1
|
Wang J, Xue B, Awoyemi O, Yuliantoro H, Mendis LT, DeVor A, Valentine SJ, Li P. Parallel sample processing for mass spectrometry-based single cell proteomics. Anal Chim Acta 2024; 1329:343241. [PMID: 39396304 PMCID: PMC11471953 DOI: 10.1016/j.aca.2024.343241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Single cell mass spectrometry (scMS) has shown great promise for label free proteomics analysis recently. To present single cell samples for proteomics analysis by MS is not a trivial task. Existing methods rely on robotic liquid handlers to scale up sample preparation throughput. The cost associated with specialized equipment hinders the broad adoption of these workflows, and the sequential sample processing nature limits the ultimate throughput. RESULTS In this work, we report a parallel sample processing workflow that can simultaneously process 10 single cells without the need of robotic liquid handlers for scMS. This method utilized 3D printed microfluidic devices to form reagent arrays on a glass slide, and a magnetic beads-based streamlined sample processing workflow to present peptides for LC-MS detection. We optimized key operational parameters of the method and demonstrated the quantification consistency among 10 parallel processed samples. Finally, the utility of the method in differentiating cell lines and studying the proteome change induced by drug treatment were demonstrated. SIGNIFICANCE The present method allows parallel sample processing for single cells without the need of expensive liquid handlers, which has great potential to further improve throughput and decrease the barrier for single cell proteomics.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Bo Xue
- Shared Research Facilities, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Herbi Yuliantoro
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Lihini Tharanga Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Liu P, Shi C, Liu S, Lei J, Lu Q, Hu H, Ren Y, Zhang N, Sun C, Chen L, Jiang Y, Feng L, Zhang T, Zhong K, Liu J, Zhang J, Zhang Z, Sun B, Chen J, Tang Y, Chen F, Yang J. A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus. Nat Commun 2023; 14:7773. [PMID: 38012219 PMCID: PMC10682394 DOI: 10.1038/s41467-023-43643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Juan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410152, China
| | - Bingjian Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Rahni Z, Hosseini SM, Shahrokh S, Saeedi Niasar M, Shoraka S, Mirjalali H, Nazemalhosseini-Mojarad E, Rostami-Nejad M, Malekpour H, Zali MR, Mohebbi SR. Long non-coding RNAs ANRIL, THRIL, and NEAT1 as potential circulating biomarkers of SARS-CoV-2 infection and disease severity. Virus Res 2023; 336:199214. [PMID: 37657511 PMCID: PMC10502354 DOI: 10.1016/j.virusres.2023.199214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The current outbreak of coronavirus disease 2019 (COVID-19) is a global emergency, as its rapid spread and high mortality rate, which poses a significant threat to public health. Innate immunity plays a crucial role in the primary defense against infections, and recent studies have highlighted the pivotal regulatory function of long non-coding RNAs (lncRNAs) in innate immune responses. This study aims to assess the circulating levels of lncRNAs namely ANRIL, THRIL, NEAT1, and MALAT1 in the blood of moderate and severe SARS-CoV-2 infected patients, in comparison to healthy individuals. Additionally, it aims to explore the potential of these lncRNAs as biomarkers for determining the severity of the disease. The blood samples were collected from a total of 38 moderate and 25 severe COVID-19 patients, along with 30 healthy controls. The total RNA was extracted and qPCR was performed to evaluate the blood levels of the lncRNAs. The results indicate significantly higher expression levels of lncRNAs ANRIL and THRIL in severe patients when compared to moderate patients (P value = 0.0307, P value = 0.0059, respectively). Moreover, the expression levels of lncRNAs ANRIL and THRIL were significantly up-regulated in both moderate and severe patients in comparison to the control group (P value < 0.001, P value < 0.001, P value = 0.001, P value < 0.001, respectively). The expression levels of lncRNA NEAT1 were found to be significantly higher in both moderate and severe COVID-19 patients compared to the healthy group (P value < 0.001, P value < 0.001, respectively), and there was no significant difference in the expression levels of NEAT1 between moderate and severe patients (P value = 0.6979). The expression levels of MALAT1 in moderate and severe patients did not exhibit a significant difference compared to the control group (P value = 0.677, P value = 0.764, respectively). Furthermore, the discriminative power of ANRIL and THRIL was significantly higher in the severe patient group than the moderate group (Area under curve (AUC) = 0.6879; P-value = 0.0122, AUC = 0.6947; P-value = 0.0093, respectively). In conclusion, the expression levels of the lncRNAs ANRIL and THRIL are correlated with the severity of COVID-19 and can be regarded as circulating biomarkers for disease progression.
Collapse
Affiliation(s)
- Zeynab Rahni
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shoraka
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Research and Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Han S, Chen X, Huang L. The tumor therapeutic potential of long non-coding RNA delivery and targeting. Acta Pharm Sin B 2022; 13:1371-1382. [PMID: 37139413 PMCID: PMC10149988 DOI: 10.1016/j.apsb.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) is a type of RNA over 200 nt long without any protein coding ability, which has been investigated relating to crucial biological function in cells. There are many key lncRNAs in tumor/normal cells that serve as a biological marker or a new target for tumor treatment. However, compared to some small non-coding RNA, lncRNA-based drugs are limited in clinical application. Different from other non-coding RNA, like microRNAs, most lncRNAs have a high molecular weight and conserved secondary structure, making the delivery of lncRNAs more complex than the small non-coding RNAs. Considering that lncRNAs constitute the most abundant part of the mammalian genome, it is critical to further explore lncRNA delivery and the subsequent functional studies for potential clinical application. In this review, we will discuss the function and mechanism of lncRNAs in diseases, especially cancer, and different approaches for lncRNA transfection using multiple biomaterials.
Collapse
|
5
|
Mo Y, Jiang B, Huo J, Lu J, Zeng X, Zhou Y, Zhang T, Yang M, Wei Y, Liu K. Quantitative Ubiquitylomic Analysis of the Dynamic Changes and Extensive Modulation of Ubiquitylation in Papaya During the Fruit Ripening Process. FRONTIERS IN PLANT SCIENCE 2022; 13:890581. [PMID: 35548272 PMCID: PMC9082147 DOI: 10.3389/fpls.2022.890581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Lysine ubiquitination is a highly conserved post-translational modification with diverse biological functions. However, there is little available information on lysine ubiquitination of non-histone proteins in papaya (Carica papaya L.). In total, 3,090 ubiquitination sites on 1,249 proteins with diverse localizations and functions were identified. Five conserved ubiquitinated K motifs were identified. Enrichment analysis showed that many Hsps were differentially ubiquitinated proteins (DUPs), suggesting an essential role of ubiquitination in degradation of molecular chaperone. Furthermore, 12 sugar metabolism-related enzymes were identified as DUPs, including an involvement of ubiquitination in nutrimental changes during the papaya ripening process. The ubiquitination levels of five fruit ripening-related DUPs, including one ethylene-inducible protein, two 1-aminocyclopropane-1-carboxylic acid oxidases, one endochitinase, and one cell wall invertase, were significantly changed during the ripening process. Our study extends the understanding of diverse functions for lysine ubiquitination in regulation of the papaya fruit ripening process.
Collapse
Affiliation(s)
- Yuxing Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bian Jiang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jingxin Huo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jiayi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Xiaoyue Zeng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Tao Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Min Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuerong Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
6
|
Li J, Feng H, Liu S, Liu P, Chen X, Yang J, He L, Yang J, Chen J. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathog 2022; 18:e1010412. [PMID: 35294497 PMCID: PMC8959173 DOI: 10.1371/journal.ppat.1010412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants. Chinese wheat mosaic virus (CWMV) causes a damaging disease in cereal plants. However, CWMV interacts with host factors to facilitate virus infection is not clear yet. Here, we found that S162 and S165 of CWMV cysteine-rich protein (CRP) are phosphorylated by SAPK7 in vivo and in vitro. Mutational analyses have indicated that these two phosphorylation sites of CRP (CRPS162/165D) promoting CWMV infection in plants, due to the supressed cell death and H2O2 production. Further investigations found the CRPS162/165D can interact with TaUBA2C, while the non-phosphorylatable mutant of CRP (CRPS162/165A) does not. Futhermore, we have determined that CRPS162/165D and TaUBA2C interaction inhibited the formation of TaUBA2C speckles in nucleus to attenuate its RNA- and DNA-binding activity. We also showed that TaUBA2C recruit the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to up-regulated these genes expressions and then induce cell death and H2O2 production in plant. This effect can be supressed by the expression of CRPS162/165D, in a dose-dependent manner. Taken together, our discovery may provide a new sight for the arms race between virus and its host plants.
Collapse
Affiliation(s)
- Juan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| |
Collapse
|
7
|
Malebary SJ, Alzahrani E, Khan YD. A comprehensive tool for accurate identification of methyl-Glutamine sites. J Mol Graph Model 2021; 110:108074. [PMID: 34768228 DOI: 10.1016/j.jmgm.2021.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Methylation is a biochemical process involved in nearly all of the human body functions. Glutamine is considered an indispensable amino acid that is susceptible to methylation via post-translational modification (PTM). Modern research has proved that methylation plays a momentous role in the progression of most types of cancers. Therefore, there is a need for an effective method to predict glutamine sites vulnerable to methylation accurately and inexpensively. The motive of this study is the formulation of an accurate method that could predict such sites with high accuracy. Various computationally intelligent classifiers were employed for their formulation and evaluation. Rigorous validations prove that deep learning performs best as compared to other classifiers. The accuracy (ACC) and the area under the receiver operating curve (AUC) obtained by 10-fold cross-validation was 0.962 and 0.981, while with the jackknife testing, it was 0.968 and 0.980, respectively. From these results, it is concluded that the proposed methodology works sufficiently well for the prediction of methyl-glutamine sites. The webserver's code, developed for the prediction of methyl-glutamine sites, is freely available at https://github.com/s20181080001/WebServer.git. The code can easily be set up by any intermediate-level Python user.
Collapse
Affiliation(s)
- Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Saudi Arabia.
| | - Ebraheem Alzahrani
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
8
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
9
|
Sáray R, Fábián A, Palkovics L, Salánki K. The 28 Ser Amino Acid of Cucumber Mosaic Virus Movement Protein Has a Role in Symptom Formation and Plasmodesmata Localization. Viruses 2021; 13:222. [PMID: 33572676 PMCID: PMC7912182 DOI: 10.3390/v13020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) is an economically significant virus infecting important horticultural and field crops. Current knowledge regarding the specific functions of its movement protein (MP) is still incomplete. In the present study, potential post-translational modification sites of its MP were assayed with mutant viruses: MP/S28A, MP/S28D, MP/S120A and MP/S120D. Ser28 was identified as an important factor in viral pathogenicity on Nicotiana tabacum cv. Xanthi, Cucumis sativus and Chenopodium murale. The subcellular localization of GFP-tagged movement proteins was determined with confocal laser-scanning microscopy. The wild type movement protein fused to green fluorescent protein (GFP) (MP-eGFP) greatly colocalized with callose at plasmodesmata, while MP/S28A-eGFP and MP/S28D-eGFP were detected as punctate spots along the cell membrane without callose colocalization. These results underline the importance of phosphorylatable amino acids in symptom formation and provide data regarding the essential factors for plasmodesmata localization of CMV MP.
Collapse
Affiliation(s)
- Réka Sáray
- Centre for Agricultural Research, Plant Protection Institute, Herman Ottó Street 15., H-1022 Budapest, Hungary;
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, Villányi Street 29-43., H-1118 Budapest, Hungary;
| | - Attila Fábián
- Centre for Agricultural Research, Agricultural Institute, Brunszvik Street 2, H-2462 Martonvásár, Hungary;
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, Villányi Street 29-43., H-1118 Budapest, Hungary;
| | - Katalin Salánki
- Centre for Agricultural Research, Plant Protection Institute, Herman Ottó Street 15., H-1022 Budapest, Hungary;
| |
Collapse
|
10
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
11
|
Hashimoto T, Mustafa G, Nishiuchi T, Komatsu S. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress. Int J Mol Sci 2020; 21:E1300. [PMID: 32075105 PMCID: PMC7072913 DOI: 10.3390/ijms21041300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Extensive utilization of silver nanoparticles (NPs) in agricultural products results in their interaction with other chemicals in the environment. To study the combined effects of silver NPs with nicotinic acid and potassium nitrate (KNO3), a gel-free/label-free proteomic technique was used. Root length/weight and hypocotyl length/weight of soybean were enhanced by silver NPs mixed with nicotinic acid and KNO3. Out of a total 6340 identified proteins, 351 proteins were significantly changed, out of which 247 and 104 proteins increased and decreased, respectively. Differentially changed proteins were predominantly associated with protein degradation and synthesis according to the functional categorization. Protein-degradation-related proteins mainly consisted of the proteasome degradation pathway. The cell death was significantly higher in the root tips of soybean under the combined treatment compared to flooding stress. Accumulation of calnexin/calreticulin and glycoproteins was significantly increased under flooding with silver NPs, nicotinic acid, and KNO3. Growth of soybean seedlings with silver NPs, nicotinic acid, and KNO3 was improved under flooding stress. These results suggest that the combined mixture of silver NPs, nicotinic acid, and KNO3 causes positive effects on soybean seedling by regulating the protein quality control for the mis-folded proteins in the endoplasmic reticulum. Therefore, it might improve the growth of soybean under flooding stress.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
| | - Ghazala Mustafa
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
| |
Collapse
|
12
|
Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci 2019; 20:ijms20225573. [PMID: 31717266 PMCID: PMC6888083 DOI: 10.3390/ijms20225573] [Citation(s) in RCA: 562] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding (lnc) RNAs are non-coding RNAs longer than 200 nt. lncRNAs primarily interact with mRNA, DNA, protein, and miRNA and consequently regulate gene expression at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels in a variety of ways. They play important roles in biological processes such as chromatin remodeling, transcriptional activation, transcriptional interference, RNA processing, and mRNA translation. lncRNAs have important functions in plant growth and development; biotic and abiotic stress responses; and in regulation of cell differentiation, the cell cycle, and the occurrence of many diseases in humans and animals. In this review, we summarize the functions and mechanisms of lncRNAs in plants, humans, and animals at different regulatory levels.
Collapse
|
13
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
14
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
17
|
Wu X, Gong F, Cao D, Hu X, Wang W. Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 2016; 16:847-65. [PMID: 26616472 DOI: 10.1002/pmic.201500301] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 11/11/2022]
Abstract
Under natural conditions, crop plants are frequently subjected to various abiotic environmental stresses such as drought and heat wave, which may become more prevalent in the coming decades. Plant acclimation and tolerance to an abiotic stress are always associated with significant changes in PTMs of specific proteins. PTMs are important for regulating protein function, subcellular localization and protein activity and stability. Studies of plant responses to abiotic stress at the PTMs level are essential to the process of plant phenotyping for crop improvement. The ability to identify and quantify PTMs on a large-scale will contribute to a detailed protein functional characterization that will improve our understanding of the processes of crop plant stress acclimation and stress tolerance acquisition. Hundreds of PTMs have been reported, but it is impossible to review all of the possible protein modifications. In this review, we briefly summarize several main types of PTMs regarding their characteristics and detection methods, review the advances in PTMs research of crop proteomics, and highlight the importance of specific PTMs in crop response to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Wu
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fangping Gong
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Di Cao
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Xiuli Hu
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
18
|
Mattei B, Spinelli F, Pontiggia D, De Lorenzo G. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1107. [PMID: 27532006 PMCID: PMC4969306 DOI: 10.3389/fpls.2016.01107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.
Collapse
|
19
|
Astafieva AA, Enyenihi AA, Rogozhin EA, Kozlov SA, Grishin EV, Odintsova TI, Zubarev RA, Egorov TA. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:323-9. [PMID: 26259198 DOI: 10.1016/j.plantsci.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 05/22/2023]
Abstract
Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications.
Collapse
Affiliation(s)
- Alexandra A Astafieva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Atim A Enyenihi
- Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eugene A Rogozhin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Sergey A Kozlov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Eugene V Grishin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, Moscow, 119991, Russian Federation
| | - Roman A Zubarev
- Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tsezi A Egorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
20
|
Hu Y, Li Z, Yuan C, Jin X, Yan L, Zhao X, Zhang Y, Jackson AO, Wang X, Han C, Yu J, Li D. Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4733-47. [PMID: 25998907 PMCID: PMC4507770 DOI: 10.1093/jxb/erv237] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The barley stripe mosaic virus (BSMV) triple gene block 1 (TGB1) protein is required for virus cell-to-cell movement. However, little information is available about how these activities are regulated by post-translational modifications. In this study, we showed that the BSMV Xinjiang strain TGB1 (XJTGB1) is phosphorylated in vivo and in vitro by protein kinase CK2 from barley and Nicotiana benthamiana. Liquid chromatography tandem mass spectrometry analysis and in vitro phosphorylation assays demonstrated that Thr-401 is the major phosphorylation site of the XJTGB1 protein, and suggested that a Thr-395 kinase docking site supports Thr-401 phosphorylation. Substitution of Thr-395 with alanine (T395A) only moderately impaired virus cell-to-cell movement and systemic infection. In contrast, the Thr-401 alanine (T401A) virus mutant was unable to systemically infect N. benthamiana but had only minor effects in monocot hosts. Substitution of Thr-395 or Thr-401 with aspartic acid interfered with monocot and dicot cell-to-cell movement and the plants failed to develop systemic infections. However, virus derivatives with single glutamic acid substitutions at Thr-395 and Thr-401 developed nearly normal systemic infections in the monocot hosts but were unable to infect N. benthamiana systemically, and none of the double mutants was able to infect dicot and monocot hosts. The mutant XJTGB1T395A/T401A weakened in vitro interactions between XJTGB1 and XJTGB3 proteins but had little effect on XJTGB1 RNA-binding ability. Taken together, our results support a critical role of CK2 phosphorylation in the movement of BSMV in monocots and dicots, and provide new insights into the roles of phosphorylation in TGB protein functions.
Collapse
Affiliation(s)
- Yue Hu
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhenggang Li
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Cheng Yuan
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Jin
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lijie Yan
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiaofei Zhao
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Zhang
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Andrew O Jackson
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Xianbing Wang
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
21
|
Liou MR, Hu CC, Chou YL, Chang BY, Lin NS, Hsu YH. Viral elements and host cellular proteins in intercellular movement of Bamboo mosaic virus. Curr Opin Virol 2015; 12:99-108. [PMID: 25951346 DOI: 10.1016/j.coviro.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/23/2022]
Abstract
As a member of the genus Potexvirus, Bamboo mosaic virus (BaMV) also belongs to the plant viruses that encode triple gene block proteins (TGBps) for intercellular movement within the host plants. Recent studies of the movement mechanisms of BaMV have revealed similarities and differences between BaMV and other potexviruses. This review focuses on the general aspects of viral and host elements involved in BaMV movement, the interactions among these elements, and the possible pathways for intra- and intercellular trafficking of BaMV. Major features of BaMV trafficking that have not been demonstrated in other potexviruses include: (i) the involvement of replicase, (ii) fine regulation by coat protein phosphorylation, (iii) the key roles played by TGBp3, (iv) the use of virions as the major transported form, and (v) the involvement of specific host factors, such as Ser/Thr kinase-like protein of Nicotiana benthamiana. We also highlight areas for future study that will provide a more comprehensive understanding of the detailed interactions among viral movement proteins and host factors, as well as the regulatory mechanisms of virus movement. Finally, a model based on the current knowledge is proposed to depict the diverse abilities of BaMV to utilize a wide range of mechanisms for efficient intercellular movement.
Collapse
Affiliation(s)
- Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yuan-Lin Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ban-Yang Chang
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
22
|
Romero-Rodríguez MC, Abril N, Sánchez-Lucas R, Jorrín-Novo JV. Multiplex staining of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early grown seedlings from a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp. FRONTIERS IN PLANT SCIENCE 2015; 6:620. [PMID: 26322061 PMCID: PMC4531236 DOI: 10.3389/fpls.2015.00620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/27/2015] [Indexed: 05/08/2023]
Abstract
As a preliminary step in the phosphoproteome analysis of germinating seeds (0 and 24 h after seed imbibition) and early grown seedlings (216 h after seed imbibition) from a non-orthodox sp. Quercus ilex, a multiplex (SYPRO-Ruby and Pro-Q DPS) staining of high-resolution 2-DE gels was used. By using this protocol it was possible to detect changes in protein-abundance and/or phosphorylation status. This simple approach could be a good complementary alternative to the enrichment protocols used in the search for phosphoprotein candidates. While 482 spots were visualized with SYPRO-Ruby, 222 were with Pro-Q DPS. Statistically significant differences in spot intensity were observed among samples, these corresponding to 85 SYPRO-Ruby-, 20 Pro-Q-DPS-, and 35 SYPRO-Ruby and Pro-Q-DPS-stained spots. Fifty-five phosphoprotein candidates showing qualitative or quantitative differences between samples were subjected to MALDI-TOF-TOF MS analysis, with 20 of them being identified. Identified proteins belonged to five different functional categories, namely: carbohydrate and amino acid metabolism, defense, protein folding, and oxidation-reduction processes. With the exception of a putative cyclase, the other 19 proteins had at least one orthologous phosphoprotein in Arabidopsis thaliana, Medicago truncatula, N. tabacum, and Glycine max. Out of the 20 identified, seven showed differences in intensity in Pro-Q-DPS but not in SYPRO-Ruby-stained gels, including enzymes of the glycolysis and amino acid metabolism. This bears out that theory the regulation of these enzymes occurs at the post-translational level by phosphorylation with no changes at the transcriptional or translational level. This is different from the mechanism reported in orthodox seeds, in which concomitant changes in abundance and phosphorylation status have been observed for these enzymes.
Collapse
Affiliation(s)
- M. Cristina Romero-Rodríguez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
- Agricultural and Plant Proteomics Research Group, Department of Biochemistry and Molecular Biology, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, University of CordobaCordoba, Spain
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de AsunciónSan Lorenzo, Paraguay
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Rosa Sánchez-Lucas
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
- Agricultural and Plant Proteomics Research Group, Department of Biochemistry and Molecular Biology, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, University of CordobaCordoba, Spain
| | - Jesús V. Jorrín-Novo
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
- Agricultural and Plant Proteomics Research Group, Department of Biochemistry and Molecular Biology, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, University of CordobaCordoba, Spain
- *Correspondence: Jesús V. Jorrín-Novo, Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Ed. Severo Ochoa, Planta Baja, 14071 Cordoba, Spain
| |
Collapse
|
23
|
Hung CJ, Huang YW, Liou MR, Lee YC, Lin NS, Meng M, Tsai CH, Hu CC, Hsu YH. Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1211-25. [PMID: 25025779 DOI: 10.1094/mpmi-04-14-0112-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study, we investigated the fine regulation of cell-to-cell movement of Bamboo mosaic virus (BaMV). We report that the coat protein (CP) of BaMV is phosphorylated in planta at position serine 241 (S241), in a process involving Nicotiana benthamiana casein kinase 2α (NbCK2α). BaMV CP and NbCK2α colocalize at the plasmodesmata, suggesting that phosphorylation of BaMV may be involved in its movement. S241 was mutated to examine the effects of temporal and spatial dysregulation of phosphorylation on i) the interactions between CP and viral RNA and ii) the regulation of cell-to-cell movement. Replacement of S241 with alanine did not affect RNA binding affinity but moderately impaired cell-to-cell movement. A negative charge at position 241 reduced the ability of CP to bind RNA and severely interfered with cell-to-cell movement. Deletion of residues 240 to 242 increased the affinity of CP to viral RNA and dramatically impaired cell-to-cell movement. A threonine at position 241 changed the binding preference of CP toward genomic RNA and inhibited cell-to-cell movement. Together, these results reveal a fine regulatory mechanism for the cell-to-cell movement of BaMV, which involves the modulation of RNA binding affinity through appropriate phosphorylation of CP by NbCK2α.
Collapse
|
24
|
Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol 2014; 26:115-24. [DOI: 10.1016/j.copbio.2013.12.004] [Citation(s) in RCA: 674] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/27/2022]
|
25
|
Barkla BJ, Castellanos-Cervantes T, de León JLD, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zörb C. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives. Proteomics 2014; 13:1885-900. [PMID: 23723162 DOI: 10.1002/pmic.201200399] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/18/2022]
Abstract
Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics.
Collapse
|
26
|
Dudley E, Bond AE. Phosphoproteomic Techniques and Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:25-69. [DOI: 10.1016/b978-0-12-800453-1.00002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Ganoth A, Tsfadia Y, Wiener R. Ubiquitin: Molecular modeling and simulations. J Mol Graph Model 2013; 46:29-40. [DOI: 10.1016/j.jmgm.2013.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
28
|
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. MASS SPECTROMETRY REVIEWS 2013; 32:335-65. [PMID: 23315723 DOI: 10.1002/mas.21365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, PO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Strabala TJ, Macmillan CP. The Arabidopsis wood model-the case for the inflorescence stem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:193-205. [PMID: 23849126 DOI: 10.1016/j.plantsci.2013.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Arabidopsis thaliana has successfully served as a model to discover genes and proteins that have roles in a wide range of plant traits, including wood-related traits, such as lignin, cellulose and hemicellulose biosynthesis, secondary growth regulation, and secondary cell wall synthesis. Both the radially thickened hypocotyl and the inflorescence stem (flower stalk) have been studied. In this review, we address lingering doubts regarding the utility of Arabidopsis as a model for wood development by highlighting studies that provide new biochemical and biophysical evidence that extend support for the Arabidopsis inflorescence stem as a model for wood development beyond what is currently thought. We describe different aspects of Arabidopsis that make it a highly versatile tool for the study of wood development. One would likely utilise the radially thickened hypocotyl because of its more fully developed vascular cambium for traits related specifically to secondary (i.e. cambial) growth. It is more productive to utilise the inflorescence stem for wood-like biophysical traits. Accession variation has been underexploited as a powerful method to discover genes governing wood-like traits. We discuss recent findings that survey the accession variation in Arabidopsis for biochemical and biophysical properties of various wood traits, such as microfibril angle, tensile strength and cellulose/hemicellulose content. Furthermore we discuss how larger-scale studies of this nature using plants grown in long days (as opposed to the current short-day paradigm) could accelerate gene discovery and our understanding of cell wall and wood development. We highlight some relatively unexplored areas of research relating to the secondary cell wall composition, architecture and biophysical properties of the inflorescence stem, and how these traits are relevant to wood formation. The Arabidopsis inflorescence stem has other characteristics, expressed genes and traits held in common with woody species that have not been widely characterised or discussed to date. We discuss how this conservation may indicate the more general potential for "true" woodiness in herbaceous species, in the context of so-called secondary woodiness.
Collapse
|
30
|
The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 2013; 18:4026-53. [PMID: 23558543 PMCID: PMC6269965 DOI: 10.3390/molecules18044026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 01/21/2023] Open
Abstract
Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape of oligosaccharides as well as spatial aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity that cellular glycans have for endogenous lectins. In order to eventually unravel structure-activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic testing of lectin panels with spatially defined ligand presentations can be considered as a biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at which endogenous lectins select their physiological counterreceptors from the complexity of the cellular glycome.
Collapse
|
31
|
Samuilova O, Santala J, Valkonen JPT. Tyrosine phosphorylation of the triple gene block protein 3 regulates cell-to-cell movement and protein interactions of Potato mop-top virus. J Virol 2013; 87:4313-21. [PMID: 23365450 PMCID: PMC3624400 DOI: 10.1128/jvi.03388-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Functions of viral proteins can be regulated through phosphorylation by serine/threonine kinases in plants, but little is known about the involvement of tyrosine kinases in plant virus infection. In this study, TGBp3, one of the three movement proteins encoded by a triple gene block (TGB) of Potato mop-top virus (PMTV), was detected for the first time in PMTV-infected plants and found to be tyrosine phosphorylated. Phosphorylation sites (Tyr(87-89) and Tyr(120)) were located in two amino acid motifs conserved in the TGB-containing, rod-shaped plant viruses. Substitution of these tyrosine residues in both motifs was needed to abolish tyrosine phosphorylation of TGBp3. Substitution of Tyr(87-89) with alanine residues enhanced the interaction between TGBp3 and TGBp2 and inhibited cell-to-cell movement of PMTV. On the other hand, substitution of Tyr(120) with alanine resulted in no alteration in the interaction of TGBp3 with TGBp2, but the mutant virus was not infectious. The results suggest that tyrosine phosphorylation is a mechanism regulating the functions of plant virus movement proteins.
Collapse
Affiliation(s)
- Olga Samuilova
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
32
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|