1
|
Glasbrenner C, Höchsmann C, Pieper CF, Wasserfurth P, Dorling JL, Martin CK, Redman LM, Koehler K. Prediction of individual weight loss using supervised learning: findings from the CALERIE TM 2 study. Am J Clin Nutr 2024; 120:1233-1244. [PMID: 39270937 PMCID: PMC11600119 DOI: 10.1016/j.ajcnut.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Predicting individual weight loss (WL) responses to lifestyle interventions is challenging but might help practitioners and clinicians select the most promising approach for each individual. OBJECTIVE The primary aim of this study was to develop machine learning (ML) models to predict individual WL responses using only variables known before starting the intervention. In addition, we used ML to identify pre-intervention variables influencing the individual WL response. METHODS We used 12-mo data from the comprehensive assessment of long-term effects of reducing intake of energy (CALERIETM) phase 2 study, which aimed to analyze the long-term effects of caloric restriction on human longevity. On the basis of the data from 130 subjects in the intervention group, we developed classification models to predict binary ("Success" and "No/low success") or multiclass ("High success," "Medium success," and "Low/no success") WL outcomes. Additionally, regression models were developed to predict individual weight change (percent). Models were evaluated on the basis of accuracy, sensitivity, specificity (classification models), and root mean squared error (RMSE; regression models). RESULTS Best classification models used 20-40 predictors and achieved 89%-97% accuracy, 91%-100% sensitivity, and 56%-86% specificity for binary classification. For multiclass classification, accuracy (69%) and sensitivity (50%) tended to be lower. The best regression performance was obtained with 36 variables with an RMSE of 2.84%. Among the 21 variables predicting individual weight change most consistently, we identified 2 novel predictors, namely orgasm satisfaction and sexual behavior/experience. Other common predictors have previously been associated with WL (16) or are already used in traditional prediction models (3). CONCLUSIONS The prediction models could be implemented by practitioners and clinicians to support the decision of whether lifestyle interventions are sufficient or more aggressive interventions are needed for a given individual, thereby supporting better, faster, data-driven, and unbiased decisions. The CALERIETM phase 2 study was registered at clinicaltrials.gov as NCT00427193.
Collapse
Affiliation(s)
- Christina Glasbrenner
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - Christoph Höchsmann
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - Carl F Pieper
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Paulina Wasserfurth
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - James L Dorling
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Karsten Koehler
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Gianfaldoni A, Roa C, dos Santos Simões R, Baracat MCP, Maggio da Fonseca A, Bagnoli VR, Sopreso ICE, Silva Rivas FW, Monteleone P, Baracat EC, Soares Júnior JM. Association of intrauterine synechiae with pituitary gonadotrophin pulse patterns: A pilot study. PLoS One 2023; 18:e0289075. [PMID: 38100407 PMCID: PMC10723672 DOI: 10.1371/journal.pone.0289075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/11/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Intrauterine synechiae (IS) is an acquired uterine condition that occurs when scar tissues (adhesions) form within the uterus and/or cervix, causing menstrual disturbance. However, approximately 50% of patients with IS are refractory to treatment. Therefore, other endocrine disturbances, such as gonadotropin disturbance, may affect treatment success. STUDY AIM To analyze gonadotropin levels in women with and without IS. METHODS Ten women with refractory IS experiencing amenorrhea since at least 6 months and nine with normal menstrual cycles (control group) were included in this study. Blood sample were collected every 10 minutes during a 4-h period. The serial ultrasound was performed in both groups for evaluating the cycle phase. Blood was collected when the follicles size was between 5-10 mm. Serum LH, FSH, progesterone and estradiol concentrations were measured. To detect LH and FSH pulses, the technique proposed by Santen and Bardin was adopted; therefore, one pulse was defined as a 20% increase in the concentrations as to the preceding point, followed by an important decrease. RESULTS No differences were observed between the study groups at baseline. Estradiol levels were lower in the IS group than in the control group, but the difference was not statistically significant. During the first hour of monitoring, cumulative FSH pulsatile frequency of IS group was lower than one of control. CONCLUSION Our data suggest that the estradiol levels of IS participants are lower than those of women with normal menstrual cycle. The role of this finding in the physiology of uterine synechiae requires further investigation.
Collapse
Affiliation(s)
- Arlete Gianfaldoni
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane Roa
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo dos Santos Simões
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Cândida P. Baracat
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Angela Maggio da Fonseca
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vicente Renato Bagnoli
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Isabel Cristina Espósito Sopreso
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fernando Wladimir Silva Rivas
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Monteleone
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Edmund C. Baracat
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - José Maria Soares Júnior
- Disciplina de Ginecologia, do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Stellingwerff T, Mountjoy M, McCluskey WT, Ackerman KE, Verhagen E, Heikura IA. Review of the scientific rationale, development and validation of the International Olympic Committee Relative Energy Deficiency in Sport Clinical Assessment Tool: V.2 (IOC REDs CAT2)-by a subgroup of the IOC consensus on REDs. Br J Sports Med 2023; 57:1109-1118. [PMID: 37752002 DOI: 10.1136/bjsports-2023-106914] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) has various different risk factors, numerous signs and symptoms and is heavily influenced by one's environment. Accordingly, there is no singular validated diagnostic test. This 2023 International Olympic Committee's REDs Clinical Assessment Tool-V.2 (IOC REDs CAT2) implements a three-step process of: (1) initial screening; (2) severity/risk stratification based on any identified REDs signs/symptoms (primary and secondary indicators) and (3) a physician-led final diagnosis and treatment plan developed with the athlete, coach and their entire health and performance team. The CAT2 also introduces a more clinically nuanced four-level traffic-light (green, yellow, orange and red) severity/risk stratification with associated sport participation guidelines. Various REDs primary and secondary indicators have been identified and 'weighted' in terms of scientific support, clinical severity/risk and methodological validity and usability, allowing for objective scoring of athletes based on the presence or absence of each indicator. Early draft versions of the CAT2 were developed with associated athlete-testing, feedback and refinement, followed by REDs expert validation via voting statements (ie, online questionnaire to assess agreement on each indicator). Physician and practitioner validity and usability assessments were also implemented. The aim of the IOC REDs CAT2 is to assist qualified clinical professionals in the early and accurate diagnosis of REDs, with an appropriate clinical severity and risk assessment, in order to protect athlete health and prevent prolonged and irreversible outcomes of REDs.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Margo Mountjoy
- Association for Summer Olympic International Federations (ASOIF), Lausanne, Switzerland
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Evert Verhagen
- Amsterdam Collaboration on Health and Safety in Sports and Department of Public and Occupational Health, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
5
|
Mountjoy M, Ackerman KE, Bailey DM, Burke LM, Constantini N, Hackney AC, Heikura IA, Melin A, Pensgaard AM, Stellingwerff T, Sundgot-Borgen JK, Torstveit MK, Jacobsen AU, Verhagen E, Budgett R, Engebretsen L, Erdener U. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57:1073-1097. [PMID: 37752011 DOI: 10.1136/bjsports-2023-106994] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) was first introduced in 2014 by the International Olympic Committee's expert writing panel, identifying a syndrome of deleterious health and performance outcomes experienced by female and male athletes exposed to low energy availability (LEA; inadequate energy intake in relation to exercise energy expenditure). Since the 2018 REDs consensus, there have been >170 original research publications advancing the field of REDs science, including emerging data demonstrating the growing role of low carbohydrate availability, further evidence of the interplay between mental health and REDs and more data elucidating the impact of LEA in males. Our knowledge of REDs signs and symptoms has resulted in updated Health and Performance Conceptual Models and the development of a novel Physiological Model. This Physiological Model is designed to demonstrate the complexity of either problematic or adaptable LEA exposure, coupled with individual moderating factors, leading to changes in health and performance outcomes. Guidelines for safe and effective body composition assessment to help prevent REDs are also outlined. A new REDs Clinical Assessment Tool-Version 2 is introduced to facilitate the detection and clinical diagnosis of REDs based on accumulated severity and risk stratification, with associated training and competition recommendations. Prevention and treatment principles of REDs are presented to encourage best practices for sports organisations and clinicians. Finally, methodological best practices for REDs research are outlined to stimulate future high-quality research to address important knowledge gaps.
Collapse
Affiliation(s)
- Margo Mountjoy
- Family Medicine, McMaster University Michael G DeGroote School of Medicine, Waterloo, Ontario, Canada
- Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Naama Constantini
- Sports Medicine Center, Shaare Zedek Medical Center, The Hebrew University, Jerusalem, Israel
| | - Anthony C Hackney
- Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ida Aliisa Heikura
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Melin
- Department of Sport Science - Swedish Olympic Committee Research Fellow, Linnaeus University, Kalmar, Sweden
| | - Anne Marte Pensgaard
- Department of Sport and Social Sciences, Norwegian School of Sports Sciences, Oslo, Norway
| | - Trent Stellingwerff
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | - Evert Verhagen
- Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Science, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Uğur Erdener
- Department of Ophthalmology, Hacettepe University, Ankara, Turkey
- World Archery, Lausanne, Switzerland
| |
Collapse
|
6
|
Burke LM, Ackerman KE, Heikura IA, Hackney AC, Stellingwerff T. Mapping the complexities of Relative Energy Deficiency in Sport (REDs): development of a physiological model by a subgroup of the International Olympic Committee (IOC) Consensus on REDs. Br J Sports Med 2023; 57:1098-1108. [PMID: 37752007 DOI: 10.1136/bjsports-2023-107335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
The 2023 International Olympic Committee (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs) notes that exposure to low energy availability (LEA) exists on a continuum between adaptable and problematic LEA, with a range of potential effects on both health and performance. However, there is variability in the outcomes of LEA exposure between and among individuals as well as the specific manifestations of REDs. We outline a framework for a 'systems biology' examination of the effect of LEA on individual body systems, with the eventual goal of creating an integrated map of body system interactions. We provide a template that systematically identifies characteristics of LEA exposure (eg, magnitude, duration, origin) and a variety of moderating factors (eg, medical history, diet and training characteristics) that could exacerbate or attenuate the type and severity of impairments to health and performance faced by an individual athlete. The REDs Physiological Model may assist the diagnosis of underlying causes of problems associated with LEA, with a personalised and nuanced treatment plan promoting compliance and treatment efficacy. It could also be used in the strategic prevention of REDs by drawing attention to scenarios of LEA in which impairments of health and performance are most likely, based on knowledge of the characteristics of the LEA exposure or moderating factors that may increase the risk of harmful outcomes. We challenge researchers and practitioners to create a unifying and dynamic physiological model for each body system that can be continuously updated and mapped as knowledge is gained.
Collapse
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|