1
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Nishimoto T, Takagi K, Aoki D, Fukushima K, Matsushita Y. Bonding of Lignin and Coniferyl Alcohol by a Redox Shuttle of Low-Molecular-Weight Lignols in Enzymatic Oxidative Dehydrogenative Polymerization. Biomacromolecules 2024; 25:3620-3627. [PMID: 38806062 DOI: 10.1021/acs.biomac.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Lignin is an aromatic polymer that constitutes plant cell walls. The polymerization of lignin proceeds by radical coupling, and this process requires radicalization of the phenolic end of lignin by enzymes. However, due to the steric hindrance between enzymes, lignin, and polysaccharides, the direct oxidation of the phenolic end of lignin by the enzyme would be difficult, and the details of the growth of lignin are still unknown. In this study, enzymatic dehydrogenative polymerization experiments were conducted using coniferyl alcohol (CA) and the deuterium-labeled lignin model compound (D-LM) under a noncontact condition in which horseradish peroxidase cannot directly oxidize D-LM due to separation by a dialysis membrane. Analysis of deuterium-labeled degraded compounds obtained by a combination of methylation and thioacidolysis revealed the formation of the bond between the phenolic end of D-LM and CA, suggesting that membrane-permeable, low-molecular-weight lignols functioned as a redox shuttle mediator.
Collapse
Affiliation(s)
- Taiki Nishimoto
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kyoka Takagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuyuki Matsushita
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Pesquet E, Blaschek L, Takahashi J, Yamamoto M, Champagne A, Nuoendagula, Subbotina E, Dimotakis C, Bacisk Z, Kajita S. Bulk and In Situ Quantification of Coniferaldehyde Residues in Lignin. Methods Mol Biol 2024; 2722:201-226. [PMID: 37897609 DOI: 10.1007/978-1-0716-3477-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Lignin is a group of cell wall localised heterophenolic polymers varying in the chemistry of the aromatic and aliphatic parts of its units. The lignin residues common to all vascular plants have an aromatic ring with one para hydroxy group and one meta methoxy group, also called guaiacyl (G). The terminal function of the aliphatic part of these G units, however, varies from alcohols, which are generally abundant, to aldehydes, which represent a smaller proportion of lignin monomers. The proportions of aldehyde to alcohol G units in lignin are, nevertheless, precisely controlled to respond to environmental and development cues. These G aldehyde to alcohol unit proportions differ between each cell wall layer of each cell type to fine-tune the cell wall biomechanical and physico-chemical properties. To precisely determine changes in lignin composition, we, herein, describe the various methods to detect and quantify the levels and positions of G aldehyde units, also called coniferaldehyde residues, of lignin polymers in ground plant samples as well as in situ in histological cross-sections.
Collapse
Affiliation(s)
- Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Antoine Champagne
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Elena Subbotina
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Charilaos Dimotakis
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Zoltán Bacisk
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Yamamoto M, Blaschek L, Subbotina E, Kajita S, Pesquet E. Importance of Lignin Coniferaldehyde Residues for Plant Properties and Sustainable Uses. CHEMSUSCHEM 2020; 13:4400-4408. [PMID: 32692480 PMCID: PMC7539997 DOI: 10.1002/cssc.202001242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Indexed: 05/26/2023]
Abstract
Increases in coniferaldehyde content, a minor lignin residue, significantly improves the sustainable use of plant biomass for feed, pulping, and biorefinery without affecting plant growth and yields. Herein, different analytical methods are compared and validated to distinguish coniferaldehyde from other lignin residues. It is shown that specific genetic pathways regulate amount, linkage, and position of coniferaldehyde within the lignin polymer for each cell type. This specific cellular regulation offers new possibilities for designing plant lignin for novel and targeted industrial uses.
Collapse
Affiliation(s)
- Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyo184-8588Japan
| | - Leonard Blaschek
- Arrhenius laboratories Department of Ecology, Environment and Plant SciencesStockholm University106 91StockholmSweden
| | - Elena Subbotina
- Arrhenius laboratories, Department of Organic ChemistryStockholm University106 91StockholmSweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyo184-8588Japan
| | - Edouard Pesquet
- Arrhenius laboratories Department of Ecology, Environment and Plant SciencesStockholm University106 91StockholmSweden
| |
Collapse
|
5
|
Miyagawa Y, Tobimatsu Y, Lam PY, Mizukami T, Sakurai S, Kamitakahara H, Takano T. Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:156-170. [PMID: 32623768 DOI: 10.1111/tpj.14913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.
Collapse
Affiliation(s)
- Yasuyuki Miyagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Yuki Tobimatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahito Mizukami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Sayaka Sakurai
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Hiroshi Kamitakahara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Simões MS, Carvalho GG, Ferreira SS, Hernandes-Lopes J, de Setta N, Cesarino I. Genome-wide characterization of the laccase gene family in Setaria viridis reveals members potentially involved in lignification. PLANTA 2020; 251:46. [PMID: 31915928 DOI: 10.1007/s00425-020-03337-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/02/2020] [Indexed: 05/23/2023]
Abstract
Five laccase genes are potentially involved in developmental lignification in the model C4 grass Setaria viridis and their different tissue specificities suggest subfunctionalization events. Plant laccases are copper-containing glycoproteins involved in monolignol oxidation and, therefore, their activity is essential for lignin polymerization. Although these enzymes belong to large multigene families with highly redundant members, not all of them are thought to be involved in lignin metabolism. Here, we report on the genome-wide characterization of the laccase gene family in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol oxidation. A total of 52 genes encoding laccases (SvLAC1 to SvLAC52) were found in the genome of S. viridis, and phylogenetic analyses showed that these genes were heterogeneously distributed among the characteristic six subclades of the family and are under relaxed selective constraints. The observed expansion in the total number of genes in this species was mainly caused by tandem duplications within subclade V, which accounts for 68% of the whole family. Comparative phylogenetic analyses showed that the expansion of subclade V is specifically observed for the Paniceae tribe within the Panicoideae subfamily in grasses. Five SvLAC genes (SvLAC9, SvLAC13, SvLAC15, SvLAC50, and SvLAC52) fulfilled the criteria established to identify lignin-related candidates: (1) phylogenetic proximity to previously characterized lignin-related laccases from other species, (2) similar expression pattern to that observed for lignin biosynthetic genes in the S. viridis elongating internode, and (3) high expression in S. viridis tissues undergoing active lignification. In addition, in situ hybridization experiments not only confirmed that these selected SvLAC genes were expressed in lignifying cells, but also that their expression showed different tissue specificities, suggesting subfunctionalization events within the family. These five laccase genes are strong candidates to be involved in lignin polymerization in S. viridis and might be good targets for lignin bioengineering strategies.
Collapse
Affiliation(s)
- Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Gabriel Garon Carvalho
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - José Hernandes-Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, São Bernardo do Campo, São Paulo, 09606-070, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil.
| |
Collapse
|
7
|
Zhang Y, Legland D, El Hage F, Devaux MF, Guillon F, Reymond M, Méchin V. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development. PLoS One 2019; 14:e0219923. [PMID: 31361770 PMCID: PMC6667141 DOI: 10.1371/journal.pone.0219923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Plant cell walls development is an integrated process during which several components are deposited successively. In the cell walls in grass, the accessibility of structural polysaccharides is limited by the cell walls structure and composition mainly as a result of phenolic compounds. Here, we studied the patterns of cell walls establishment in the internode supporting the ear in three distinct maize genotypes. The developmental patterns observed in the internode cell walls in terms of its composition are reported with an emphasis on lignification, p-coumaroylation and feruloylation. We combined biochemical and histological approaches and revealed that internode cell walls development in maize before flowering is characterized by the rapid deposition of secondary cell walls components and robust lignification in both the pith and the rind. After flowering and until silage maturity, the slow deposition of secondary walls components occurs in the cortical region, and the deposited lignins are rich in β-O-4 bonds and are highly p-coumaroylated. We conclude the paper by proposing a revised spatiotemporal model based on that proposed by Terashima et al. (1993) for cell walls development in grass.
Collapse
Affiliation(s)
- Yu Zhang
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Weed Research Laboratory, Nanjing Agricultural University, China
| | - David Legland
- UR1268, Biopolymères, Interactions et Assemblages, INRA, Nantes, France
| | - Fadi El Hage
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Ecole Doctorale 567 Sciences du Vegetal, University Paris-Sud, University of Paris-Saclay, Orsay, France
| | | | - Fabienne Guillon
- UR1268, Biopolymères, Interactions et Assemblages, INRA, Nantes, France
| | - Matthieu Reymond
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Méchin
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
8
|
Bowman AS, Asare SO, Lynn BC. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2,5-dihydroxyacetophenone (DHAP) matrix. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:811-819. [PMID: 30719787 DOI: 10.1002/rcm.8406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Effective analytical techniques are needed to characterize lignin products for the generation of renewable carbon sources. Application of matrix-assisted laser desorption/ionization (MALDI) in lignin analysis is limited because of poor ionization efficiency. In this study, we explored the potential of cationization along with a 2,5-dihydroxyacetophenone (DHAP) matrix to characterize model lignin oligomers. METHODS Synthesized lignin oligomers were analyzed using the developed MALDI method. Two matrix systems, DHAP and α-cyano-4-hydroxycinnamic acid (CHCA), and three cations (lithium, sodium, silver) were evaluated using a Bruker UltraFlextreme time-of-flight mass spectrometer. Instrumental parameters, cation concentration, matrix, sample concentrations, and sample spotting protocols were optimized for improved results. RESULTS The DHAP/Li+ combination was effective for dimer analysis as lithium adducts. Spectra from DHP and ferric chloride oligomers showed improved signal intensities up to decamers (m/z 1823 for the FeCl3 system) and provided insights into differences in the oligomerization mechanism. Spectra from a mixed DHP oligomer system containing H, G, and S units showed contributions from all monolignols within an oligomer level (e.g. tetramer level). CONCLUSIONS The DHAP/Li+ method presented in this work shows promise to be an effective analytical tool for lignin analysis by MALDI and may provide a tool to assess lignin break-down efforts facilitating renewable products from lignin.
Collapse
Affiliation(s)
- Amber S Bowman
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
9
|
Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel Plant Cell Wall Domains. Dev Cell 2019; 48:261-276.e8. [DOI: 10.1016/j.devcel.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
10
|
Abstract
The enzyme-mediated polymerization of bioactive phenolic compounds, such as the flavonoid rutin, has gained interest due to the enhanced physico-chemical and biological properties of the products, which increases their potential application as a nutraceutical. In this work, the influence of enzyme activity on rutin oligomerization was evaluated in reactions with low (1000 U/L) and high (10,000 U/L) initial laccase activities. For both reactions, high molecular weight oligomer fractions showed better properties compared to lower weight oligomers. Products of the reaction with low laccase activity exhibited thermal stability and antioxidant potential similar to control reaction, but led to higher inhibitory activity of xanthine oxidase and apparent aqueous solubility. Oligomers obtained in the reaction with high laccase activity showed better apparent aqueous solubility but decreased biological activities and stability. Their low antioxidant activity was correlated with a decreased phenolic content, which could be attributed to the formation of several bonds between rutin molecules.
Collapse
|
11
|
Warinowski T, Koutaniemi S, Kärkönen A, Sundberg I, Toikka M, Simola LK, Kilpeläinen I, Teeri TH. Peroxidases Bound to the Growing Lignin Polymer Produce Natural Like Extracellular Lignin in a Cell Culture of Norway Spruce. FRONTIERS IN PLANT SCIENCE 2016; 7:1523. [PMID: 27803704 PMCID: PMC5067304 DOI: 10.3389/fpls.2016.01523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/27/2016] [Indexed: 05/23/2023]
Abstract
Lignin, an important component of plant cell walls, is a polymer of monolignols derived from the phenylpropanoid pathway. Monolignols are oxidized in the cell wall by oxidative enzymes (peroxidases and/or laccases) to radicals, which then couple with the growing lignin polymer. We have investigated the characteristics of the polymerization reaction by producing lignin polymers in vitro using different oxidative enzymes and analyzing the structures formed with NMR. The ability of the enzymes to oxidize high-molecular-weight compounds was tested using cytochrome c as a substrate. The results support an idea that lignin structure is largely determined by the concentration ratios of the monolignol (coniferyl alcohol) and polymer radicals involved in the coupling reaction. High rate of the lignin polymer oxidation compared to monolignol oxidation leads to a natural-like structure. The high relative rate can be achieved by an open active site of the oxidative enzyme, close proximity of the enzyme with the polymeric substrate or simply by high enzymatic activity that consumes monolignols rapidly. Monolignols, which are oxidized efficiently, can be seen as competitive inhibitors of polymer oxidation. Our results indicate that, at least in a Norway spruce (Picea abies L. Karst.) cell culture, a group of apoplastic, polymer-oxidizing peroxidases bind to the lignin polymer and are responsible for production of natural-like lignin in cell suspension cultures in vivo, and also in vitro. The peroxidases bound to the extracellular lignin had the highest ability to bind to various cell wall polymers in vitro. Extracellular lignin contains pectin-type sugars, making them possible attachment points for these cationic peroxidases.
Collapse
Affiliation(s)
- Tino Warinowski
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of HelsinkiFinland
| | - Sanna Koutaniemi
- Department of Food and Environmental Chemistry, University of HelsinkiFinland
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of HelsinkiFinland
| | - Ilari Sundberg
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of HelsinkiFinland
| | - Merja Toikka
- Laboratory of Organic Chemistry, Department of Chemistry, University of HelsinkiFinland
| | | | - Ilkka Kilpeläinen
- Laboratory of Organic Chemistry, Department of Chemistry, University of HelsinkiFinland
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of HelsinkiFinland
| |
Collapse
|
12
|
Jaufurally AS, Teixeira A, Hollande L, Allais F, Ducrot PH. Optimization of the Laccase-Catalyzed Synthesis of (±)-Syringaresinol and Study of its Thermal and Antiradical Activities. ChemistrySelect 2016. [DOI: 10.1002/slct.201600543] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abdus S. Jaufurally
- Chaire Agro-Biotechnologies Industrielles (ABI); AgroParisTech; CEBB - 3 rue des Rouges Terres F-51110 Pomacle France
- Institut Jean-Pierre Bourgin, INRA; AgroParisTech, CNRS; Université Paris-Saclay; RD10 F-78026 Versailles Cedex France
| | - Andreia R. S. Teixeira
- Chaire Agro-Biotechnologies Industrielles (ABI); AgroParisTech; CEBB - 3 rue des Rouges Terres F-51110 Pomacle France
- UMR 1145 GENIAL, INRA; AgroParisTech, CNRS; Université Paris-Saclay; 1 avenue des Olympiades F-91744 Massy France
| | - Louis Hollande
- Chaire Agro-Biotechnologies Industrielles (ABI); AgroParisTech; CEBB - 3 rue des Rouges Terres F-51110 Pomacle France
- Institut Jean-Pierre Bourgin, INRA; AgroParisTech, CNRS; Université Paris-Saclay; RD10 F-78026 Versailles Cedex France
| | - Florent Allais
- Chaire Agro-Biotechnologies Industrielles (ABI); AgroParisTech; CEBB - 3 rue des Rouges Terres F-51110 Pomacle France
- UMR 782 GMPA, INRA; AgroParisTech, CNRS; Université Paris-Saclay; Avenue Lucien Brétignières F-78850 Thiverval-Grignon France
| | - Paul-Henri Ducrot
- Institut Jean-Pierre Bourgin, INRA; AgroParisTech, CNRS; Université Paris-Saclay; RD10 F-78026 Versailles Cedex France
| |
Collapse
|
13
|
Pandey JL, Kiemle SN, Richard TL, Zhu Y, Cosgrove DJ, Anderson CT. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems. FRONTIERS IN PLANT SCIENCE 2016; 7:1309. [PMID: 27630649 PMCID: PMC5005335 DOI: 10.3389/fpls.2016.01309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/16/2016] [Indexed: 05/29/2023]
Abstract
Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependencies of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In summary, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis stems and allows for the dissection of key biochemical and enzymatic factors controlling lignification.
Collapse
Affiliation(s)
- Jyotsna L. Pandey
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University ParkPA, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
| | - Sarah N. Kiemle
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| | - Tom L. Richard
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University ParkPA, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
| | - Yimin Zhu
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Chemistry, Altoona College, The Pennsylvania State University, AltoonaPA, USA
| | - Daniel J. Cosgrove
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| | - Charles T. Anderson
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| |
Collapse
|
14
|
Wang J, Feng J, Jia W, Chang S, Li S, Li Y. Lignin engineering through laccase modification: a promising field for energy plant improvement. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:145. [PMID: 26379777 PMCID: PMC4570640 DOI: 10.1186/s13068-015-0331-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/01/2015] [Indexed: 05/05/2023]
Abstract
Laccase (p-diphenol:dioxygen oxidoreductase, EC 1.10.3.2) is a member of the multicopper oxidases and catalyzes the one-electron oxidation of a wide range of substrates, coupled with the reduction of oxygen to water. It is widely distributed in bacteria, fungi, plants and insects. Laccases are encoded by multigene family, and have been characterized mostly from fungi till now, with abundant industrial applications in pulp and paper, textile, food industries, organic synthesis, bioremediation and nanobiotechnology, while limited researches have been performed in plants, and no application has been reported. Plant laccases share the common molecular architecture and reaction mechanism with fungal ones, despite of difference in redox potential and pH optima. Plant laccases are implicated in lignin biosynthesis since genetic evidence was derived from the Arabidopsis LAC4 and LAC17. Manipulation of plant laccases has been considered as a promising and innovative strategy in plant biomass engineering for desirable lignin content and/or composition, since lignin is the major recalcitrant component to saccharification in biofuel production from lignocellulose, and therefore directly limits the fermentation yields. Moreover, plant laccases have been reported to be involved in wound healing, maintenance of cell wall structure and integrity, and plant responses to environmental stresses. Here, we summarize the properties and functions of plant laccase, and discuss the potential of biotechnological application, thus providing a new insight into plant laccase, an old enzyme with a promising beginning in lignocellulose biofuel production.
Collapse
Affiliation(s)
- Jinhui Wang
- />Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Juanjuan Feng
- />Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Weitao Jia
- />Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sandra Chang
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Shizhong Li
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Yinxin Li
- />Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
15
|
Wang C, Qian C, Roman M, Glasser WG, Esker AR. Surface-Initiated Dehydrogenative Polymerization of Monolignols: A Quartz Crystal Microbalance with Dissipation Monitoring and Atomic Force Microscopy Study. Biomacromolecules 2013; 14:3964-72. [DOI: 10.1021/bm401084h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chao Wang
- Departments of †Chemistry and ‡Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chen Qian
- Departments of †Chemistry and ‡Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Departments of †Chemistry and ‡Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wolfgang G. Glasser
- Departments of †Chemistry and ‡Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alan R. Esker
- Departments of †Chemistry and ‡Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Park HY, Kim TH, Kim CG, Kim GY, Kim CM, Kim ND, Kim BW, Hwang HJ, Choi YH. Purpurogallin exerts anti‑inflammatory effects in lipopolysaccharide‑stimulated BV2 microglial cells through the inactivation of the NF‑κB and MAPK signaling pathways. Int J Mol Med 2013; 32:1171-8. [PMID: 24002379 DOI: 10.3892/ijmm.2013.1478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/23/2013] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the inhibitory effects of purpurogallin, a naturally occurring phenol, on the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators and cytokines in BV2 microglia cells. The cells were pre-treated or not with various concentrations of purpurogallin and then stimulated with 0.5 µg/ml LPS. Cell viability was measured by MTT assay. We also measured the production of nictric oxice (NO) and prostaglandin E2 (PGE2). Our data indicated that treatment with purpurogallin significantly inhibited the excessive production of NO and PGE2 in LPS-stimulated BV2 microglial cells. These inhibitory effects were associated with the downregulation of key enzymes for NO and PGE2, inducible NO synthase (iNOS) and cyclooxygenase-2 (COX2) expression, respectively. Purpurogallin also attenuated the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) by suppressing their mRNA and protein expression. The molecular mechanisms underlying the purpurogallin-mediated attenuation of inflammation in BV2 cells closely correlated with the suppression of the translocation of the nuclear factor-κB (NF-κB) p65 subunit into the nucleus and the degradation of the inhibitor of NF-κB (IκB). Moreover, purpurogallin exhibited anti-inflammatory properties by suppressing the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. These findings suggest that purpurogallin exerts neuroprotective effects through the suppression of pro-inflammatory pathways in activated microglia.
Collapse
Affiliation(s)
- Hye Young Park
- Department of Pharmacy, Busan National University, Busan 609‑735, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Lignins are complex aromatic heteropolymers that reinforce the cell walls of terrestrial plants. A new study identifies an ATP-binding cassette ABC transporter that pumps a monolignol lignin precursor across the plasma membrane.
Collapse
Affiliation(s)
- Richard Sibout
- Institute Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Saclay Plant Science, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles, Cedex, France
| | | |
Collapse
|
18
|
Slavov G, Allison G, Bosch M. Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. FRONTIERS IN PLANT SCIENCE 2013; 4:217. [PMID: 23847628 PMCID: PMC3701120 DOI: 10.3389/fpls.2013.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
Tropical C4 grasses from the genus Miscanthus are believed to have great potential as biomass crops. However, Miscanthus species are essentially undomesticated, and genetic, molecular and bioinformatics tools are in very early stages of development. Furthermore, similar to other crops targeted as lignocellulosic feedstocks, the efficient utilization of biomass is hampered by our limited knowledge of the structural organization of the plant cell wall and the underlying genetic components that control this organization. The Institute of Biological, Environmental and Rural Sciences (IBERS) has assembled an extensive collection of germplasm for several species of Miscanthus. In addition, an integrated, multidisciplinary research programme at IBERS aims to inform accelerated breeding for biomass productivity and composition, while also generating fundamental knowledge. Here we review recent advances with respect to the genetic characterization of the cell wall in Miscanthus. First, we present a summary of recent and on-going biochemical studies, including prospects and limitations for the development of powerful phenotyping approaches. Second, we review current knowledge about genetic variation for cell wall characteristics of Miscanthus and illustrate how phenotypic data, combined with high-density arrays of single-nucleotide polymorphisms, are being used in genome-wide association studies to generate testable hypotheses and guide biological discovery. Finally, we provide an overview of the current knowledge about the molecular biology of cell wall biosynthesis in Miscanthus and closely related grasses, discuss the key conceptual and technological bottlenecks, and outline the short-term prospects for progress in this field.
Collapse
Affiliation(s)
- Gancho Slavov
- *Correspondence: Gancho Slavov, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, Wales SY23 3EB, UK e-mail:
| | | | | |
Collapse
|
19
|
Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:11-31. [PMID: 23162114 DOI: 10.1093/jxb/ers287] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vascular plants (Tracheophytes) have adapted to a variety of environments ranging from arid deserts to tropical rainforests, and now comprise >250,000 species. While they differ widely in appearance and growth habit, all of them share a similar specialized tissue system (vascular tissue) for transporting water and nutrients throughout the organism. Plant vascular systems connect all plant organs from the shoot to the root, and are comprised of two main tissue types, xylem and phloem. In this review we examine the current state of knowledge concerning the process of vascular tissue formation, and highlight important mechanisms underlying key steps in vascular cell type specification, xylem and phloem tissue patterning, and, finally, the differentiation and maturation of specific xylem cell types.
Collapse
Affiliation(s)
- Mathias Schuetz
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada
| | | | | |
Collapse
|
20
|
Cottyn B, Kollmann A, Waffo‐Teguo P, Ducrot P. Rationalization and In Vitro Modeling of the Chemical Mechanisms of the Enzymatic Oxidation of Phenolic Compounds in Planta: From Flavonols and Stilbenoids to Lignins. Chemistry 2011; 17:7282-7. [DOI: 10.1002/chem.201100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Indexed: 12/24/2022]
Affiliation(s)
- Betty Cottyn
- UMR1318 Inra/AgroParisTech, IJPB, Route de Saint‐Cyr 78026 Versailles Cedex (France), Fax: (+33) 130‐83‐31‐19
| | - Albert Kollmann
- UMR1318 Inra/AgroParisTech, IJPB, Route de Saint‐Cyr 78026 Versailles Cedex (France), Fax: (+33) 130‐83‐31‐19
| | - Pierre Waffo‐Teguo
- Groupe d'Etude des Substances Végétales à Activité Biologique, Université de Bordeaux 2, 210 chemin de Leysotte cs 50008, F‐33882 Villenave d'Ornon (France)
| | - Paul‐Henri Ducrot
- UMR1318 Inra/AgroParisTech, IJPB, Route de Saint‐Cyr 78026 Versailles Cedex (France), Fax: (+33) 130‐83‐31‐19
| |
Collapse
|
21
|
Bouxin F, Baumberger S, Renault JH, Dole P. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers. BIORESOURCE TECHNOLOGY 2011; 102:5567-5573. [PMID: 21435863 DOI: 10.1016/j.biortech.2011.02.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 05/30/2023]
Abstract
Six coniferyl alcohol-coniferaldehyde dehydrogenation copolymers (DHcoPs) were synthesized in order to determine the influence of an increased number of aldehyde functions on hydrolysis. After heterogeneous hydrolysis using acidic Montmorillonite K10 clay, the DHcoPs were thioacidolyzed and analyzed by gel permeation chromatography (GPC). Comparison of the thioacidolyzed products, with and without the hydrolysis step, showed that there was a greater proportion of condensation reaction in the absence of aldehyde. When the coniferaldehyde content in the initial synthetic mixture was more than 30% (w/w), only a low fraction of condensed products was generated during the K10 clay hydrolysis step. This suggests that condensation pathways are mainly due to the alcohol present in the γ-position in the DHcoPs. Investigation of the reactivity and the potential condensation of aldehyde and alcohol monomers under hydrolysis conditions showed the important conversion of coniferyl alcohol and conversely the stability of coniferaldehyde.
Collapse
Affiliation(s)
- Florent Bouxin
- UMR 614 FARE, INRA, Bât 18-Moulin de la Housse-BP, 1039-51687 Reims Cedex 2, France.
| | | | | | | |
Collapse
|
22
|
Designing Biomass Crops with Improved Calorific Content and Attributes for Burning: a UK Perspective. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-13440-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
23
|
Habrant A, Gaillard C, Ralet MC, Lairez D, Cathala B. Relation between chemical structure and supramolecular organization of synthetic lignin-pectin particles. Biomacromolecules 2010; 10:3151-6. [PMID: 19894766 DOI: 10.1021/bm900950r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anouck Habrant
- UMR614 Fractionnement des Agro-Ressources et Environement, INRA, Université de Reims Champagne Ardennes, Reims, France
| | | | | | | | | |
Collapse
|
24
|
Fagerstedt KV, Kukkola EM, Koistinen VVT, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:186-94. [PMID: 20377680 DOI: 10.1111/j.1744-7909.2010.00928.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Class III secretable plant peroxidases occur as a large family of genes in plants with many functions and probable redundancy. In this review we are concentrating on the evidence we have on the catalysis of lignin polymerization by class III plant peroxidases present in the apoplastic space in the xylem of trees. Some evidence exists on the specificity of peroxidase isozymes in lignin polymerization through substrate specificity studies, from antisense mutants in tobacco and poplar and from tissue and cell culture lines of Norway spruce (Picea abies) and Zinnia elegans. In addition, real time (RT-)PCR results have pointed out that many peroxidases have tissue specific expression patterns in Norway spruce. Through combining information on catalytic properties of the enzymes, on the expression patterns of the corresponding genes, and on the presence of monolignols and hydrogen peroxide in the apoplastic space, we can show that specific peroxidases catalyze lignin polymerization in the apoplastic space of Norway spruce xylem.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Department of Biological and Environmental Sciences, Plant Biology, Helsinki University, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
25
|
Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:367-76. [PMID: 19264758 DOI: 10.1093/jxb/ern278] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lignification is a cell wall fortifying process which occurs in xylem tissue in a scheduled manner during tissue differentiation. In this review, enzymes and the genes responsible for lignin biosynthesis have been studied with an emphasis on lignin polymerizing class III secretable plant peroxidases. Our aim is to understand the cell and molecular biology of the polymerization of lignin especially in tracheids and vessels of woody species but much of the experimental evidence comes from herbaceous plants. Class III peroxidases pose many problems for empirical work as their encoding genes are variable, their substrate specificities are wide and the half-life of many of the isozymes is very long. However, there is some evidence for the role of specific peroxidases in lignin polymerization through antisense mutants in tobacco and poplar and from tissue and cell culture lines of Picea abies and Zinnia elegans. Peroxidase enzyme action has been shown by substrate specificity studies and, for example, RT-PCR results have pointed out that many peroxidases have tissue-specific expression patterns. Tissue-level location of gene expression of some peroxidases has been studied by in situ hybridization and their cellular localization with antibodies and using EGFP-fusion genes. From these, it can be concluded that, although many of the xylem class III peroxidases have the potential for functioning in the synthesis of the lignin polymer, the combined information of catalytic properties, expression, and localization can reveal differences in the significance of different peroxidases in the lignification process.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- Technical Research Center of Finland (VTT), PL 1000, 02044 VTT, Finland
| | | | | |
Collapse
|
26
|
Davin LB, Jourdes M, Patten AM, Kim KW, Vassão DG, Lewis NG. Dissection of lignin macromolecular configuration and assembly: Comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 2008; 25:1015-90. [DOI: 10.1039/b510386j] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|