1
|
Camarini R, Marianno P, Costa BY, Palombo P, Noto AR. Environmental enrichment and complementary clinical interventions as therapeutic approaches for alcohol use disorder in animal models and humans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:323-354. [PMID: 39523059 DOI: 10.1016/bs.irn.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol use disorder (AUD) is a multifactorial disorder arising from a complex interplay of various genetic, environmental, psychological, and social factors. Environmental factors influence alcohol misuse and can lead to AUD. While stress plays a crucial role in the onset and progression of this disorder, environmental enrichment (EE) also influences ethanol-induced behavioral and neurobiological responses. These alterations include reduced ethanol consumption, diminished operant self-administration, attenuated behavioral sensitization, and enhanced conditioned place preference. EE exerts modulatory effects on multiple neurobiological processes, such as the brain-derived neurotrophic factor/TrkB signaling pathway, the oxytocinergic system, and the hypothalamic-pituitary-adrenal axis. EE, which includes stimulating activities to counteract ethanol effects in animal studies, has parallels in human intervention that have shown potential benefits. Physical activity, cognitive behavioral therapy, and meditation, alongside techniques involving cognitive stimulation, social interaction, and recreational activities, may lead to more effective therapeutic outcomes in treatments of AUD.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Yamada Costa
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paola Palombo
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Ana Regina Noto
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Valyear MD, LeCocq MR, Brown A, Villaruel FR, Segal D, Chaudhri N. Learning processes in relapse to alcohol use: lessons from animal models. Psychopharmacology (Berl) 2023; 240:393-416. [PMID: 36264342 DOI: 10.1007/s00213-022-06254-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Alcohol use is reliably preceded by discrete and contextual stimuli which, through diverse learning processes, acquire the capacity to promote alcohol use and relapse to alcohol use. OBJECTIVE We review contemporary extinction, renewal, reinstatement, occasion setting, and sex differences research within a conditioning framework of relapse to alcohol use to inform the development of behavioural and pharmacological therapies. KEY FINDINGS Diverse learning processes and corresponding neurobiological substrates contribute to relapse to alcohol use. Results from animal models indicate that cortical, thalamic, accumbal, hypothalamic, mesolimbic, glutamatergic, opioidergic, and dopaminergic circuitries contribute to alcohol relapse through separable learning processes. Behavioural therapies could be improved by increasing the endurance and generalizability of extinction learning and should incorporate whether discrete cues and contexts influence behaviour through direct excitatory conditioning or occasion setting mechanisms. The types of learning processes that most effectively influence responding for alcohol differ in female and male rats. CONCLUSION Sophisticated conditioning experiments suggest that diverse learning processes are mediated by distinct neural circuits and contribute to relapse to alcohol use. These experiments also suggest that gender-specific behavioural and pharmacological interventions are a way towards efficacious therapies to prevent relapse to alcohol use.
Collapse
Affiliation(s)
- Milan D Valyear
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada. .,Department of Psychology, McGill University, 1205 Ave. Dr. Penfield, Room N8/5, Montréal, QC, H3A 1B1, Canada.
| | - Mandy R LeCocq
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Franz R Villaruel
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Diana Segal
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
3
|
Barrera ED, Timken PD, Lee E, Persaud KRS, Goldstein H, Parasram DN, Vashisht A, Ranaldi R. Environmental enrichment facilitates electric barrier induced heroin abstinence after incubation of craving in male and female rats. Drug Alcohol Depend 2023; 244:109799. [PMID: 36774806 PMCID: PMC9982754 DOI: 10.1016/j.drugalcdep.2023.109799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Treatment strategies that aim to promote abstinence to heroin use and reduce vulnerability to drug-use resumption are limited in sustainability and long-term efficacy. We have previously shown that environmental enrichment (EE), when implemented after drug self-administration, reduces drug-seeking and promotes abstinence to cocaine and heroin in male rats. Here, we tested the effects of EE on abstinence in an animal conflict model in males and females, and after periods where incubation of craving may occur. METHODS Male and female rats were trained to self-administer heroin followed by 3 or 21 days of a no-event-interval (NEI). Following NEI, rats were permanently moved to environmental enrichment (EE) or new standard (nEE) housing 3 days prior to resuming self-administration in the presence of an electric barrier adjacent to the drug access lever. Electric barrier current was increased daily until rats ceased self-administration. RESULTS We found that 21 days of NEI led to significantly greater heroin self-administration and a trend toward shorter latencies to emit the first active lever press in the first abstinence session compared to 3 days of NEI. EE, when compared to nEE, led to longer latencies in the first abstinence session. Also, EE groups of both sexes and in both NEIs achieved abstinence criteria in significantly fewer numbers of sessions. CONCLUSIONS EE facilitates abstinence in males and females and after periods where incubation of craving may occur. This suggests that EE may benefit individuals attempting to abstain from heroin use and may aid in the development of long term treatment strategies.
Collapse
Affiliation(s)
- Eddy D Barrera
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, City University of New York, New York, NY 10016, United States.
| | - Patrick D Timken
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Elaine Lee
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Kirk R S Persaud
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Hindy Goldstein
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Daleya N Parasram
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Apoorva Vashisht
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, City University of New York, New York, NY 10016, United States.
| | - Robert Ranaldi
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, City University of New York, New York, NY 10016, United States.
| |
Collapse
|
4
|
Environmental enrichment augments binge-like alcohol drinking in Sardinian alcohol-preferring rats. Alcohol 2022; 105:1-7. [PMID: 36150612 DOI: 10.1016/j.alcohol.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Exposure of Sardinian alcohol-preferring (sP) rats to an enriched environment (EE) reduced different aspects of operant alcohol self-administration. The present study was aimed at expanding investigation of the effect of EE exposure upon a model of binge drinking composed of daily 1-h drinking sessions with unpredictable access to multiple alcohol concentrations; binge-like alcohol intakes were observed when the drinking session occurred at the last hours of the dark phase of the light/dark cycle. Starting from postnatal day (PND) 21, male sP rats were kept under three different housing conditions: impoverished environment (IE; single housing with no environmental enrichment); standard environment (SE; 3 rats/cage and no environmental enrichment); EE (6 rats/cage and multiple elements of environmental enrichment). From PND 69, rats were exposed daily to a 1-hour drinking session under the 4-bottle "alcohol (10%, 20%, and 30%, v/v) vs. water" choice regimen, during the dark phase, and with timing of alcohol exposure changed each day. In all three rat groups (IE, SE, and EE), alcohol intake increased progressively as the drinking session moved from the first to last hours of the dark phase. The slope of the regression line was steeper in EE than IE and SE rats, suggestive of higher intakes of alcohol in EE than IE and SE rats when the drinking session occurred over the last hours of the dark phase. These results are discussed hypothesizing that the stressful attributes of alcohol expectation were potentiated by the increased "emotionality" that rats living in a comfortable environment (i.e., EE) may experience when facing new, challenging events or environments. Blood alcohol levels, assessed at the end of a final drinking session occurring at the 12th hour of the dark phase, did not differ among the three rat groups and averaged approximately 150 mg%, confirming that this experimental procedure may generate intoxicating levels of alcohol drinking in sP rats.
Collapse
|
5
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
6
|
Maccioni P, Bratzu J, Lobina C, Acciaro C, Corrias G, Capra A, Carai MAM, Agabio R, Muntoni AL, Gessa GL, Colombo G. Exposure to an enriched environment reduces alcohol self-administration in Sardinian alcohol-preferring rats. Physiol Behav 2022; 249:113771. [PMID: 35247441 DOI: 10.1016/j.physbeh.2022.113771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
Abstract
Living in an enriched environment (EE) produces a notable impact on several rodent behaviors, including those motivated by drugs of abuse. This picture is somewhat less clear when referring to alcohol-motivated behaviors. With the intent of contributing to this research field with data from one of the few rat lines selectively bred for excessive alcohol consumption, the present study investigated the effect of EE on operant oral alcohol self-administration in Sardinian alcohol-preferring (sP) rats. Starting from Postnatal Day (PND) 21, male sP rats were kept under 3 different housing conditions: impoverished environment (IE; single housing in shoebox-like cages with no environmental enrichment); standard environment (SE; small colony cages with 3 rats and no environmental enrichment); EE (large colony cages with 6 rats and multiple elements of environmental enrichment, including 2 floors, ladders, maze, running wheels, and shelter). From PND 60, rats were exposed to different phases of shaping and training of alcohol self-administration. IE, SE, and EE rats were then compared under (i) fixed ratio (FR) 4 (FR4) schedule of alcohol reinforcement for 20 daily sessions and (ii) progressive ratio (PR) schedule of alcohol reinforcement in a final single session. Acquisition of the lever-responding task (shaping) was slower in EE than IE and SE rats, as the likely consequence of a "devaluation" of the novel stimuli provided by the operant chamber in comparison to those to which EE rats were continuously exposed in their homecage or an alteration, induced by EE, of the rat "emotionality" state when facing the novel environment represented by the operant chamber. Training of alcohol self-administration was slower in EE than IE rats, with SE rats displaying intermediate values. A similar ranking order (IE>SE>EE) was also observed in number of lever-responses for alcohol, amount of self-administered alcohol, and breakpoint for alcohol under FR4 and PR schedules of reinforcement. These data suggest that living in a complex environment reduced the reinforcing and motivational properties of alcohol in sP rats. These results are interpreted in terms of the reinforcing and motivational properties of the main components of EE (i.e., social interactions, physical activities, exploration, novelty) substituting, at least partially, for those of alcohol.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Acciaro
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gianluigi Corrias
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Alessandro Capra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, I-09127 Cagliari (CA), Italy
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy.
| |
Collapse
|
7
|
Venniro M, Panlilio LV, Epstein DH, Shaham Y. The protective effect of operant social reward on cocaine self-administration, choice, and relapse is dependent on delay and effort for the social reward. Neuropsychopharmacology 2021; 46:2350-2357. [PMID: 34400784 PMCID: PMC8580997 DOI: 10.1038/s41386-021-01148-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Social reinforcement-based treatments are effective for many, but not all, people with addictions to drugs. We recently developed an operant rat model that mimics features of one such treatment, the community-reinforcement approach. In this model, rats uniformly choose social interaction over methamphetamine or heroin. Abstinence induced by social preference protects against the incubation of drug-seeking that would emerge during forced abstinence. Here, we determined whether these findings generalize to cocaine and whether delaying or increasing effort for social interaction could reveal possibly human-relevant individual differences in responsiveness. We trained male and female rats for social self-administration (6 days) and then for cocaine self-administration, initially for 2-h/day for 4 days, and then for 12-h/day continuously or intermittently for 8 days. We assessed relapse to cocaine seeking after 1 and 15 days. Between tests, the rats underwent either forced abstinence or social-choice-induced abstinence. After establishing stable social preference, we manipulated the delay for both rewards or for social reward alone, or the response requirements (effort) for social reward. Independent of cocaine-access conditions and sex, operant social interaction inhibited cocaine self-administration and prevented incubation of cocaine seeking. Preference for social access was decreased by the delay of both rewards or social reward alone, or by increased response requirements for social reward, with notable individual variability. This choice procedure can identify mechanisms of individual differences in an animal model of cocaine use and could thereby help screen medications for people who are relatively unresponsive to treatments based on rewarding social interaction.
Collapse
Affiliation(s)
- Marco Venniro
- Intramural Research Program, NIDA, NIH, Baltimore, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | - Yavin Shaham
- Intramural Research Program, NIDA, NIH, Baltimore, USA.
| |
Collapse
|
8
|
Fredriksson I, Venniro M, Reiner DJ, Chow JJ, Bossert JM, Shaham Y. Animal Models of Drug Relapse and Craving after Voluntary Abstinence: A Review. Pharmacol Rev 2021; 73:1050-1083. [PMID: 34257149 PMCID: PMC11060480 DOI: 10.1124/pharmrev.120.000191] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relapse to drug use during abstinence is a defining feature of addiction. During the last several decades, this clinical scenario has been studied at the preclinical level using classic relapse/reinstatement models in which drug seeking is assessed after experimenter-imposed home-cage forced abstinence or extinction of the drug-reinforced responding in the self-administration chambers. To date, however, results from studies using rat relapse/reinstatement models have yet to result in Food and Drug Administration-approved medications for relapse prevention. The reasons for this state of affairs are complex and multifaceted, but one potential reason is that, in humans, abstinence is often self-imposed or voluntary and occurs either because the negative consequences of drug use outweigh the drug's rewarding effects or because of the availability of nondrug alternative rewards that are chosen over the drug. Based on these considerations, we and others have recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking (punishment) or seeking (electric barrier) or by providing mutually exclusive choices between the self-administered drug and nondrug rewards (palatable food or social interaction). In this review, we provide an overview of these translationally relevant relapse models and discuss recent neuropharmacological findings from studies using these models. We also discuss sex as a biological variable, future directions, and clinical implications of results from relapse studies using voluntary abstinence models. Our main conclusion is that the neuropharmacological mechanisms controlling relapse to drug seeking after voluntary abstinence are often different from the mechanisms controlling relapse after home-cage forced abstinence or reinstatement after extinction. SIGNIFICANCE STATEMENT: This review describes recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking or seeking or by providing mutually exclusive choices between the self-administered drug and nondrug rewards. This review discusses recent neuropharmacological findings from studies using these models and discusses future directions and clinical implications.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Marco Venniro
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - David J Reiner
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Jonathan J Chow
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|