1
|
Vasconcelos MDC, Sousa LS, Lopes TSB, Gonçalves LM, de Souza AB, Avelar NM, Oliveira JMF, Leme FDOP, Lara LJC, Araújo ICS. Impact of increased pre-start diet density on broiler chick behavior, corticosterone levels, and performance responses under cold stress during early life. J Therm Biol 2024; 124:103974. [PMID: 39277912 DOI: 10.1016/j.jtherbio.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
This study assessed the effects of increased pre-start diet density on the metabolism, crop filling, and overall performance of broilers under cold stress during their initial 14 days of life. Using 576 one-day-old Cobb500 male chicks from 27-week-old breeders, the experiment employed a 2 × 2 arrangement, varying thermal conditions (thermoneutrality or cold stress at 18 °C for 8 h) and pre-start diet composition (21.5% crude protein, 2970 kcal/kg or 22.5%, 3050 kcal/kg). The cold stress group exhibited lower cloacal temperature and decreased crop filling rate during the first two days (P < 0.05). Chick behavior was significantly affected at 1 and 5 days (P < 0.05), and corticosterone levels in serum were higher for the cold stress group at 7 days (P < 0.05). Feed intake at 7 days was lower in the high-density feed group (P < 0.05). No significant interactions were observed for feed intake, body weight gain, or feed conversion ratio at 7 and 35 days (P > 0.05). Cold stress resulted in performance losses, impacting feed conversion and the Productive Efficiency Index. The dense diet influenced performance only within the first week, with subsequent diets showing no effect, suggesting dietary manipulation alone was insufficient to mitigate cold stress-induced losses.
Collapse
Affiliation(s)
- Mariana Diniz Costa Vasconcelos
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Salim Sousa
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Larissa Moreira Gonçalves
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Bernardes de Souza
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathália Morais Avelar
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Macedo Fernandes Oliveira
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola de Oliveira Paes Leme
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo José Camargos Lara
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Itallo Conrado Sousa Araújo
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Bobba-Alves N, Juster RP, Picard M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 2022; 146:105951. [PMID: 36302295 PMCID: PMC10082134 DOI: 10.1016/j.psyneuen.2022.105951] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Chronic psychosocial stress increases disease risk and mortality, but the underlying mechanisms remain largely unclear. Here we outline an energy-based model for the transduction of chronic stress into disease over time. The energetic model of allostatic load (EMAL) emphasizes the energetic cost of allostasis and allostatic load, where the "load" is the additional energetic burden required to support allostasis and stress-induced energy needs. Living organisms have a limited capacity to consume energy. Overconsumption of energy by allostatic brain-body processes leads to hypermetabolism, defined as excess energy expenditure above the organism's optimum. In turn, hypermetabolism accelerates physiological decline in cells, laboratory animals, and humans, and may drive biological aging. Therefore, we propose that the transition from adaptive allostasis to maladaptive allostatic states, allostatic load, and allostatic overload arises when the added energetic cost of stress competes with longevity-promoting growth, maintenance, and repair. Mechanistically, the energetic restriction of growth, maintenance and repair processes leads to the progressive wear-and-tear of molecular and organ systems. The proposed model makes testable predictions around the physiological, cellular, and sub-cellular energetic mechanisms that transduce chronic stress into disease risk and mortality. We also highlight new avenues to quantify allostatic load and its link to health across the lifespan, via the integration of systemic and cellular energy expenditure measurements together with classic allostatic load biomarkers.
Collapse
Affiliation(s)
- Natalia Bobba-Alves
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Center on Sex⁎Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, Montreal, QC, Canada; Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
3
|
Hamilton A, Rizzo R, Brod S, Ono M, Perretti M, Cooper D, D'Acquisto F. The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain Behav Immun 2022; 102:179-194. [PMID: 35217174 DOI: 10.1016/j.bbi.2022.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.
Collapse
Affiliation(s)
- Alice Hamilton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Rizzo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London SW7 2AZ, England
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London SW15, 4JD, UK.
| |
Collapse
|
4
|
do Amaral-Silva L, da Silva WC, Gargaglioni LH, Bícego KC. Metabolic trade-offs favor regulated hypothermia and inhibit fever in immune-challenged chicks. J Exp Biol 2022; 225:274497. [DOI: 10.1242/jeb.243115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022]
Abstract
The febrile response to resist a pathogen is energetically expensive while regulated hypothermia seems to preserve energy for vital functions. We hypothesized here that immune challenged birds under metabolic trade-offs (reduced energy supply / increased energy demand) favor a regulated hypothermic response at the expense of fever. To test this hypothesis, we compared 5-days old broiler chicks exposed to fasting, cold (25oC), and fasting combined with cold to a control group fed at thermoneutral condition (30oC). The chicks were injected with saline or with a high dose of endotoxin known to induce a biphasic thermal response composed of body temperature (Tb) drop followed by fever. Then Tb, oxygen consumption (metabolic rate), peripheral vasomotion (cutaneous heat exchange), breathing frequency (respiratory heat exchange), and huddling behavior (heat conservation indicator) were analyzed. Irrespective of metabolic trade-offs, chicks presented a transient regulated hypothermia in the first hour, which relied on a suppressed metabolic rate for all groups, increased breathing frequency for chicks fed/fasted at 30oC, and peripheral vasodilation in fed/fasted chicks at 25oC. Fever was observed only in chicks kept at thermoneutrality and was supported by peripheral vasoconstriction and huddling behavior. Fed and fasted chicks at 25oC completely eliminated fever despite the ability to increase metabolic rate for thermogenesis in the phase correspondent to fever when it was pharmacologically induced by 2.4-Dinitrophenol. Our data suggest that increased competing demands affect chicks’ response to an immune challenge favoring regulated hypothermia to preserve energy while the high costs of fever to resist a pathogen are avoided.
Collapse
Affiliation(s)
- Lara do Amaral-Silva
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
- Department of Biology, University of North Carolina at Greensboro (UNCG), Greensboro, NC, USA
| | - Welex Cândido da Silva
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Luciane Helena Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
5
|
Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals (Basel) 2021; 11:ani11123472. [PMID: 34944249 PMCID: PMC8697956 DOI: 10.3390/ani11123472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Animals adopt several strategies to regulate their body temperature by promoting heat loss or gain in hot and cold environments, respectively. This mechanism of heat loss or production is performed in thermal windows. A thermal window is a structure where many blood capillaries facilitate thermal exchange in this region. The presence of feathers, hair, or glabrous (hairless) skin and their structural characteristics greatly influence each species’ capacity to maintain thermal comfort. This factor needs to be considered when implementing new monitoring or measuring techniques such as infrared thermography since interpretations may vary due to the presence or absence of these structures. It is essential to recognize the effects of glabrous skin, hair, and feathers on thermoregulation to identify species-specific thermal windows that allow accurate evaluations of the thermal state of domestic animals. Abstract The objective of this review is to describe and analyze the effect of feathers, hair, and glabrous (hairless) skin on the thermoregulation of domestic and endotherm animals, especially concerning the uses and scope of infrared thermography (IRT), scientific findings on heat and cold stress, and differences among species of domestic animals. Clinical medicine considers thermoregulation a mechanism that allows animals to adapt to varying thermal environmental conditions, a process in which the presence of feathers, hair, or glabrous skin influences heat loss or heat retention, respectively, under hot and cold environmental conditions. Evaluating body temperature provides vital information on an individual’s physiological state and health status since variations in euthermia maintenance in vertebrates reflect a significant cellular metabolism deviation that needs to be assessed and quantified. IRT is a non-invasive tool for evaluating thermal responses under thermal stress conditions in animals, where the presence or absence of feathers, hair, and glabrous skin can affect readings and the differences detected. Therefore, anatomical regions, the characteristics of feathers, hair, glabrous skin such as structure, length, color, and extension, and strategies for dissipating or retaining heat together constitute a broad area of opportunity for future research into the phenomena of dermal thermoregulation in domestic species.
Collapse
|