1 agonist, significantly reduces heroin taking and seeking in rats. In an effort to further understand the action of this substance on physiological functions and to evaluate safety issues for its potential clinical use, the aim of the present study was to determine whether the dose of liraglutide found effective in reducing responding for an opioid also could improve sleep in drug-naïve rats. METHODS Using a within-subjects design, adult male rats chronically implanted with EEG and EMG electrodes received subcutaneous injection of saline or 0.06, 0.10, 0.30 or 0.60 mg/kg liraglutide. The 0.10 and 0.30 mg/kg doses are known to be most effective in reducing responding for heroin in rats at light or dark onset during a 12:12 h light-dark cycle (0.10 mg/kg for taking and seeking, 0.30 mg/kg for seeking). EEG and EMG were recorded across the 24 h period following each injection. RESULTS After both dark and light onset injections, liraglutide dose-dependently decreased wakefulness and increased non-rapid eye movement (NREM) sleep except at the lowest dose. The bout length of wakefulness and NREM sleep were decreased and increased, respectively. Whether administered at light or dark onset, the above alterations occurred primarily during the dark period (i.e., during the active period). The animals' body weight was decreased after liraglutide treatments as expected since it is clinically used for the treatment of obesity. CONCLUSION These data indicate that liraglutide, at doses known to reduce responding for heroin and fentanyl, also increases NREM sleep, suggesting that the increase in sleep may contribute to the protective effects of liraglutide and may promote overall general health.
Collapse
Affiliation(s)
- Jidong Fang
- The Pennsylvania State University College of Medicine, Department of Psychiatry, USA.
| | - Patti Miller
- The Pennsylvania State University College of Medicine, Department of Psychiatry, USA.
| | | |
Collapse
|
12
|
Zhu C, Li H, Kong X, Wang Y, Sun T, Wang F. Possible Mechanisms Underlying the Effects of Glucagon-Like Peptide-1 Receptor Agonist on Cocaine Use Disorder. Front Pharmacol 2022; 13:819470. [PMID: 35300299 PMCID: PMC8921771 DOI: 10.3389/fphar.2022.819470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cocaine use disorder (CUD) is a major public health challenge with a high relapse rate and lack of effective pharmacotherapies; therefore, there is a substantial need to identify novel medications to treat this epidemic. Since the advent of glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) agonists (GLP-1RAs), their potential has been extensively explored and expanded. In this review, we first summarized the biological effects of GLP-1, GLP-1Rs, and GLP-1RAs. Subsequently, the recent literature examining the behavioral effects and the possible pharmacological mechanisms of GLP-1RAs on CUD was reviewed. Increasing preclinical evidence suggests that GLP-1RAs are promising in regulating dopamine release, dopamine transporter (DAT) surface expression and function, mesolimbic reward system and GABAergic neurons, and maladaptive behaviors in animal models of self-administration and conditioned place preference. In addition, the emerging role of GLP-1RAs in inhibiting inflammatory cytokines was reported. These findings indicate that GLP-1RAs perform essential functions in the modulation of cocaine-seeking and cocaine-taking behaviors likely through multifaceted mechanisms. Although the current preclinical evidence provides convincing evidence to support GLP-1RA as a promising pharmacotherapy for CUD, other questions concerning clinical availability, impact and specific mechanisms remain to be addressed in further studies.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zhu C, Hong T, Li H, Jiang S, Guo B, Wang L, Ding J, Gao C, Sun Y, Sun T, Wang F, Wang Y, Wan D. Glucagon-Like Peptide-1 Agonist Exendin-4 Facilitates the Extinction of Cocaine-Induced Condition Place Preference. Front Syst Neurosci 2022; 15:711750. [PMID: 35024034 PMCID: PMC8744468 DOI: 10.3389/fnsys.2021.711750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating studies suggest that the glucagon-like peptide-1 receptor agonist exendin-4 (Ex4) and toll-like receptor 4 (TLR4) play a pivotal role in the maladaptive behavior of cocaine. However, few studies have assessed whether Ex4 can facilitate the extinction of drug-associated behavior and attenuate the reinstatement of cocaine-induced condition place preference (CPP) in mice. The main objective of the present study was to evaluate Ex4's ability to regulate the extinction and reinstatement of cocaine-induced CPP. C57BL/6 mice were conditioned to either cocaine (20 mg/kg) or an equivalent volume of saline to establish a cocaine-mediated CPP paradigm. To investigate the potential effects of Ex4 on extinction, animals received an intraperitoneal injection of Ex4 either immediately or 6 h after each extinction or only on the test day. The persistence of extinction was measured using the reinstatement paradigm evoked by 10 mg/kg of cocaine. To explore the possible impacts of Ex4 and neuroinflammation on cocaine, the expression levels of TLR4 within the hippocampus was detected using western blotting. As a result, we found that systemic administration of Ex4 immediately after each extinction training, instead of 6 h after each extinction and on the day of extinction test, was capable of facilitating extinction in the confined or non-confined CPP extinction paradigms and blocking the cocaine-primed reinstatement of cocaine-induced CPP. Additionally, we also observed that Ex4 was competent to alleviate TLR4 signaling that has been up-regulated by cocaine. Altogether, our findings indicated that the combination of Ex4 with daily extinction training was sufficient to facilitate extinction of the conditioned behavior, attenuate reinstatement of cocaine-induced CPP and inhibit TLR4 signaling. Thus, Ex4 deserves further investigation as a potential intervention for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailiang Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yu Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Laurindo LF, Barbalho SM, Guiguer EL, da Silva Soares de Souza M, de Souza GA, Fidalgo TM, Araújo AC, de Souza Gonzaga HF, de Bortoli Teixeira D, de Oliveira Silva Ullmann T, Sloan KP, Sloan LA. GLP-1a: Going beyond Traditional Use. Int J Mol Sci 2022; 23:739. [PMID: 35054924 PMCID: PMC8775408 DOI: 10.3390/ijms23020739] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective of this study was to perform a systematic review on the use of GLP-1 other than in treating diabetes. PubMed, Cochrane, and Embase were searched, and the PRISMA guidelines were followed. Nineteen clinical studies were selected. The results showed that GLP-1 agonists can benefit defined off-medication motor scores in Parkinson's Disease and improve emotional well-being. In Alzheimer's disease, GLP-1 analogs can improve the brain's glucose metabolism by improving glucose transport across the blood-brain barrier. In depression, the analogs can improve quality of life and depression scales. GLP-1 analogs can also have a role in treating chemical dependency, inhibiting dopaminergic release in the brain's reward centers, decreasing withdrawal effects and relapses. These medications can also improve lipotoxicity by reducing visceral adiposity and decreasing liver fat deposition, reducing insulin resistance and the development of non-alcoholic fatty liver diseases. The adverse effects are primarily gastrointestinal. Therefore, GLP-1 analogs can benefit other conditions besides traditional diabetes and obesity uses.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Gabriela Achete de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Thiago Marques Fidalgo
- Department of Psychiatry, Federal University of São Paulo, R. Sena Madureira 04021-001, SP, Brazil;
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Heron F. de Souza Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia, Marília 17525-902, SP, Brazil;
| | - Thais de Oliveira Silva Ullmann
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Katia Portero Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Zhu C, Wang L, Ding J, Li H, Wan D, Sun Y, Guo B, He Z, Ren X, Jiang S, Gao C, Guo H, Sun T, Wang F. Effects of Glucagon-Like Peptide-1 Receptor Agonist Exendin-4 on the Reinstatement of Cocaine-Mediated Conditioned Place Preference in Mice. Front Behav Neurosci 2022; 15:769664. [PMID: 35069139 PMCID: PMC8766416 DOI: 10.3389/fnbeh.2021.769664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
A high percentage of relapse to compulsive cocaine-taking and cocaine-seeking behaviors following abstinence constitutes a major obstacle to the clinical treatment of cocaine addiction. Thus, there is a substantial need to develop effective pharmacotherapies for the prevention of cocaine relapse. The reinstatement paradigm is known as the most commonly used animal model to study relapse in abstinent human addicts. The primary aim of this study is to investigate the potential effects of systemic administration of glucagon-like peptide-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) on the cocaine- and stress-triggered reinstatement of cocaine-induced conditioned place preference (CPP) in male C57BL/6J mice. The biased CPP paradigm was induced by alternating administration of saline and cocaine (20 mg/kg), followed by extinction training and then reinstatement by either a cocaine prime (10 mg/kg) or exposure to swimming on the reinstatement test day. To examine the effects of Ex4 on the reinstatement, Ex4 was systemically administered 1 h after the daily extinction session. Additionally, we also explored the associated molecular basis of the behavioral effects of Ex4. The expression of nuclear factor κβ (NF-κβ) in the nucleus accumbens (NAc) was detected using Western blotting. As a result, all animals that were treated with cocaine during the conditioning period successfully acquired CPP, and their CPP response was extinguished after 8 extinction sessions. Furthermore, the animals that were exposed to cocaine or swimming on the reinstatement day showed a significant reinstatement of CPP. Interestingly, systemic pretreatment with Ex4 was sufficient to attenuate cocaine- and stress-primed reinstatement of cocaine-induced CPP. Additionally, the expression of NF-κβ, which was upregulated by cocaine, was normalized by Ex4 in the cocaine-experienced mice. Altogether, our study reveals the novel effect of Ex4 on the reinstatement of cocaine-induced CPP and suggests that GLP-1R agonists appear to be highly promising drugs in the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xiaofan Ren
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Hua Guo,
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Tao Sun,
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Feng Wang,
| |
Collapse
|
17
|
Chen XY, Chen L, Yang W, Xie AM. GLP-1 Suppresses Feeding Behaviors and Modulates Neuronal Electrophysiological Properties in Multiple Brain Regions. Front Mol Neurosci 2022; 14:793004. [PMID: 34975402 PMCID: PMC8718614 DOI: 10.3389/fnmol.2021.793004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and reduces body weight. The electrophysiological properties of neurons in the mammalian central nervous system reflect the neuronal excitability and the functional organization of the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding behaviors and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses food intake and induces postsynaptic depolarization of membrane potential and/or presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and telencephalon. This review may provide a background to guide future research about the cellular mechanisms of GLP-1-induced feeding inhibition.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wu Yang
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|
19
|
Colvin KJ, Killen HS, Kanter MJ, Halperin MC, Engel L, Dickinson MB, Fimmel AI, Holland JG, Currie PJ. Differential effects of intra-ventral tegmental area ghrelin and glucagon-like peptide-1 on the stimulatory action of D-amphetamine and cocaine-induced ethanol intake in male Sprague Dawley rats. Behav Brain Res 2021; 421:113726. [PMID: 34954300 DOI: 10.1016/j.bbr.2021.113726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
In order to further elucidate the role of mesolimbic peptides in the expression of ethanol reward, the present study investigated the effects of ghrelin and glucagon-like peptide-1 (GLP-1) on ethanol intake, in addition to ethanol intake stimulated by systemic d-amphetamine or cocaine treatment. While a number of studies suggest that ghrelin plays an important role in mesolimbic reward, emerging data now indicate that GLP-1 receptor mechanisms inhibit reward signaling, possibly by directly or indirectly inhibiting ghrelinergic activity within the mesolimbic system. In the present study all rats were initially habituated to a 6% ethanol solution. We then demonstrated that intraperitoneal injections of d-amphetamine and cocaine increased ethanol intake compared to the vehicle condition. In subsequent testing we examined the effects of ventral tegmental area (VTA) ghrelin or vehicle paired with a fixed dose of d-amphetamine or vehicle. In separate rats we then investigated the impact of the GLP-1 agonist exendin-4 (Ex-4), injected into the VTA, on ethanol intake alone, or when Ex-4 was co-administered with d-amphetamine or cocaine. Our results indicated that VTA ghrelin significantly increased ethanol intake, and most importantly, potentiated the effect of d-amphetamine and cocaine on ethanol consumption. Conversely, VTA Ex-4 inhibited ethanol intake and antagonized the stimulatory effect of d-amphetamine and cocaine on ethanol consumption. In a final study we further demonstrated that VTA Ex-4 treatment significantly inhibited the combined stimulatory effects of ghrelin paired with d-amphetamine or ghrelin paired with cocaine. Overall our findings are consistent with a critical role for both ghrelin and GLP-1 receptor mechanisms in mesolimbic ethanol reward circuitry. Moreover, our results further suggest that ghrelin and GLP-1 modulate the stimulatory effect of psychostimulants on ethanol intake.
Collapse
Affiliation(s)
- Kayla J Colvin
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Henry S Killen
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Maxwell J Kanter
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Maximilian C Halperin
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Liv Engel
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Matthew B Dickinson
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Anna I Fimmel
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - James G Holland
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA.
| |
Collapse
|
20
|
A novel approach to treating opioid use disorders: Dual agonists of glucagon-like peptide-1 receptors and neuropeptide Y 2 receptors. Neurosci Biobehav Rev 2021; 131:1169-1179. [PMID: 34715149 DOI: 10.1016/j.neubiorev.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022]
Abstract
The widespread misuse of opioids and opioid use disorder (OUD) together constitute a major public health crisis in the United States. The greatest challenge for successfully treating OUD is preventing relapse. Unfortunately, there are few FDA-approved medications to treat OUD and, while effective, these pharmacotherapies are limited by high relapse rates. Thus, there is a critical need for conceptually new approaches to developing novel medications to treat OUD. Here, we review an emerging preclinical literature that suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists could be re-purposed for treating OUD. Potential limitations of this approach are also discussed along with an alternative strategy that involves simultaneously targeting and activating GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) in the brain using a novel monomeric dual agonist peptide. Recent studies indicate that this combinatorial pharmacotherapy approach attenuates voluntary fentanyl taking and seeking in rats without producing adverse effects associated with GLP-1R agonist monotherapy alone. While future studies are required to comprehensively determine the behavioral effects of GLP-1R agonists and dual agonists of GLP-1Rs and Y2Rs in rodent models of OUD, these provocative preclinical findings highlight a potential new GLP-1R-based approach to preventing relapse in humans with OUD.
Collapse
|
21
|
Klausen MK, Thomsen M, Wortwein G, Fink-Jensen A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br J Pharmacol 2021; 179:625-641. [PMID: 34532853 DOI: 10.1111/bph.15677] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Drug-, alcohol- and tobacco use disorders are a global burden affecting millions of people. Despite decades of research, treatment options are sparse or missing, and relapse rates are high. Glucagon-like peptide-1 (GLP-1) is released in the small intestines, promotes blood glucose homeostasis, slows gastric emptying, and reduces appetite. GLP-1 receptor agonists approved for treating type 2 diabetes mellitus and obesity, have received attention as a potential anti-addiction treatment. Studies in rodents and non-human primates have demonstrated a reduction in intake of alcohol and drugs of abuse, and clinical trials have been initiated to investigate whether the preclinical findings can be translated to patients. This review will give an overview of current findings and discuss the possible mechanisms of action. We suggest that effects of GLP-1 in alcohol- and substance use disorder is mediated centrally, at least partly through dopamine signalling, but precise mechanisms are still to be uncovered.
Collapse
Affiliation(s)
- Mette Kruse Klausen
- Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| | - Gitta Wortwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Guerrero-Hreins E, Goldstone AP, Brown RM, Sumithran P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: a review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110303. [PMID: 33741445 DOI: 10.1016/j.pnpbp.2021.110303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Stress and low mood are powerful triggers for compulsive overeating, a maladaptive form of eating leading to negative physical and mental health consequences. Stress-vulnerable individuals, such as people with obesity, are particularly prone to overconsumption of high energy foods and may use it as a coping mechanism for general life stressors. Recent advances in the treatment of obesity and related co-morbidities have focused on the therapeutic potential of anorexigenic gut hormones, such as glucagon-like peptide 1 (GLP-1), which acts both peripherally and centrally to reduce energy intake. Besides its appetite suppressing effect, GLP-1 acts on areas of the brain involved in stress response and emotion regulation. However, the role of GLP-1 in emotion and stress regulation, and whether it is a viable treatment for stress-induced compulsive overeating, has yet to be established. A thorough review of the pre-clinical literature measuring markers of stress, anxiety and mood after GLP-1 exposure points to potential divergent effects based on temporality. Specifically, acute GLP-1 injection consistently stimulates the physiological stress response in rodents whereas long-term exposure indicates anxiolytic and anti-depressive benefits. However, the limited clinical evidence is not as clear cut. While prolonged GLP-1 analogue treatment in people with type 2 diabetes improved measures of mood and general psychological wellbeing, the mechanisms underlying this may be confounded by associated weight loss and improved blood glucose control. There is a paucity of longitudinal clinical literature on mechanistic pathways by which stress influences eating behavior and how centrally-acting gut hormones such as GLP-1, can modify these. (250).
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Victoria, Australia; Dept. of Endocrinology, Austin Health, Victoria, Australia.
| |
Collapse
|
23
|
Hernandez NS, Weir VR, Ragnini K, Merkel R, Zhang Y, Mace K, Rich MT, Pierce RC, Schmidt HD. GLP-1 receptor signaling in the laterodorsal tegmental nucleus attenuates cocaine seeking by activating GABAergic circuits that project to the VTA. Mol Psychiatry 2021; 26:4394-4408. [PMID: 33257815 PMCID: PMC8164646 DOI: 10.1038/s41380-020-00957-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022]
Abstract
An emerging preclinical literature suggests that targeting central glucagon-like peptide-1 receptors (GLP-1Rs) may represent a novel approach to treating cocaine use disorder. However, the exact neural circuits and cell types that mediate the suppressive effects of GLP-1R agonists on cocaine-seeking behavior are largely unknown. The laterodorsal tegmental nucleus (LDTg) expresses GLP-1Rs and functions as a neuroanatomical hub connecting the nucleus tractus solitarius (NTS), the primary source of central GLP-1, with midbrain and forebrain nuclei known to regulate cocaine-seeking behavior. The goal of this study was to characterize the role of LDTg GLP-1R-expressing neurons and their projections to the ventral tegmental area (VTA) in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we showed that administration of the GLP-1R agonist exendin-4 (Ex-4) directly into the LDTg significantly attenuated cocaine seeking at a dose that did not affect sucrose seeking, ad libitum food intake, or body weight. In addition, our studies revealed that selectively activating NTS-to-LDTg circuits attenuated cocaine seeking via a GLP-1R-dependent mechanism. We also demonstrated, for the first time, that GLP-1Rs are expressed primarily on GABAergic neurons in the LDTg and that the efficacy of Ex-4 to reduce cocaine seeking depends, in part, on activation of LDTg-to-VTA GABAergic projections. Taken together, these studies identify a central mechanism by which Ex-4 attenuates cocaine seeking and highlight GABAergic GLP-1R-expressing circuits in the midbrain as important anti-craving pathways in regulating cocaine craving-induced relapse.
Collapse
Affiliation(s)
- Nicole S. Hernandez
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vanessa R. Weir
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Kael Ragnini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Riley Merkel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Yafang Zhang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyla Mace
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Phildelphia, PA 19104
| | - Matthew T. Rich
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - R. Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Heath D. Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
24
|
Zhu C, Tao H, Rong S, Xiao L, Li X, Jiang S, Guo B, Wang L, Ding J, Gao C, Chang H, Sun T, Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Front Pharmacol 2021; 12:694476. [PMID: 34349653 PMCID: PMC8327264 DOI: 10.3389/fphar.2021.694476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Exendin-4 (Ex4), a long-lasting glucagon-like peptide-1 analog, was reported to exert favourable actions on inhibiting cocaine-associated rewarding and reinforcing effects of drug in animal models of addiction. However, the therapeutic potential of different dose of GLP-1 receptor agonist Ex4 in different behavioral paradigms and the underlying pharmacological mechanisms of action are incompletely understood. Herein, we firstly investigated the effects of Ex4 on cocaine-induced condition place preference (CPP) as well as extinction and reinstatement in male C57BL/6J mice. Additionally, we sought to elucidate the underlying pharmacological mechanism of these actions of Ex4. The paradigm of cocaine-induced CPP was established using 20 mg/kg cocaine or saline alternately during conditioning, while the reinstatement paradigm was modeled using 10 mg/kg cocaine on the reinstatement day. Different dose of Ex4 was administrated intraperitoneally either during conditioning or during extinction state or only on the test day. To elucidate the molecular mechanism underlying the potential effects of Ex4 on maladaptive behaviors of cocaine, the TLR4-related inflammation within the hippocampus was observed by immunofluorescence staining, and the expression levels of toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were detected by Western blotting. As a consequence, systemic administration of different dose of Ex4 was sufficient to inhibit the acquisition and expression of cocaine-induced CPP, facilitate the extinction of cocaine-associated reward and attenuate reinstatement of cocaine-induced behavior. Furthermore, Ex4 treatment diminished expression levels of TLR4, TNF-α, and IL-1β, which were up-regulated by cocaine exposure. Altogether, our results indicated that Ex4 effectively ameliorated cocaine-induced behaviors likely through neurobiological mechanisms partly attributable to the inhibition of TLR4, TNF-α and IL-1β in mice. Consequently, our findings improved our understanding of the efficacy of Ex4 for the amelioration of cocaine-induced behavior and suggested that Ex4 may be applied as a drug candidate for cocaine addiction.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hong Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shikuo Rong
- Department of General Surgery, Chengdu Second Hospital, Chendu, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Zhang Y, Rahematpura S, Ragnini KH, Moreno A, Stecyk KS, Kahng MW, Milliken BT, Hayes MR, Doyle RP, Schmidt HD. A novel dual agonist of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors attenuates fentanyl taking and seeking in male rats. Neuropharmacology 2021; 192:108599. [PMID: 33965397 PMCID: PMC8217212 DOI: 10.1016/j.neuropharm.2021.108599] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 05/01/2021] [Indexed: 01/01/2023]
Abstract
There has been a dramatic increase in illicit fentanyl use in the United States over the last decade. In 2018, more than 31,000 overdose deaths involved fentanyl or fentanyl analogs, highlighting an urgent need to identify effective treatments for fentanyl use disorder. An emerging literature shows that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate the reinforcing efficacy of drugs of abuse. However, the effects of GLP-1R agonists on fentanyl-mediated behaviors are unknown. The first goal of this study was to determine if the GLP-1R agonist exendin-4 reduced fentanyl self-administration and the reinstatement of fentanyl-seeking behavior, an animal model of relapse, in rats. We found that systemic exendin-4 attenuated fentanyl taking and seeking at doses that also produced malaise-like effects in rats. To overcome these adverse effects and enhance the clinical potential of GLP-1R agonists, we recently developed a novel dual agonist of GLP-1Rs and neuropeptide Y2 receptors (Y2Rs), GEP44, that does not produce nausea-like behavior in drug-naïve rats or emesis in drug-naïve shrews. The second goal of this study was to determine if GEP44 reduced fentanyl self-administration and reinstatement with fewer adverse effects compared to exendin-4 alone. In contrast to exendin-4, GEP44 attenuated opioid taking and seeking at a dose that did not suppress food intake or produce adverse malaise-like effects in fentanyl-experienced rats. Taken together, these findings indicate a novel role for GLP-1Rs and Y2Rs in fentanyl reinforcement and highlight a potential new therapeutic approach to treating opioid use disorders.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Suditi Rahematpura
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kael H Ragnini
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda Moreno
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kamryn S Stecyk
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle W Kahng
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, NY, 13244, USA; Department of Medicine, State University of New York, Upstate Medicinal University, Syracuse, NY, 13210, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Effect of Exenatide Use on Cognitive and Affective Functioning in Obese Patients With Type 2 Diabetes Mellitus: Exenatide Use Mediates Depressive Scores Through Increased Perceived Stress Levels. J Clin Psychopharmacol 2021; 41:428-435. [PMID: 34016830 DOI: 10.1097/jcp.0000000000001409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE/BACKGROUND Glucagon-like peptide-1 (GLP-1) is a molecule used to treat type 2 diabetes mellitus (T2DM). Given their widespread expression in the nervous system, GLP-1 receptors also play a role in regulating mood and cognitive function. Here, we aimed to compare obese patients with T2DM, with or without exenatide (a GLP-1R agonist) use on cognitive and affective functioning. METHODS/PROCEDURES A total of 43 patients with T2DM (23 on exenatide and 20 without exenatide) were evaluated with the Snaith-Hamilton Pleasure Scale, Cognitive Failures Questionnaire, Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7, Childhood Trauma Questionnaire, Perceived Stress Scale (PSS), and Chronic Stress Scale, in addition to laboratory-based measures of reward learning (the probabilistic reward task) and working memory (Letter-N-Back task). FINDINGS/RESULTS Patients on exenatide had higher body mass index (BMI) (37.88 ± 5.44 vs 35.29 ± 6.30; P = 0.015), PHQ-9 (9.70 ± 4.92 vs 6.70 ± 4.66; P = 0.026), and PSS (29.39 ± 6.70 vs 23.35 ± 7.69; P = 0.015) scores. Other stress scales (Childhood Trauma Questionnaire and Chronic Stress Scale), Generalized Anxiety Disorder-7 scores, response bias, or discriminability as assessed by probabilistic reward task and self-report (Cognitive Failures Questionnaire) and laboratory-based (Letter-N-Back) cognitive measures were not significantly different between groups (both Ps > 0.05). Multivariate linear regression analyses adding BMI and PSS as covariates revealed that although BMI had no effect (P = 0.5), PSS significantly predicted PHQ-9 scores (P = 0.004). Mediation analysis showed that exenatide users reported higher PSS, with greater PSS associated with higher PHQ-9 levels (b = 0.236). There was no evidence on exenatide directly influencing PHQ-9 independent of PSS (c' = 1.573; P = 0.305; 95% bootstrap confidence interval, -1.487 to 4.634). IMPLICATIONS/CONCLUSIONS Based on previous research and our findings, exenatide use might be mediating depression scores through disrupting stress responses.
Collapse
|
27
|
Kong Q, Wu X, Xu M. A Genetically Modified Skin Graft for Treating Alcohol Use Disorder and/or Polysubstance Abuse With Cocaine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10007. [PMID: 38390403 PMCID: PMC10880775 DOI: 10.3389/adar.2021.10007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 02/24/2024]
Abstract
Alcohol use disorder (AUD) is one of the foremost public health problems. Alcohol is also frequently co-abused with cocaine. There is a huge unmet need for the treatment of AUD and/or cocaine co-abuse. We have developed and used a skin stem cell-based gene delivery platform and found that production of the glucagon-like peptide-1 (GLP1) from the grafted genetically modified skin reduced development and reinstatement of alcohol-induced drug-taking and seeking, voluntary oral alcohol consumption and alcohol-induced increase in dopamine (DA) levels in the nucleus accumbens (NAc). Moreover, we have developed a novel co-grafting procedure for both modified human butyrylcholinesterase (hBChE)- and GLP1-expressing cells. Skin grafts-derived hBChE and GLP1 reduced acquisition of drug-taking and toxicity induced by concurrent alcohol and cocaine injections. These results imply that gene delivery through skin transplants may add a new option to treat drug abuse and co-abuse.
Collapse
Affiliation(s)
- Qingyao Kong
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Rep 2021; 73:1020-1032. [PMID: 34003475 PMCID: PMC8413152 DOI: 10.1007/s43440-021-00274-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
Depression is a highly prevalent mood disorder and one of the major health concerns in modern society. Moreover, it is characterized by a high prevalence of coexistence with many other diseases including metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity. Currently used antidepressant drugs, which mostly target brain monoaminergic neurotransmission, have limited clinical efficacy. Although the etiology of depression has not been fully elucidated, current scientific data emphasize the role of neurotrophic factors deficiencies, disturbed homeostasis between the nervous system and the immune and endocrine systems, as well as disturbances in brain energy metabolism and dysfunctions in the gut-brain axis as important factors in the pathogenesis of this neuropsychiatric disorder. Therefore, therapeutic options that could work in a way other than classic antidepressants are being sought to increase the effectiveness of the treatment. Interestingly, glucagon-like peptide-1 receptor agonists (GLP-1RAs), used in the treatment of T2DM and obesity, are known to show pro-cognitive and neuroprotective properties, and exert modulatory effects on immune, endocrine and metabolic processes in the central nervous system. This review article discusses the potential antidepressant effects of GLP-1RAs, especially in the context of their action on the processes related to neuroprotection, inflammation, stress response, energy metabolism, gut-brain crosstalk and the stability of the gut microbiota.
Collapse
Affiliation(s)
- Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland.
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland
| |
Collapse
|
29
|
Angarita GA, Matuskey D, Pittman B, Costeines JL, Potenza MN, Jastreboff AM, Schmidt HD, Malison RT. Testing the effects of the GLP-1 receptor agonist exenatide on cocaine self-administration and subjective responses in humans with cocaine use disorder. Drug Alcohol Depend 2021; 221:108614. [PMID: 33621809 PMCID: PMC8026565 DOI: 10.1016/j.drugalcdep.2021.108614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Preclinical rodent studies have demonstrated reduced cocaine taking after administration of glucagon-like peptide 1 (GLP-1) analogues. We investigated effects of a GLP-1 analogue (exenatide) on behavioral and subjective effects of cocaine in individuals with cocaine use disorder (CUD). METHODS Non-treatment-seeking CUD subjects underwent two human laboratory cocaine self-administration test sessions following an acute 3 -h pre-treatment with exenatide (5 mcg; subcutaneously) or placebo. Primary outcomes consisted of infusions of cocaine and visual analog scale self-ratings of euphoria and wanting cocaine. Secondary outcomes consisted of pertinent hormone levels (GLP-1, insulin, and amylin). RESULTS Thirteen individuals completed the study. Acute pretreatment with exenatide versus placebo did not change cocaine infusions (8.5 ± 1.2 vs. 9.1 ± 1.2; p = 0.39), self-reported euphoria (4.4 ± 0.8 vs. 4.1 ± 0.8; p = 0.21), or wanting of cocaine (5.6 ± 0.9 vs. 5.4 ± 0.9; p = 0.46). Exenatide vs. placebo reduced levels of GLP-1 (p = 0.03) and insulin (p = 0.02). Self-administered cocaine also reduced levels of GLP-1 (p < 0.0001), insulin (p < 0.0001), and amylin (p < 0.0001). CONCLUSIONS We did not find evidence that low dose exenatide alters cocaine self-administration or the subjective effects of cocaine in people with CUD. Limitations such as single acute rather than chronic pre-treatment, as well as evaluation of only one dose, preclude drawing firm conclusions about the efficacy of exenatide. Exenatide and cocaine independently reduced levels of GLP-1 and insulin, while cocaine also reduced levels of amylin.
Collapse
Affiliation(s)
- Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT 06511. USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven CT 06519. USA
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT 06511. USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, CT 06519, USA.,Department of Neurology, Yale University School of Medicine, 15 York Street, New Haven CT 06510. USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT 06511. USA
| | - Jessica L. Costeines
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT 06511. USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven CT 06519. USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT 06511. USA.,Child Study Center, Yale University School of Medicine, New Haven, CT 06510. USA.,Department of Neuroscience, Yale University, New Haven, CT 06510. USA.,Connecticut Mental Health Center, New Haven, CT 06519. USA,Connecticut Council on Problem Gambling, Wethersfield, CT 06109. USA
| | - Ania M. Jastreboff
- Department of Internal Medicine (Endocrinology & Metabolism), Yale University School of Medicine, New Haven CT 06519. USA.,Department of Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven CT 06520. USA
| | - Heath D. Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104. USA.,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, 125 South 31st Street, Rm 2214, Philadelphia, PA 19104. USA
| | - Robert T. Malison
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT 06511. USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven CT 06519. USA
| |
Collapse
|
30
|
Leon RM, Borner T, Stein LM, Urrutia NA, De Jonghe BC, Schmidt HD, Hayes MR. Activation of PPG neurons following acute stressors differentially involves hindbrain serotonin in male rats. Neuropharmacology 2021; 187:108477. [PMID: 33581143 DOI: 10.1016/j.neuropharm.2021.108477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Within the hindbrain, serotonin (5-HT) functions as a modulator of the central glucagon-like peptide-1 (GLP-1) system. This interaction between 5-HT and GLP-1 is achieved via 5-HT2C and 5-HT3 receptors and is relevant for GLP-1-mediated feeding behavior. The central GLP-1 system is activated by various stressors, activates the hypothalamic pituitary adrenocortical (HPA) axis, and contributes to stress-related behaviors. Whether 5-HT modulates GLP-1's role in the stress response in unknown. We hypothesized that the serotonergic modulation of GLP-1-producing neurons (i.e., PPG neurons) is stimuli-specific and that stressed-induced PPG activity is one of the modalities in which 5-HT plays a role. In this study, we investigated the roles of 5-HT2C and 5-HT3 receptors in mediating the activation of PPG neurons in the nucleus tractus solitarius (NTS) following exposure to three different acute stressors: lithium chloride (LiCl), noncontingent cocaine (Coc), and novel restraint stress (RES). Results showed that increased c-Fos expression in PPG neurons following LiCl and RES-but not Coc-is dependent on hindbrain 5-HT2C and 5-HT3 receptor signaling. Additionally, stressors that depend on 5-HT signaling to activate PPG neurons (i.e., LiCl and RES) increased c-Fos expression in 5-HT-expressing neurons within the caudal raphe (CR), specifically in the raphe magnus (RMg). Finally, we showed that RMg neurons innervate NTS PPG neurons and that some of these PPG neurons lie in close proximity to 5-HT axons, suggesting RMg 5-HT-expressing neurons are the source of 5-HT input responsible for engaging NTS PPG neurons. Together, these findings identify a direct RMg to NTS pathway responsible for the modulatory effect of 5-HT on the central GLP-1 system-specifically via activation of 5-HT2C and 5-HT3 receptors-in the facilitation of acute stress responses.
Collapse
Affiliation(s)
- Rosa M Leon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norma A Urrutia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
32
|
Kong Q, Li Y, Yue J, Wu X, Xu M. Reducing alcohol and/or cocaine-induced reward and toxicity via an epidermal stem cell-based gene delivery platform. Mol Psychiatry 2021; 26:5266-5276. [PMID: 33619338 PMCID: PMC8380265 DOI: 10.1038/s41380-021-01043-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Alcohol use disorder (AUD) is one of the foremost public health problems. Alcohol is also frequently co-abused with cocaine. There is a huge unmet need for the treatment of AUD and/or cocaine co-abuse. We recently demonstrated that skin grafts generated from mouse epidermal stem cells that had been engineered by CRISPR-mediated genome editing could be transplanted onto mice as a gene delivery platform. Here, we show that expression of the glucagon-like peptide-1 (GLP1) gene delivered by epidermal stem cells attenuated development and reinstatement of alcohol-induced drug-taking and seeking as well as voluntary oral alcohol consumption. GLP1 derived from the skin grafts decreased alcohol-induced increase in dopamine levels in the nucleus accumbens. In exploring the potential of this platform in reducing concurrent use of drugs, we developed a novel co-grafting procedure for both modified human butyrylcholinesterase (hBChE)- and GLP1-expressing cells. Epidermal stem cell-derived hBChE and GLP1 reduced acquisition of drug-taking and toxicity induced by alcohol and cocaine co-administration. These results imply that cutaneous gene delivery through skin transplants may add a new option to treat drug abuse and co-abuse.
Collapse
Affiliation(s)
- Qingyao Kong
- grid.170205.10000 0004 1936 7822Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL USA
| | - Yuanyuan Li
- grid.170205.10000 0004 1936 7822Ben May Department for Cancer Research, The University of Chicago, Chicago, IL USA
| | - Jiping Yue
- grid.170205.10000 0004 1936 7822Ben May Department for Cancer Research, The University of Chicago, Chicago, IL USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
33
|
Verdejo-Garcia A, Crossin R. Nutritional and metabolic alterations arising from stimulant use: A targeted review of an emerging field. Neurosci Biobehav Rev 2020; 120:303-306. [PMID: 33188822 DOI: 10.1016/j.neubiorev.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
People with stimulant use disorders are usually underweight. Current accepted knowledge is that they are skinny because stimulants suppress appetite - they eat less. But is it that simple? Here we review the relationship between stimulant use, food intake, metabolism and body weight, and highlight key points that may challenge current knowledge: 1) Stimulants interact with the hormonal signals that regulate appetite including ghrelin and leptin, and can produce long-term alterations in the ability to monitor and compensate energy deficits. 2) The diet of people with stimulant use disorders might be characterised by altered nutritional geometry, rather than overall reduction of food intake. 3) Long-term changes in homeostatic signals and nutrient intake can produce metabolic deficits that contribute to unhealthy low weight. Based on this knowledge we advocate for increasing awareness about the nuances of stimulant-related nutritional and metabolic deficits among addiction clinicians, and increased research on the interaction between stimulant use, appetite signaling, and metabolic deficits.
Collapse
Affiliation(s)
| | - Rose Crossin
- Department of Population Health, University of Otago, New Zealand; Florey Institute of Neuroscience and Mental Health, Australia
| |
Collapse
|
34
|
Jones S, Hyde A, Davidson TL. Reframing appetitive reinforcement learning and reward valuation as effects mediated by hippocampal-dependent behavioral inhibition. Nutr Res 2020; 79:1-12. [PMID: 32544728 DOI: 10.1016/j.nutres.2020.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Traditional theories of neuroeconomics focus on reinforcement learning and reward value. We propose here a novel reframing of reinforcement learning and motivation that includes a hippocampal-dependent regulatory mechanism which balances cue-induced behavioral excitation with behavioral inhibition. This mechanism enables interoceptive cues produced by respective food or drug satiety to antagonize the ability of excitatory food- and drug-related environmental cues to retrieve the memories of food and drug reinforcers, thereby suppressing the power of those cues to evoke appetitive behavior. When the operation of this mechanism is impaired, ability of satiety signals to inhibit appetitive behavior is weakened because the relative balance between inhibition and simple excitation is shifted toward increased retrieval of food and drug memories by environmental cues. In the present paper, we (1) describe the associative processes that constitute this mechanism of hippocampal-dependent behavior inhibition; (2) describe how a prevailing obesity-promoting diet and drugs of abuse produce hippocampal pathophysiologies that can selectively impair this inhibitory function; and (3) propose how glucagon-like peptide 1 (GLP-1), an incretin hormone that is recognized as an important satiety signal, may work to protect the hippocampal-dependent inhibition. Our perspective may add to neuroscientific and neuroeconomic analyses of both overeating and drug abuse by outlining the role of hippocampal-dependent memory processes in the control of both food and drug seeking behaviors. In addition, this view suggests that consideration should be given to diet- and drug induced hippocampal pathophysiologies, as potential novel targets for the treatment of dysregulated energy and drug intake.
Collapse
Affiliation(s)
- Sabrina Jones
- Diabetes and Obesity Research Institute, Internal Medicine, Division of Endocrinology, University of Southern California, Los Angeles, CA, United States
| | - Alexia Hyde
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States.
| |
Collapse
|
35
|
Fortin SM, Lipsky RK, Lhamo R, Chen J, Kim E, Borner T, Schmidt HD, Hayes MR. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci Transl Med 2020; 12:eaay8071. [PMID: 32132220 PMCID: PMC7211411 DOI: 10.1126/scitranslmed.aay8071] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is approved for the treatment of obesity; however, there is still much to be learned regarding the neuronal sites of action that underlie its suppressive effects on food intake and body weight. Peripherally administered liraglutide in rats acts in part through central GLP-1Rs in both the hypothalamus and the hindbrain. Here, we extend findings supporting a role for hindbrain GLP-1Rs in mediating the anorectic effects of liraglutide in male rats. To dissociate the contribution of GLP-1Rs in the area postrema (AP) and the nucleus tractus solitarius (NTS), we examined the effects of liraglutide in both NTS AAV-shRNA-driven Glp1r knockdown and AP-lesioned animals. Knockdown of NTS GLP-1Rs, but not surgical lesioning of the AP, attenuated the anorectic and body weight-reducing effects of acutely delivered liraglutide. In addition, NTS c-Fos responses were maintained in AP-lesioned animals. Moreover, NTS Glp1r knockdown was sufficient to attenuate the intake- and body weight-reducing effects of chronic daily administered liraglutide over 3 weeks. Development of improved obesity pharmacotherapies requires an understanding of the cellular phenotypes targeted by GLP-1R agonists. Fluorescence in situ hybridization identified Glp1r transcripts in NTS GABAergic neurons, which when inhibited using chemogenetics, attenuated the food intake- and body weight-reducing effects of liraglutide. This work demonstrates the contribution of NTS GLP-1Rs to the anorectic potential of liraglutide and highlights a phenotypically distinct (GABAergic) population of neurons within the NTS that express the GLP-1R and are involved in the mediation of liraglutide signaling.
Collapse
Affiliation(s)
- Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachele K Lipsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack Chen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun Kim
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|