1
|
Meitei AL, Yogendra K, Sanivarapu H, Meetei NT, Rai M, Tyagi W. Metabolite profiling reveals differential accumulation of secondary metabolites related to flavour and colour across four heirloom chilli landraces. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:477-491. [PMID: 40256270 PMCID: PMC12006577 DOI: 10.1007/s12298-025-01576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
Chillies from Northeast India exhibit wide variability in fruit morphology, pungency, bearing habit and crop duration. An untargeted metabolite profiling using LC-HRMS of four 'heirloom' pungent landraces viz. Naga chilli (AL-1), Dalle khursani (AL-2), Sohmynken khnai (AL-3), and J-41(B) was performed and compared with Kashi anmol (KA). While AL-2, J-41(B) and KA belong to C. annuum species, AL-1 is categorised as C. chinense and AL-3 is C. frutescens. A total of 6990 consistent peaks of monoisotopic masses were detected, out of which 2702 metabolites were identified using accurate mass error < 10 ppm. A higher number of differentially accumulated metabolites were seen in J-41(B) versus AL-3 (1376), followed by J-41(B) versus AL-2 (1365), J-41(B) versus AL-1 (1257), KA versus AL-2 (649), AL-3 versus KA (616), KA versus AL-1 (594) and J-41(B) versus KA (413). Variation among species was higher than variation within species. Pathway analysis identified fatty acid, carotenoid, flavonoid and capsaicinoid as key pathways. We identified eight major categories of metabolites, including fatty acids, sterol lipids, and flavonoids, which together account for over 70% of the significantly expressed metabolites across the genotypes. This study explores untargeted metabolites in various chilli species, offering insights into the biochemical and molecular mechanisms which may play a role in governing important fruit traits. Identification of key metabolites and underlying alleles for twenty-one genes across three pathways (flavonoid, capsaicinoid and carotenoid) suggests that the metabolites and associated alleles identified in this study can be used as biomarkers for further characterization of these heirloom chilli and could provide distinct parameter(s) in distinguishing improved cultivars from landraces. This will contribute towards breeding programs in aiding selection of fruits of the desirable traits. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01576-4.
Collapse
Affiliation(s)
- Aheibam Loyanganba Meitei
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya 793103 India
| | - Kalenahalli Yogendra
- Research Program- Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324 India
| | - Hemalatha Sanivarapu
- Research Program- Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324 India
| | - Ngasepam Tombisana Meetei
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya 793103 India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya 793103 India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Samastipur, Bihar 848125 India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya 793103 India
- Research Program- Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324 India
| |
Collapse
|
2
|
Chen QB, Sun XY, Zheng MY, Liu YN, Zhang JX, Zhou QF, Pei DL, Liu DM, Chen YW, Gao H, Xing XL, Jiang H, Wang XL, Yuan L, Wang WJ. Transcription factor CaPHR3 enhances phosphate starvation tolerance by up-regulating the expression of the CaPHT1;4 phosphate transporter gene in pepper. Int J Biol Macromol 2025; 292:139315. [PMID: 39740702 DOI: 10.1016/j.ijbiomac.2024.139315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Plants frequently encounter phosphate (Pi) starvation due to its scarce availability in soil, necessitating an adaptive phosphate starvation response (PSR). This study explores this adaptation in pepper (Capsicum annuum L.) under low-Pi stress, focusing on the PHOSPHATE STARVATION RESPONSE (PHR) gene family. We observably halted shoot growth but promoted root elongation in pepper seedlings under low-Pi conditions, significantly impacting regulatory networks. Our research identified 13 PHR transcription factors in pepper, particularly noting that CaPHR3 rapidly up-regulates in response to low-Pi stress. Overexpressing CaPHR3 in Arabidopsis thaliana enhanced Pi starvation tolerance by modulating PSR-related genes and mitigated hypersensitivity in the Atphr1phl1 double mutant. Furthermore, CaPHR3 binds to the P1BS motif in the pepper PHOSPHATE TRANSPORTER 1;4 (PHT1;4) promoter to boost its expression under Pi deficiency. This activation increased Pi uptake and starvation tolerance when overexpressed. Overall, we pinpointed key players in the PSR mechanism through the CaPHR3-CaPHT1;4 pathway, contributing significantly to our understanding of Pi homeostasis and adaptive strategies in pepper under Pi-deficient conditions.
Collapse
Affiliation(s)
- Qing-Bin Chen
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Xiao-Yu Sun
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Meng-Yao Zheng
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Ya-Nan Liu
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jin-Xiu Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Qing-Feng Zhou
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Dong-Li Pei
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China; Zhongcheng Guolian (Henan) Biotechnology Co., Ltd. Shangqiu, Henan 476000, China
| | - Dong-Mei Liu
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Ya-Wei Chen
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Hang Gao
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Xiao-Long Xing
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Hao Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xue-Ling Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Li Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| | - Wen-Jing Wang
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| |
Collapse
|
3
|
Adom M, Fening KO, Billah MK, Aigbedion-Atalor PO, Acheampong MA, Wilson DD. Susceptibility of Capsicum varieties to Thaumatotibia leucotreta (Lepidoptera: Tortricidae) infestation for production optimization. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2567-2576. [PMID: 39350334 DOI: 10.1093/jee/toae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
Abstract
Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) is a major threat to the production and marketing of pepper (Capsicum spp.) in Ghana. To reduce the damage of the pest on pepper farming, it is important to find appropriate control methods, which may include the use of resistant host plants. This study investigated the relative susceptibility of 6 pepper varieties commonly cultivated in Ghana: Legon 18, Bird's eye, Scotch bonnet, Cayenne, KA2, and sweet pepper (Yolo wonder+ variety). Choice and no-choice ovipositional preference tests were conducted and the population growth rate of T. leucotreta was determined by establishing life table parameters including the net reproductive rates (R0), the mean generation time (G), intrinsic rate of natural increase (rm), the population doubling time (T), and the finite rate of increase (λ). In the no-choice test, females exhibited oviposition preference for sweet pepper (12.08 eggs/fruit), while Bird's eye was the least preferred (5.00 eggs/fruit). The same results were observed in the choice test. However, the population growth rate of T. leucotreta was highest on the Scotch bonnet and Cayenne, with rm of 0.124 and 0.127, respectively, while the Bird's eye and sweet pepper recorded the least rm of 0.116. Thus, the tested varieties had varying levels of susceptibility to T. leucotreta infestation. Bird's eye was the least susceptible variety, while Cayenne and Scotch bonnet were the most susceptible varieties. These findings could direct farmers on the choices of pepper varieties for cultivation and proffer potential opportunities to breed new varieties resistant to T. leucotreta infestation.
Collapse
Affiliation(s)
- Médétissi Adom
- African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon, PMB L. 59, Accra, Ghana
| | - Ken O Fening
- African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon, PMB L. 59, Accra, Ghana
- Soil and Irrigation Research Centre, School of Agriculture, University of Ghana, Legon P. O. Box LG. 68, Accra, Ghana
| | - Maxwell K Billah
- African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon, PMB L. 59, Accra, Ghana
- The Department of Animal Biology and Conservation Science, University of Ghana, Legon, P. O. Box LG. 67, Accra, Ghana
| | - Pascal O Aigbedion-Atalor
- National Horticultural Research Institute (NIHORT), PMB. 5432, Jericho Reservation Area, Ibadan, Oyo State, Nigeria
- Department of Ecology, Brandenburg University of Technology 03046 Cottbus, Senftenberg, Germany
| | - Mavis A Acheampong
- African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon, PMB L. 59, Accra, Ghana
- Department of Crop Science, University of Ghana, Legon, P. O. Box LG 44, Accra, Ghana
| | - David D Wilson
- African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon, PMB L. 59, Accra, Ghana
- The Department of Animal Biology and Conservation Science, University of Ghana, Legon, P. O. Box LG. 67, Accra, Ghana
| |
Collapse
|
4
|
Xue Q, Zhang Q, Zhang A, Li D, Liu Y, Xu H, Yang Q, Liu F, Han T, Tang X, Zhang X. Integrated metabolome and transcriptome analysis provides clues to fruit color formation of yellow, orange, and red bell pepper. Sci Rep 2024; 14:29737. [PMID: 39613866 DOI: 10.1038/s41598-024-81005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Fruit color is a crucial trait for bell pepper. To investigate the mechanism of color formation, three bell pepper lines with different color (yellow, orange and red) were used as materials to conduct comprehensive targeted metabolomic and transcriptomic analyses. During the process of fruit development, 54 carotenoids metabolites were discovered, exhibiting unique accumulation patterns and notable variety specificity. The types and content of carotenoids in orange fruit (OM) were notably greater compared to the other two varieties. Red pigment (capsanthin and capsorubin) was specifically enriched in red fruit (RM), and yellow pigment (lutein and zeaxanthin) is the highest in yellow fruit (YM) and OM. Five modules positively correlated with carotenoid accumulation and one negative module was determined by weighted gene co-expression network analysis (WGCNA). Additionally, transcription factors (TFs) and hub genes related to carotenoid synthesis were predicted. By elucidating the regulation of 7 key carotenoid metabolites by 14 critical genes and 5 key TFs, we constructed a comprehensive carotenoid biosynthesis metabolic network that comprehensively explains the pigment changes observed in green and mature pepper fruit. Overall, the results not only provide important insights into carotenoid synthesis pathway, but also lay a solid base for revealing the mechanism of bell pepper color transformation.
Collapse
Affiliation(s)
- Qiqin Xue
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Qingxia Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Aiai Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Da Li
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Yongguang Liu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Haicheng Xu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Qinghua Yang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Fengyan Liu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Tongyao Han
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xiaozhen Tang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xiurong Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China.
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China.
| |
Collapse
|
5
|
Song Z, Xu X, Chen X, Chang J, Li J, Cheng J, Zhang B. Multi-omics analysis provides insights into the mechanism underlying fruit color formation in Capsicum. FRONTIERS IN PLANT SCIENCE 2024; 15:1448060. [PMID: 39568454 PMCID: PMC11576296 DOI: 10.3389/fpls.2024.1448060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Fruit color is a crucial attribute of fruit quality in peppers (Capsicum spp.). However, few studies have focused on the mechanism of color formation in immature pepper fruits. In this study, the light-yellow color observed in immature CSJ009 fruits compared to CSJ010 could be attributed to decreased chlorophyll and carotenoid pigments. Through integrated analysis of the transcriptome and metabolome of CSJ009 and CSJ010, we identified 23,930 differentially expressed genes (DEGs) and 345 differentially accumulated metabolites (DAMs). Furthermore, integrated analysis revealed a strong correlation between the HCT-like gene and metabolite MWS0178 (chlorogenic acid). Paraffin section assay revealed that the epidermal cells of immature CSJ010 fruits exhibited a more compact arrangement with significantly greater length than those of CSJ009. Quantitative determination of carotenoids showed that lutein emerged as the predominant carotenoid in immature pepper fruits. Additionally, missense mutation of LCYB2 is likely to lead to a decrease in β-carotene content in immature CSJ009 fruits, whereas CCS may directly catalyze the conversion of lycopene to β-carotene in mature fruits. The null mutation in CCS promoted the biosynthesis of β,ϵ-branch carotenoids leading to lutein being the most abundant carotenoid found in orange CSJ010 fruits. These findings provide important insights into the mechanism underlying color formation in pepper fruits and establish a foundation for the further exploration of color-related genes.
Collapse
Affiliation(s)
- Zhao Song
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaowan Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingjing Chang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baige Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Feng S, Zhou L, Sharif R, Diao W, Liu J, Liu X, Chen K, Chen G, Cao B, Zhu Z, Liao Y, Lei J, Chen C. Mapping and cloning of pepper fruit color-related genes based on BSA-seq technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1447805. [PMID: 39524565 PMCID: PMC11543483 DOI: 10.3389/fpls.2024.1447805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Fruit color is an important qualitative trait that greatly influences the marketability of peppers. Fruit color can be divided into two categories. Green fruit color denotes commercial maturity, whereas ripe fruit indicates physiological maturity. Herein, segregation populations were created using the 'D24' with pale green in the green fruit stage, orange in the mature fruit stage, and 'D47' with green in the green fruit stage and red in the mature fruit stage. BSA-seq and genetic linkage map analysis revealed green fruit color was linked to (gyqtl1.1) on Chr1 and (gyqtl10.1) on Chr10, while mature fruit color was linked to Chr6. Using functional annotation, sequence, and expression analysis, we speculate that an SNP mutation in the CapGLK2 gene at the gyqtl10.1 interval could initiate premature termination of translation, thus yielding green to pale green fruits in D47. Conversely, the orange color in mature D24 fruits is due to the Indel-mediated premature termination of translation of the CapCCS gene. Our research offers a theoretical foundation for choosing different varieties of pepper fruit based on their color.
Collapse
Affiliation(s)
- Shuo Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rahat Sharif
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Weiping Diao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jiali Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xinxin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kunhao Chen
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, Guangdong, China
| | - Guoju Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Liao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Yang Y, Gao C, Ye Q, Liu C, Wan H, Ruan M, Zhou G, Wang R, Li Z, Diao M, Cheng Y. The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2887. [PMID: 39458834 PMCID: PMC11511365 DOI: 10.3390/plants13202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism. The findings of this study are expected to enhance comprehension of capsaicinoids metabolism and aid in the improvement of breeding and cultivation practices for high-quality pepper in the future.
Collapse
Affiliation(s)
- Yuanling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chengan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Horticultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Chenxu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Ming Diao
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| |
Collapse
|
9
|
von Steimker J, Tripodi P, Wendenburg R, Tringovska I, Nankar AN, Stoeva V, Pasev G, Klemmer A, Todorova V, Bulut M, Tikunov Y, Bovy A, Gechev T, Kostova D, Fernie AR, Alseekh S. The genetic architecture of the pepper metabolome and the biosynthesis of its signature capsianoside metabolites. Curr Biol 2024; 34:4209-4223.e3. [PMID: 39197460 DOI: 10.1016/j.cub.2024.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Capsicum (pepper) is among the most economically important species worldwide, and its fruits accumulate specialized metabolites with essential roles in plant environmental interaction and human health benefits as well as in conferring their unique taste. However, the genetics underlying differences in metabolite presence/absence and/or accumulation remain largely unknown. In this study, we carried out a genome-wide association study as well as generating and characterizing a novel backcross inbred line mapping population to determine the genetic architecture of the pepper metabolome. This genetic analysis provided over 1,000 metabolic quantitative trait loci (mQTL) for over 250 annotated metabolites. We identified 92 candidate genes involved in various mQTLs. Among the identified loci, we described and validated a gene cluster of eleven UDP-glycosyltransferases (UGTs) involved in monomeric capsianoside biosynthesis. We additionally constructed the gene-by-gene-based biosynthetic pathway of pepper capsianoside biosynthesis, including both core and decorative reactions. Given that one of these decorative pathways, namely the glycosylation of acyclic diterpenoid glycosides, contributes to plant resistance, these data provide new insights and breeding resources for pepper. They additionally provide a blueprint for the better understanding of the biosynthesis of species-specific natural compounds in general.
Collapse
Affiliation(s)
- Julia von Steimker
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | - Regina Wendenburg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Ivanka Tringovska
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Amol N Nankar
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - Veneta Stoeva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Gancho Pasev
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Velichka Todorova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen str., Plovdiv 4000, Bulgaria
| | - Dimitrina Kostova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| |
Collapse
|
10
|
Magner ET, Freund Saxhaug K, Zambre A, Bruns K, Carroll P, Snell-Rood EC, Hegeman AD, Carter CJ. A multifunctional role for riboflavin in the yellow nectar of Capsicum baccatum and Capsicum pubescens. THE NEW PHYTOLOGIST 2024; 243:1991-2007. [PMID: 38874372 DOI: 10.1111/nph.19886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
A few Capsicum (pepper) species produce yellow-colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown. A combination of analytical biochemistry techniques was used to identify the pigment that gives Capsicum baccatum and Capsicum pubescens nectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment. High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin. Some Capsicum nectars contain a yellow-colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar-feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in some Capsicum nectars has several functions.
Collapse
Affiliation(s)
- Evin T Magner
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | | | - Amod Zambre
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Kaitlyn Bruns
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Patrick Carroll
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Adrian D Hegeman
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Clay J Carter
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
11
|
Sebastin R, Kim J, Jo IH, Yu JK, Jang W, Han S, Park HS, AlGarawi AM, Hatamleh AA, So YS, Shim D, Chung JW. Comparative chloroplast genome analyses of cultivated and wild Capsicum species shed light on evolution and phylogeny. BMC PLANT BIOLOGY 2024; 24:797. [PMID: 39179978 PMCID: PMC11344449 DOI: 10.1186/s12870-024-05513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The chloroplast (cp.) genome, also known as plastome, plays crucial roles in plant survival, adaptation, and evolution. The stable genetic structure of cp. genomes provides an ideal system for investigating species evolution. We sequenced three complete cp. genome sequences of Capsicum species and analyzed them using sequences of various Capsicum species retrieved from the NCBI database. The cp. genome of Capsicum species maintains a well-preserved quadripartite structure consisting of two inverted repeats (IRs) flanked by a large single copy (LSC) region and a small single copy (SSC) region. The sizes of cp. genome sequences ranged from 156,583 bp (C. lycianthoides) to 157,390 bp (C.pubescens). A total of 127-132 unique genes, including 83-87 protein-coding, 36-37 tRNA, and eight rRNA genes, were predicted. Comparison of cp. genomes of 10 Capsicum species revealed high sequence similarity in genome-wide organization and gene arrangements. Fragments of trnT-UGU/trnL-UAA, ccsA, ndhD, rps12, and ycf1 were identified as variable regions, and nucleotide variability of LSC and SSC was higher than that of IR. Phylogenetic speciation analysis showed that the major domesticated C. annuum species were the most extensively divergent species and closely related to C. tovarii and C. frutescens. Analysis of divergent times suggested that a substantial range of speciation events started occurring ~ 25.79 million years ago (Mya). Overall, comparative analysis of cp. genomes of Capsicum species not only offers new insights into their genetic variation and phylogenetic relationships, but also lays a foundation for evolutionary history, genetic diversity, conservation, and biological breeding of Capsicum species.
Collapse
Affiliation(s)
- Raveendar Sebastin
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jaewook Kim
- Department of Biology Education, Korea National University of Education, Cheongju, 28173, Republic of Korea
| | - Ick-Hyun Jo
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ju-Kyung Yu
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woojong Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Seahee Han
- Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Hyun-Seung Park
- Department of Integrative Biological Sciences and Industry, Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Republic of Korea
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Donghwan Shim
- Department of Biological Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
12
|
Wang J, Duan X, An Y, He J, Li J, Xian J, Zhou D. An Analysis of Capsaicin, Dihydrocapsaicin, Vitamin C and Flavones in Different Tissues during the Development of Ornamental Pepper. PLANTS (BASEL, SWITZERLAND) 2024; 13:2038. [PMID: 39124156 PMCID: PMC11313734 DOI: 10.3390/plants13152038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
As a fruit and vegetable crop, the ornamental pepper is not just highly ornamental but also rich in nutritional value. The quality of ornamental pepper fruits is given in their contents of capsaicin, vitamin C (VC), flavonoids and total phenols. The study concentrated on the accumulation of capsaicin and dihydrocapsaicin in different tissues of 18 peppers during fruit growth and development. The results showed that the pericarp and placenta contained significantly higher levels of capsaicin than dihydrocapsaicin. Additionally, the placenta contained significantly higher levels of both capsaicin and dihydrocapsaicin compared to the pericarp. The content of capsaicin was in the range of 0-6.7915 mg·g-1, the range of dihydrocapsaicin content was 0-5.329 mg·g-1. Interestingly, we found that the pericarp is rich in VC (5.4506 mg·g-1) and the placenta is high in flavonoids (4.8203 mg·g-1) and total phenols (119.63 mg·g-1). The capsaicin is the most important component using the correlation analysis and principal component analysis. The qPCR results substantiated that the expression of genes in the placenta was significantly higher than that in the pericarp and that the expression of genes in green ripening stage was higher than that in red ripening stage. This study could be utilized to select the best ripening stages and tissues to harvest peppers according to the use of the pepper and to the needs of producers. It not only provides a reference for quality improvement and processing for consumers and market but also provides a theoretical basis for high-quality pepper breeding.
Collapse
Affiliation(s)
- June Wang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (X.D.); (Y.A.); (J.H.); (J.L.); (J.X.); (D.Z.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Popova AV, Stefanov M, Mihailova G, Borisova P, Georgieva K. Response of Tomato Plants, Ailsa Craig and Carotenoid Mutant tangerine, to Simultaneous Treatment by Low Light and Low Temperature. PLANTS (BASEL, SWITZERLAND) 2024; 13:1929. [PMID: 39065456 PMCID: PMC11281013 DOI: 10.3390/plants13141929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tomato (Solanum lycopersicum L.) plants, wild type Ailsa Craig, and carotenoid mutant tangerine that accumulates prolycopene instead of all-trans-lycopene were exposed to a combined treatment by low light and low temperature for 5 days. The ability of plants to recover from the stress after development for 3 days at control conditions was followed as well. The suffered oxidative stress was evaluated by the extent of pigment content, lipid peroxidation, membrane stability, and H2O2 generation. The level of MDA content under combined treatment in tangerine implies that the mutant demonstrates lower sensitivity to stress in comparison with Ailsa Craig. The oxidative protective strategy of plants was estimated by following the antioxidant and antiradical activity of phenolic metabolites, including anthocyanins, as well as the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). Presented results revealed that the oxidative stress was much stronger expressed after exposure of both types of plants to low light combined with low temperature compared to that after treatment with only low light. The most significant antioxidant protection was provided by phenolic substances, including anthocyanins. The lower sensitivity of tangerine plants to low light can be attributed to the higher activity of the antioxidant enzyme CAT.
Collapse
Affiliation(s)
- Antoaneta V. Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (M.S.); (P.B.)
| | - Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (M.S.); (P.B.)
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (G.M.); (K.G.)
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (M.S.); (P.B.)
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (G.M.); (K.G.)
| |
Collapse
|
14
|
Alcaro S, Rocca R, Rotundo MG, Bianco F, Scordamaglia L. Morzeddhu: A Unique Example of a Traditional and Sustainable Typical Dish from Catanzaro. Foods 2024; 13:1810. [PMID: 38928752 PMCID: PMC11203147 DOI: 10.3390/foods13121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
"Morzeddhu" in the local dialect of Catanzaro ("Morzello" in Italian) is an official typical dish of the capital of the Calabria region. It is a peasant dish, almost unknown at an international level, that labels, in an extraordinary way, the culinary identity of Catanzaro, a city founded around the X century. After America's discovery, its preparation was optimized and definitively fixed. Its recipe is strictly based on a cow's "fifth quarter" combined with spicy and typical Mediterranean vegetables. Remarkably, no pork meat is used, and when all traditional ingredients are included in the complex and quite long preparation of this special dish, it can deserve the title of "Illustrissimo". This review provides a scientific description of Illustrissimo, emphasizing its unique properties and connection to the circular economy, food security, and the Mediterranean diet. We also highlight its unique quality compared to other alternatives through an analysis of their nutritional facts and bioactive compounds. Nutritionally, offal and fifth quarter components are a rich source of high-quality protein, with lower levels of total fat and saturated fatty acids compared to other meat cuts. In essence, this dish offers a great example of a high-quality yet affordable meal, aligning perfectly with a Mediterranean diet.
Collapse
Affiliation(s)
- Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy;
- Antica Congrega Tre Colli, Viale De Filippis, 320, 88100 Catanzaro, Italy; (F.B.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy;
| | - Maria Grazia Rotundo
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy;
| | - Francesco Bianco
- Antica Congrega Tre Colli, Viale De Filippis, 320, 88100 Catanzaro, Italy; (F.B.)
| | - Luigi Scordamaglia
- Antica Congrega Tre Colli, Viale De Filippis, 320, 88100 Catanzaro, Italy; (F.B.)
- Fondazione Filiera Italia per la Distintività del Cibo, del Sistema Agroalimentare e della Trasformazione, Via Ventiquattro Maggio 43, 00184 Roma, Italy
| |
Collapse
|
15
|
Feng P, Wang Y, Wen J, Ren Y, Zhong Q, Li Q. Cloning and Analysis of Expression of Genes Related to Carotenoid Metabolism in Different Fruit Color Mutants of Pepper ( Capsicum annuum L.). Genes (Basel) 2024; 15:315. [PMID: 38540374 PMCID: PMC10970409 DOI: 10.3390/genes15030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
The formation of fruit color in pepper is closely related to the processes of carotenoid metabolism. In this study, red wild-type pepper XHB, SP01, PC01 and their corresponding mutants H0809 (orange), SP02 (yellow), and PC02 (orange) were used as research materials. The Ggps, Psy, Lcyb, Crtz, Zep, and Ccs genes involved in carotenoid biosynthesis were cloned, and bioinformatics and expression analyses were carried out. The results showed that the full lengths of the six genes were 1110 bp, 2844 bp, 1497 bp, 2025 bp, 510 bp, and 1497 bp, and they encoded 369, 419, 498, 315, 169, and 498 amino acids, respectively. Except for the full-length Ccs gene, which could not be amplified in the yellow mutant SP02 and the orange mutant PC02, the complete full-length sequences of the other genes could be amplified in different materials, indicating that the formation of fruit color in the SP02 and PC02 mutants could be closely related to the deletion or mutation of the Ccs gene. The analytical results of real-time quantitative reverse transcription PCR (qRT-PCR) showed that the Ggps, Psy, Lcyb, Crtz, and Zep genes were expressed at different developmental stages of three pairs of mature-fruit-colored materials, but their patterns of expression were not consistent. The orange mutant H0809 could be amplified to the full Ccs gene sequence, but its expression was maintained at a lower level. It showed a significant difference in expression compared with the wild-type XHB, indicating that the formation of orange mutant H0809 fruit color could be closely related to the different regulatory pattern of Ccs expression. The results provide a theoretical basis for in-depth understanding of the molecular regulatory mechanism of the formation of color in pepper fruit.
Collapse
Affiliation(s)
| | | | | | | | - Qiwen Zhong
- Academy of Agricultural and Forestry Sciences, Qinghai University/Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China; (P.F.); (Y.W.); (J.W.); (Y.R.); (Q.L.)
| | | |
Collapse
|
16
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
17
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
18
|
Giordano D, Facchiano A, Minasi P, D’Agostino N, Parisi M, Carbone V. Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity. Molecules 2023; 28:6772. [PMID: 37836615 PMCID: PMC10574069 DOI: 10.3390/molecules28196772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the simultaneous extraction and analysis through high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and structural bioinformatics based on the protein modelling and molecular simulations of protein-ligand docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello (3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of the homotetrameric human TRPV1, and it was used for docking simulations with the compounds detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The simulations indicate that different capsaicinoids can interact with the receptor, providing details on the molecular interaction, with similar predicted binding energy values. These results offer new insights into the interaction of capsaicinoids with TRPV1 and their possible actions.
Collapse
Affiliation(s)
- Deborah Giordano
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (D.G.); (P.M.)
| | - Angelo Facchiano
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (D.G.); (P.M.)
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (D.G.); (P.M.)
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano, Italy;
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (D.G.); (P.M.)
| |
Collapse
|
19
|
Velitchkova M, Stefanov M, Popova AV. Effect of Low Light on Photosynthetic Performance of Tomato Plants-Ailsa Craig and Carotenoid Mutant Tangerine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3000. [PMID: 37631211 PMCID: PMC10459318 DOI: 10.3390/plants12163000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The effects of a five-day treatment with low light intensity on tomato plants-Ailsa Craig and tangerine mutant-at normal and low temperatures and after recovery for three days under control conditions were investigated. The tangerine tomato, which has orange fruits, yellowish young leaves, and pale blossoms, accumulates prolycopene rather than all-trans lycopene. We investigated the impact of low light at normal and low temperatures on the functioning and effectiveness of photosynthetic apparatuses of both plants. The photochemical activities of Photosystem I (PSI) and Photosystem II (PSII) were assessed, and the alterations in PSII antenna size were characterized by evaluating the abundance of PSII-associated proteins Lhcb1, Lhcb2, CP43, and CP47. Alterations in energy distribution and interaction of both photosystems were analyzed using 77K fluorescence. In Aisla Craig plants, an increase in thylakoid membrane fluidity was detected during treatment with low light at a low temperature, while for the tangerine mutant, no significant change was observed. The PSII activity of thylakoids from mutant tangerine was more strongly inhibited by treatment with low light at a low temperature while low light barely affected PSII in Aisla Craig. The obtained data indicated that the observed differences in the responses of photosynthetic apparatuses of Ailsa Craig and tangerine when exposed to low light intensity and suboptimal temperature were mainly related to the differences in sensitivity and antenna complexes of PSII.
Collapse
Affiliation(s)
- Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (M.S.)
| | | | | |
Collapse
|
20
|
de Aguiar AC, Pereira GA, Ribeiro CSDC, Eberlin MN, Soares LP, Ruiz ALTG, Pastore GM, Martínez J. Capsicum chinense var. BRS Moema: chemical characterization by HPLC-ESI-MS/MS and antiproliferative screening. Food Funct 2023. [PMID: 37401347 DOI: 10.1039/d3fo01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Capsiate and phenolics present in the free, esterified, glycosylated, and insoluble-bound forms of BRS Moema peppers were characterized and quantified using UHPLC-ESI-MS/MS. Additionally, the in vitro antiproliferative activity of BRS Moema extract was evaluated. The peppers showed considerable quantities of capsiate and phenolic compounds. Esterified phenolics were the main fraction, followed by the insoluble-bound fraction, indicating that relying solely on the extraction of soluble phenolics may underestimate the total phenolic content. Among the fourteen phenolics identified in extract fractions, gallic acid was the major constituent. Phenolic fractions displayed high antioxidant capacity by TEAC and ORAC assays. Nevertheless, the correlation between phenolic compounds and antioxidant activity suggested that other bioactive or phenolic compounds may contribute to the overall phenolic compounds and antioxidant capacity of the obtained fractions. Concerning the antiproliferative activity, the extract did not exhibit any effect on cell proliferation within the evaluated concentration range. These findings indicated that BRS Moema peppers can serve as a rich source of phenolic compounds. Therefore, fully utilizing them could bring advantages to the food and pharmaceutical industries, as well as to consumers and producers.
Collapse
Affiliation(s)
- Ana Carolina de Aguiar
- Centro de Ciências da Natureza, Universidade Federal de São Carlos (UFSCar), Rod. Lauri Simões de Barros, km 12 - SP 189, 18290-000, Buri, SP, Brazil.
| | - Gustavo Araujo Pereira
- Federal University of Pará (UFPA), R. Augusto Corrêa, 001, Guamá, 66075110, Belém, PA, Brazil
| | | | - Marcos Nogueira Eberlin
- MackMass Laboratory of Mass Spectrometry, School of Engineering- PPGEMN, Mackenzie Presbyterian University, São Paulo, SP 01302-907, Brazil
| | - Lana Pereira Soares
- LAFTEX, Faculty of Pharmaceutical Sciences, University of Campinas, 200 Candido Portinari Street, 13083-871, Campinas, SP, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- LAFTEX, Faculty of Pharmaceutical Sciences, University of Campinas, 200 Candido Portinari Street, 13083-871, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| | - Julian Martínez
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
21
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
22
|
Vuerich M, Petrussa E, Filippi A, Cluzet S, Fonayet JV, Sepulcri A, Piani B, Ermacora P, Braidot E. Antifungal activity of chili pepper extract with potential for the control of some major pathogens in grapevine. PEST MANAGEMENT SCIENCE 2023; 79:2503-2516. [PMID: 36863935 DOI: 10.1002/ps.7435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND In recent years, biofungicides have drawn increasing interest in vineyards for a more sustainable integrated and copper-limited pest management. Among alternatives, botanicals could represent valuable tools, being rich sources of biologically active compounds. Conversely to the well-known antioxidant and biological properties in relation to health benefits, investigation on bioactivity of hot pungent Capsicum sp. products against fungal phytopathogens in vineyards is still scarce. Therefore, the present study aimed at exploring the biologically active compounds profile of a chili pepper (Capsicum chinense Jacq.) pod extract and its antimicrobial properties against some of the major fungal and Oomycetes pathogens of grapevine, including Botrytis cinerea Pers., Guignardia bidwellii (Ellis) Viala & Ravaz and Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni. RESULTS The ethyl acetate-extracted oleoresin from the most pungent varieties was rich in capsaicinoids and polyphenols (371.09 and 268.5 μg mg-1 dry weight, respectively). Capsaicin and dihydrocapsaicin, hydroxycinnamic and hydroxybenzoic acids and quercetin derivatives were the most abundant, while carotenoids represented only a minor fraction. The oleoresin was efficient to inhibit all three pathogenic fungi and ED50 values were determined, evidencing that G. bidwellii was the more sensitive (0.233 ± 0.034 mg mL-1 ). CONCLUSION The results suggested a potentiality of chili pepper extract for the control of some important grapevine pathogens, their possible application being helpful for the recommended limitation in extensive use of copper in vineyard. The complex mixture of high amounts of capsaicinoids, associated to specific phenolic acids and other minor bioactive components might contribute to the observed antimicrobial action of chili pepper extract. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marco Vuerich
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Elisa Petrussa
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | - Stéphanie Cluzet
- Equipe Molécules d'Intérêt Biologique (MIB)-ISVV, University of Bordeaux, Faculté des Sciences Pharmaceutiques, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, Villenave d'Ornon, France
| | - Josep Valls Fonayet
- Equipe Molécules d'Intérêt Biologique (MIB)-ISVV, University of Bordeaux, Faculté des Sciences Pharmaceutiques, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, Villenave d'Ornon, France
- MetaboHUB, Bordeaux Metabolome Facility, Villenave d'Ornon, France
| | - Angela Sepulcri
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Barbara Piani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Enrico Braidot
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
23
|
Alonso-Villegas R, González-Amaro RM, Figueroa-Hernández CY, Rodríguez-Buenfil IM. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023; 28:molecules28104239. [PMID: 37241977 DOI: 10.3390/molecules28104239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.
Collapse
Affiliation(s)
- Rodrigo Alonso-Villegas
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Av. Pascual Orozco s/n, Campus 1, Santo Niño, Chihuahua 31350, Chihuahua, Mexico
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Veracruz, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Veracruz, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Subsede Sureste, Tablaje Catastral, 31264, Carretera Sierra Papacal-Chuburna Puerto km 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico
| |
Collapse
|
24
|
Jimenez-García SN, Garcia-Mier L, Ramirez-Gomez XS, Guevara-Gonzalez RG, Aguirre-Becerra H, Escobar-Ortiz A, Contreras-Medina LM, Garcia-Trejo JF, Vazquez-Cruz MA, Feregrino-Perez AA. Characterization of the Key Compounds of Bell Pepper by Spectrophotometry and Gas Chromatography on the Effects of Induced Stress on the Concentration of Secondary Metabolite. Molecules 2023; 28:molecules28093830. [PMID: 37175241 PMCID: PMC10180469 DOI: 10.3390/molecules28093830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Sweet peppers are consumed worldwide, and traditional uses have sparked interest in their applications as dietary antioxidants, which can be enhanced in plants using elicitors. These are endowed with phytochemicals with potential health benefits such as antioxidants, bioavailability, and bioaccessibility. The trend in metabolomics shows us chemical fingerprints linking metabolomics, innovative analytical form, and bioinformatics tools. The objective was to evaluate the impact of multiple stress interactions, elicitor concentrations, and electrical conductivity on the concentration of secondary metabolites to relate their response to metabolic pathways through the foliar application of a cocktail of said elicitors in pepper crops under greenhouse conditions. The extracts were analyzed by spectrophotometry and gas chromatography, and it was shown that the PCA analysis identified phenolic compounds and low molecular weight metabolites, confirming this as a metabolomic fingerprint in the hierarchical analysis. These compounds were also integrated by simultaneous gene and metabolite simulants to obtain effect information on different metabolic pathways. Showing changes in metabolite levels at T6 (36 mM H2O2 and 3.6 dS/m) and T7 (0.1 mM SA and 3.6 dS/m) but showing statistically significant changes at T5 (3.6 dS/m) and T8 (0.1 mM SA, 36 mM H2O2, and 3.6 dS/m) compared to T1 (32 dS/m) or control. Six pathways changed significantly (p < 0.05) in stress-induced treatments: aminoacyl t-RNA and valine-leucine-isoleucine biosynthesis, and alanine-aspartate-glutamate metabolism, glycoxylate-dicarboxylate cycle, arginine-proline, and citrate. This research provided a complete profile for the characterization of metabolomic fingerprint of bell pepper under multiple stress conditions.
Collapse
Affiliation(s)
- Sandra N Jimenez-García
- Division de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no Transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato 8140, Mexico
| | - Lina Garcia-Mier
- Departamento de Ciencias de la Salud, Universidad del Valle de México, Campus Querétaro, Blvd, Juriquilla No. 1000 A, Delegación Santa Rosa Jáuregui, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Xóchitl S Ramirez-Gomez
- Division de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no Transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato 8140, Mexico
| | - Ramon G Guevara-Gonzalez
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Humberto Aguirre-Becerra
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Alexandro Escobar-Ortiz
- Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Luis M Contreras-Medina
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Juan F Garcia-Trejo
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Moises A Vazquez-Cruz
- Departamento de Investigación y Desarrollo, Koppert Mexico, Circuito el Marques Nte. 82, Parque industrial El Marqués, Santiago de Querétaro, Querétaro 76246, Mexico
| | - Ana A Feregrino-Perez
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
25
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Wu Y, Popovsky-Sarid S, Tikunov Y, Borovsky Y, Baruch K, Visser RGF, Paran I, Bovy A. CaMYB12-like underlies a major QTL for flavonoid content in pepper (Capsicum annuum) fruit. THE NEW PHYTOLOGIST 2023; 237:2255-2267. [PMID: 36545937 DOI: 10.1111/nph.18693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The regulation of flavonoid biosynthesis is only partially explored in pepper (Capsicum annuum L.). The genetic basis underlying flavonoid variation in pepper fruit was studied. Variation of flavonoids in fruit of a segregating F2 population was studied using LC-MS followed by quantitative trait locus (QTL) analysis. Near-isogenic lines (NILs), BC1 S1 populations, virus-induced gene silenced (VIGS) and transgenic overexpression were used to confirm the QTL and the underlying candidate gene. A major QTL for flavonoid content was found in chromosome 5, and a CaMYB12-like transcription factor gene was identified as candidate gene. Near-isogenic lines (NILs) contrasting for CaMYB12-like confirmed its association with the flavonoid content variation. Virus-induced gene silencing (VIGS) of CaMYB12-like led to a significant decrease in the expression of several flavonoid pathway genes and a drastic decrease in flavonoid levels in silenced fruits. Expression of CaMYB12-like in the tomato slmyb12 mutant led to enhanced levels of several flavonoids in the fruit skin. Introgression of the CaMYB12-like allele into two cultivated varieties also increased flavonoid content in their fruits. A combination of metabolomic, genetic and gene functional analyses led to discovery of CaMYB12-like as a major regulator of flavonoid variation in pepper fruit and demonstrated its potential to breed for high-flavonoid content in cultivated pepper.
Collapse
Affiliation(s)
- Yi Wu
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Sigal Popovsky-Sarid
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 7534509, Rishon Lezion, Israel
| | - Yury Tikunov
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 7534509, Rishon Lezion, Israel
| | | | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 7534509, Rishon Lezion, Israel
| | - Arnaud Bovy
- Plant Breeding, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
27
|
Zhang J, Wang C, Wang J, Yang Y, Han K, Bakpa EP, Li J, Lyu J, Yu J, Xie J. Comprehensive fruit quality assessment and identification of aroma-active compounds in green pepper ( Capsicum annuum L.). Front Nutr 2023; 9:1027605. [PMID: 36704799 PMCID: PMC9871545 DOI: 10.3389/fnut.2022.1027605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The wrinkled pepper (Capsicum annuum L.) is a type of chili pepper domesticated in northwestern China, with a characteristic flavor. Fifteen wrinkled and four smooth-skinned pepper varieties were evaluated for morphology, texture, color, nutrients, capsaicinoids, and volatile compounds at the mature fruit stage. The sensory evaluation showed wrinkled pepper was superior to smooth pepper in texture, and it has a highly significant correlation (p < 0.01) with cuticle thickness, maximum penetrating force, lignin content, and moisture content. Citric acid was the major organic acid in peppers, accounting for 39.10-63.55% of the total organic acids, followed by quininic acid. The average oxalic acid content of smooth peppers was 26.19% higher than that of wrinkled peppers. The pungency of wrinkled pepper fruits ranged from 1748.9 to 25529.4 SHU, which can be considered slightly to very spicy, while the four smooth varieties ranged between 866.63 and 8533.70 SHU, at slightly to moderately spicy. A total of 199 volatile compounds were detected in the 19 pepper varieties. The average volatile content of wrinkled pepper was 39.79% higher than that of smooth pepper. Twenty-nine volatile compounds, including 14 aldehydes, four alcohols, three esters, three ketones, two furans, one pyrazine, one acid, and one phenol, contributed to the fragrance of peppers and could be regarded as aroma-active compounds, with 2-isobutyl-3-methoxypyrazine being the major contributor among the 19 pepper varieties. Wrinkled pepper can be confidently distinguished from smooth pepper and is of superior quality. The current findings outlined the major texture-related characteristics of pepper as well as the main aroma-active compounds, providing valuable information for pepper quality breeding and consumer guidelines.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kangning Han
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China,State Key Laboratory of Aridland Corp Science, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China,*Correspondence: Jianming Xie,
| |
Collapse
|
28
|
Comparing the morphological characteristics and nutritional composition of 23 pepper (Capsicum annuum L.) varieties. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Liu Y, Zhang Z, Fang K, Shan Q, He L, Dai X, Zou X, Liu F. Genome-Wide Analysis of the MYB-Related Transcription Factor Family in Pepper and Functional Studies of CaMYB37 Involvement in Capsaicin Biosynthesis. Int J Mol Sci 2022; 23:ijms231911667. [PMID: 36232967 PMCID: PMC9569548 DOI: 10.3390/ijms231911667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Chili pepper is an important economic vegetable worldwide. MYB family gene members play an important role in the metabolic processes in plant growth and development. In this study, 103 pepper MYB-related members were identified and grouped into nine subfamilies according to phylogenetic relationships. Additionally, a total of 80, 20, and 37 collinear gene pairs were identified between pepper and tomato, pepper and Arabidopsis, and tomato and Arabidopsis, respectively. We performed promoter cis-element analysis and showed that CaMYB-related members may be involved in multiple biological processes such as growth and development, secondary metabolism, and circadian rhythm regulation. Expression pattern analysis indicated that CaMYB37 is significantly more enriched in fruit placenta, suggesting that this gene may be involved in capsaicin biosynthesis. Through VIGS, we confirmed that CaMYB37 is critical for the biosynthesis of capsaicin in placenta. Our subcellular localization studies revealed that CaMYB37 localized in the nucleus. On the basis of yeast one-hybrid and dual-luciferase reporter assays, we found that CaMYB37 directly binds to the promoter of capsaicin biosynthesis gene AT3 and activates its transcription, thereby regulating capsaicin biosynthesis. In summary, we systematically identified members of the CaMYB-related family, predicted their possible biological functions, and revealed that CaMYB37 is critical for the transcriptional regulation of capsaicin biosynthesis. This work provides a foundation for further studies of the CaMYB-related family in pepper growth and development.
Collapse
Affiliation(s)
- Yi Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhishuo Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Ke Fang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Qingyun Shan
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lun He
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xiongze Dai
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xuexiao Zou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Correspondence: (X.Z.); (F.L.)
| | - Feng Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Correspondence: (X.Z.); (F.L.)
| |
Collapse
|
30
|
Bal S, Sharangi AB, Upadhyay TK, Khan F, Pandey P, Siddiqui S, Saeed M, Lee HJ, Yadav DK. Biomedical and Antioxidant Potentialities in Chilli: Perspectives and Way Forward. Molecules 2022; 27:6380. [PMID: 36234927 PMCID: PMC9570844 DOI: 10.3390/molecules27196380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.
Collapse
Affiliation(s)
- Solanki Bal
- Department of Vegetable Science, BCKV-Agricultural University, Mohanpur 741252, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur 741252, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Hae-Jeung Lee
- Department of Food & Nutrition, College of Bionano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Korea
| | - Dharmendra K. Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Hambakmoeiro 191, Gachon University, Incheon 21924, Korea
| |
Collapse
|
31
|
Jang S, Kim GW, Han K, Kim YM, Jo J, Lee SY, Kwon JK, Kang BC. Investigation of genetic factors regulating chlorophyll and carotenoid biosynthesis in red pepper fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:922963. [PMID: 36186014 PMCID: PMC9521427 DOI: 10.3389/fpls.2022.922963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Chlorophylls and carotenoids are synthesized in the chloroplast and chromoplast, respectively. Even though the two pigments are generated from the same precursor, the genetic correlation between chlorophyll and carotenoid biosynthesis has not yet been fully understood. We investigated the genetic correlation of chlorophyll and carotenoid biosynthesis during fruit ripening. Two recombinant inbred lines populations, "Long Sweet" × "AC2212" ("LA") RILs derived from a cross between Capsicum annuum "Long Sweet" with light-green and light-red fruit and C. annuum "AC2212" with dark-green and brown-fruit and "3501 (F)" × "3509 (C)" ("FC") RILs from C. annuum "3501" with dark-green and dark-red fruit and C. annuum "3509" with intermediate green and light-red fruit, were used. As the fruit ripened, three accessions produced high levels of xanthophyll. The dark-green immature fruit accumulated more total carotenoids than the light-green fruit. This trend corresponded to the expression pattern of 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and CaGLK2 genes during fruit development. The expression levels of DXS and CaGLK2 in the dark-green accession "3501" were significantly higher than those of "3509" and "Long Sweet" during the early stages of fruit development. Furthermore, the genotype analysis of the transcription factor controlling chloroplast development (CaGLK2) in LA RILs revealed that CaGLK2 expression affected both carotenoid and chlorophyll contents. The single nucleotide polymorphism (SNP) linkage maps were constructed using genotyping-by-sequencing (GBS) for the two populations, and QTL analysis was performed for green fruit color intensity and carotenoid content. The QTL (LA_BG-CST10) for capsanthin content in LA RILs located at 24.4 to 100.4 Mbp on chromosome 10 was overlapped with the QTL (FC15-Cap10) for capsanthin content in FC RILs. Three QTLs for capsanthin content, American spice trade association (ASTA) value, and immature green fruit color intensity were also overlapped from 178.2 to 204 Mbp on chromosome 10. At the location, 151.6 to 165 Mbp on chromosome 8, QTLs (FC15-tcar8, FC17-ASTA8.1, and FC17-ASTA8.2) for total carotenoid content and ASTA value were discovered, and this region contained 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (MCT), which is involved in the MEP pathway. This result is the first report to show the correlation between carotenoid and chlorophyll biosynthesis in pepper. This research will expand our understanding of the mechanism of the chloroplast-to-chromoplast transition and the development of high pigment pepper varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Pinar H, Kaplan M, Karaman K, Ciftci B. Assessment of interspecies (Capsicum annuum X Capsicum frutescens) recombinant inbreed lines (RIL) for fruit nutritional traits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Shoji T, Umemoto N, Saito K. Genetic divergence in transcriptional regulators of defense metabolism: insight into plant domestication and improvement. PLANT MOLECULAR BIOLOGY 2022; 109:401-411. [PMID: 34114167 DOI: 10.1007/s11103-021-01159-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 05/23/2023]
Abstract
A number of mutational changes in transcriptional regulators of defense metabolism have occurred during plant domestication and improvement. Plant domestication and improvement entail genetic changes that underlie divergence in development and metabolism, providing a tremendous model of biological evolution. Plant metabolism produces numerous specialized alkaloids, terpenoids, phenolics, and cyanogenic glucosides with indispensable roles in defense against herbivory and microbial infection. Many compounds toxic or deterrent to predators have been eliminated through domestication and breeding. Series of genes involved in defense metabolism are coordinately regulated by transcription factors that specifically recognize cis-regulatory elements in promoter regions of downstream target genes. Recent developments in DNA sequencing technologies and genomic approaches have facilitated studies of the metabolic and genetic changes in chemical defense that have occurred via human-mediated selection, many of which result from mutations in transcriptional regulators of defense metabolism. In this article, we review such examples in almond (Prunus dulcis), cucumber (Cucumis sativus), pepper (Capsicum spp.), potato (Solanum tuberosum), quinoa (Chenopodium quinoa), sorghum (Sorghum bicolor), and related species and discuss insights into the evolution and regulation of metabolic pathways for specialized defense compounds.
Collapse
Affiliation(s)
- Tsubasa Shoji
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Molecular Science Center, Chiba University, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
34
|
Cervantes-Hernández F, Ochoa-Alejo N, Martínez O, Ordaz-Ortiz JJ. Metabolomic Analysis Identifies Differences Between Wild and Domesticated Chili Pepper Fruits During Development ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:893055. [PMID: 35769305 PMCID: PMC9234519 DOI: 10.3389/fpls.2022.893055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Capsicum spp. members are a rich source of specialized compounds due to their secondary metabolism. Some metabolic pathways have suffered modifications during the domestication process and improvement of agricultural traits. Here, we compared non-targeted LC-MS profiles from several areas: wild accessions (C. annuum L. var. glabriusculum), domesticated cultivars (C. annuum L.), and the F1 progeny of a domesticated, and a wild accession cross (in both directions) throughout seven stages of fruit development of chili pepper fruits. The main detected differences were in glycerophospholipid metabolism, flavone and flavonol biosynthesis, sphingolipid metabolism, and cutin biosynthesis. The domesticated group exhibited a higher abundance in 12'-apo-β-carotenal, among others capsorubin, and β-tocopherol. Palmitic acid and derivates, terpenoids, and quercitrin were prevalent in the wild accessions. F1 progeny showed a higher abundance of capsaicin, glycol stearate, and soyacerebroside I. This work supports evidence of the side-affectation of trait selection over the metabolism of chili pepper fruit development. Furthermore, it was also observed that there was a possible heterosis effect over the secondary metabolism in the F1 progeny.
Collapse
Affiliation(s)
- Felipe Cervantes-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico
| | - Octavio Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| | - José Juan Ordaz-Ortiz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| |
Collapse
|
35
|
Sun B, Chen C, Song J, Zheng P, Wang J, Wei J, Cai W, Chen S, Cai Y, Yuan Y, Zhang S, Liu S, Lei J, Cheng G, Zhu Z. The Capsicum MYB31 regulates capsaicinoid biosynthesis in the pepper pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:21-30. [PMID: 35190336 DOI: 10.1016/j.plaphy.2022.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Pepper (Capsicum) are consumed worldwide as vegetables and food additives due to their pungent taste. Capsaicinoids are the bioactive compounds that confer the desired pungency to pepper fruits. Capsaicinoid biosynthesis was thought to occur exclusively in fruit placenta. Recently, biosynthesis in the pericarp of extremely pungent varieties was discovered, however, the mechanism of capsaicinoid biosynthesis regulation in the pericarp remains largely unknown. Here, the capsaicinoid contents of placenta and pericarp were analyzed. The results indicated that the Capsicum chinense pericarp accumulated a vast amount of capsaicinoids. Expression of the master regulator MYB31 and capsaicinoid biosynthesis genes (CBGs) were significantly upregulated in the pericarp in C. chinense accessions compared to accessions in other tested species. Moreover, in fruit of extremely-pungent 'Trinidad Moruga Scorpion' (C. chinense) and low-pungent '59' inbred line (C. annuum), the capsaicinoid accumulation patterns in the pericarp were consistent with expression levels of CBGs and MYB31. Silencing MYB31 in 'Trinidad Moruga Scorpion' pericarp leads to a significantly decreased CBGs transcription level and capsaicinoids content. Taken together, our results provide insights into the molecular mechanism arising from the expression of MYB31 in the pericarp that results in exceedingly hot peppers.
Collapse
Affiliation(s)
- Binmei Sun
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Song
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Zheng
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Juntao Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianlang Wei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Cai
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Siping Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Cai
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Yuan
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Shuanglin Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoqun Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Guoju Cheng
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Darko E, Hamow KA, Marček T, Dernovics M, Ahres M, Galiba G. Modulated Light Dependence of Growth, Flowering, and the Accumulation of Secondary Metabolites in Chilli. FRONTIERS IN PLANT SCIENCE 2022; 13:801656. [PMID: 35392509 PMCID: PMC8981241 DOI: 10.3389/fpls.2022.801656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Chili is widely used as a food additive and a flavouring and colouring agent and also has great importance in health preservation and therapy due to the abundant presence of many bioactive compounds, such as polyphenols, flavonoids, carotenoids, and capsaicinoids. Most of these secondary metabolites are strong antioxidants. In the present study, the effect of light intensity and spectral composition was studied on the growth, flowering, and yield of chilli together with the accumulation of secondary metabolites in the fruit. Two light intensities (300 and 500 μmol m-2 s-1) were applied in different spectral compositions. A broad white LED spectrum with and without FR application and with blue LED supplement was compared to blue and red LED lightings in different (80/20 and 95/5%) blue/red ratios. High light intensity increased the harvest index (fruit yield vs. biomass production) and reduced the flowering time of the plants. The amount of secondary metabolites in the fruit varied both by light intensity and spectral compositions; phenolic content and the radical scavenging activity were stimulated, whereas capsaicin accumulation was suppressed by blue light. The red colour of the fruit (provided by carotenoids) was inversely correlated with the absolute amount of blue, green, and far-red light. Based on the results, a schematic model was created, representing light-dependent metabolic changes in chilli. The results indicated that the accumulation of secondary metabolites could be modified by the adjustment of light intensity and spectral composition; however, different types of metabolites required different light environments.
Collapse
Affiliation(s)
- Eva Darko
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Kamirán A. Hamow
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tihana Marček
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mihály Dernovics
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Mohamed Ahres
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Georgicon Faculty, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary
| |
Collapse
|
37
|
Wu L, Wang H, Liu S, Liu M, Liu J, Wang Y, Sun L, Yang W, Shen H. Mapping of CaPP2C35 involved in the formation of light-green immature pepper (Capsicum annuum L.) fruits via GWAS and BSA. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:591-604. [PMID: 34762177 DOI: 10.1007/s00122-021-03987-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide association study, bulked segregant analysis, and genetic analysis delimited the LG locus controlling light-green immature pepper fruits into a 35.07 kbp region on chromosome 10. A strong candidate gene, CaPP2C35, was identified in this region. In pepper (Capsicum annuum L.), the common colors of immature fruits are yellowish white, milky yellow, green, purple, and purplish black. Genes related to dark green, white, and purple immature fruits have been cloned; however, only a few studies have investigated light-green immature fruits. Here, we performed a genetic study using light-green (17C827) and green (17C658) immature fruits. The light-green color of immature fruits was controlled by a single locus-dominant genetic trait compared with the green color of immature fruits. We also performed a genome-wide association study and bulked segregant analysis of immature-fruit color and mapped the LG locus to a 35.07 kbp region on chromosome 10. Only one gene, Capana10g001710, was found in this region. A G-A substitution occurred at the 313th base of the Capana10g001710 coding sequence in 17C827, resulting in the conversion of the α-helix of its encoded PP2C35 protein into a β-fold. The expression of Capana10g001710 (termed CaPP2C35) in 17C827 was significantly higher than in 17C658. Silencing CaPP2C35 in 17C827 resulted in an increase in chlorophyll content in the exocarp and the appearance of green stripes on the surface of the fruit. These results indicate that CaPP2C35 may be involved in the formation of light-green immature fruits by regulating the accumulation of chlorophyll content in the exocarp. Thus, these findings lay the foundation for further studies and genetic improvement of immature-fruit color in pepper.
Collapse
Affiliation(s)
- Lang Wu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Sujun Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Mengmeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinkui Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yihao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Segla Koffi Dossou S, Xu F, You J, Zhou R, Li D, Wang L. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Res Int 2022; 151:110850. [PMID: 34980388 DOI: 10.1016/j.foodres.2021.110850] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Sesame seeds are considered worldwide as a functional food due to their nutritional and therapeutical values. Several physiological functions are being associated with sesame seeds and their derived products. However, the phytochemicals responsible for these various proprieties are not well understood. Thus, to acknowledge the diversity and variability of metabolites in sesame seeds of different colors and reveal key metabolites and pathways contributing to differences in antioxidant activities, black, brown, yellow, and white sesame seeds from 12 varieties were subjected to LC-MS/MS-based widely targeted metabolomics analysis. Totally, 671 metabolites were identified and chemically classified. The metabolic compounds varied significantly with the seed coat color and genotype. Many flavonoids, amino acids, and terpenoids were up-regulated in dark seeds. Sixty key differential metabolites were filtered out. Phenylpropanoid biosynthesis, amino acids biosynthesis, and tyrosine metabolism were the main differently regulated pathways. The DPPH, ABTS, and FRAP assays showed that the antioxidant activities of the seeds increased with the seed coat darkness. Therefore, the pharmacological proprieties of black seeds might be related to their high content of flavonoids and essential amino acids mostly. These findings expand phytochemicals composition information of different colored sesame seeds and provide resources for their comprehensive use and quality improvement.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Fangtao Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
39
|
Villa-Rivera MG, Ochoa-Alejo N. Transcriptional Regulation of Ripening in Chili Pepper Fruits ( Capsicum spp.). Int J Mol Sci 2021; 22:12151. [PMID: 34830031 PMCID: PMC8624906 DOI: 10.3390/ijms222212151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Chili peppers represent a very important horticultural crop that is cultivated and commercialized worldwide. The ripening process makes the fruit palatable, desirable, and attractive, thus increasing its quality and nutritional value. This process includes visual changes, such as fruit coloration, flavor, aroma, and texture. Fruit ripening involves a sequence of physiological, biochemical, and molecular changes that must be finely regulated at the transcriptional level. In this review, we integrate current knowledge about the transcription factors involved in the regulation of different stages of the chili pepper ripening process.
Collapse
Affiliation(s)
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico;
| |
Collapse
|
40
|
Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this work was to investigate the effect of the ripening stage and type of soil on the concentration of carotenoids and vitamins in Habanero pepper (Capsicum chinense Jacq.). Pepper plants were grown in two soils named according to the Mayan classification as: K’ankab lu’um (red soil) and Box lu’um (black soil). The results of two harvests at 320 and 334 PTD (post-transplant day) showed that the ripening stage exhibited a significant effect (p < 0.05) on the concentration of carotenoids and vitamins, while the effect of the soil type was negligible. The concentration of carotenoids decreases as the ripening process of the fruit takes place, with the highest concentration of lutein (49.47 ± 0.34 mg/100 g of dry mass), β-carotene (99.92 ± 0.69 mg/100 g of dry mass) and β-cryptoxanthin (20.93 ± 0.04 mg/100 g of dry mass) in the unripe peppers. The concentration of vitamins increases as the ripening process develops, with the highest concentration of Vitamin E (9.69 ± 0.02 mg/100 g of dry mass) and Vitamin C (119.44 ± 4.72 mg/100 g of dry mass) in the ripe peppers. This knowledge could be used to select the best ripening stage to harvest Habanero peppers according to the use of the pepper and to the needs of producers/company.
Collapse
|
41
|
Onishi S, Tebayashi S, Hikichi Y, Sawada H, Ishii Y, Kim CS. Inhibitory effects of luteolin and its derivatives on osteoclast differentiation and differences in luteolin production by Capsicum annuum varieties. Biosci Biotechnol Biochem 2021; 85:2224-2231. [PMID: 34435616 DOI: 10.1093/bbb/zbab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Luteolin, an abundant flavonoid in the leaves of Capsicum annuum, has antioxidant activity and is, thus, a key chemical for promoting plant residue utilization, especially for the development of healthcare products. We assessed the inhibitory effect of luteolin and its glycosides on osteoclastic differentiation in human cells and found that the differentiation was effectively inhibited at noncytotoxic concentrations. We also screened 47 varieties of C. annuum for the accumulation of luteolin and apigenin to determine the prevalence of luteolin in diverse cultivars and identify varieties with high and/or selective luteolin production. The glycosides of luteolin and apigenin were found in all the tested varieties, with luteolin predominant over apigenin in most varieties. The identification and characterization of highly productive varieties of C. annuum is expected to be beneficial for the effective development of useful luteolin-based products from plant residues.
Collapse
Affiliation(s)
- Shintaro Onishi
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Ehime, Japan
- Otsuka Pharmaceutical Co., Ltd., Minato-ku, Tokyo, Japan
| | - Shinichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | | | - Yukiko Ishii
- Kochi Agricultural Research Center, Nankoku, Kochi, Japan
| | - Chul-Sa Kim
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
42
|
Tanaka Y, Watachi M, Nemoto W, Goto T, Yoshida Y, Yasuba KI, Ohno S, Doi M. Capsaicinoid biosynthesis in the pericarp of chili pepper fruits is associated with a placental septum-like transcriptome profile and tissue structure. PLANT CELL REPORTS 2021; 40:1859-1874. [PMID: 34283265 DOI: 10.1007/s00299-021-02750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
CAP biosynthesis in the pericarp of chili pepper fruits occurs with an ambiguous boundary in the placental septum and pericarp. Capsaicinoid (CAP) is a pungent ingredient of chili pepper fruits. Generally, CAP biosynthesis is limited to the placental septum of fruits, but it has been reported that its biosynthesis occurs even in the pericarp of some extremely pungent varieties, resulting in a substantial increase in total content. To examine the mechanism of CAP biosynthesis in the pericarp, comparative transcriptome analysis of a variety that produces CAP in the pericarp (MY) and a variety that does not (HB) was carried out. RNA-seq revealed that 2264 genes were differentially expressed in the MY pericarp compared with the HB pericarp. PCA analysis and GO enrichment analysis indicated that the MY pericarp has a gene expression profile more like placental septum than the HB pericarp. The gene expression of CAP biosynthesis-related genes in the MY pericarp changed coordinately with the placental septum during fruit development. In most Capsicum accessions including HB, the distribution of slender epidermal cells producing CAP was limited to the placental septum, and the morphological boundary between the placental septum and pericarp was clear. In some extremely pungent varieties such as MY, slender epidermal cells ranged from the placental septum to the pericarp region, and the pericarp was morphologically similar to the placental septum, such as the absence of large sub-epidermal cells and abundant spaces in the parenchymal tissue. Our data suggest that CAP biosynthesis in the pericarp occurred with an ambiguous boundary in the placental septum and pericarp. These findings contribute to further enhancement of CAP production in chili pepper fruits.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| | - Mayuko Watachi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Wakana Nemoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tanjuro Goto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuichi Yoshida
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ken-Ichiro Yasuba
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
43
|
Identification of α-Glucosidase Inhibitors from Leaf Extract of Pepper ( Capsicum spp.) through Metabolomic Analysis. Metabolites 2021; 11:metabo11100649. [PMID: 34677364 PMCID: PMC8538662 DOI: 10.3390/metabo11100649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and in vitro α-glucosidase inhibitory (AGI) activities of pepper leaves were used to identify bioactive compounds and select genotypes for the management of type 2 diabetes mellitus (T2DM). Targeted metabolite analysis using UPLC-DAD-QToF-MS was employed and identified compounds that belong to flavone and hydroxycinnamic acid derivatives from extracts of pepper leaves. A total of 21 metabolites were detected from 155 samples and identified based on MS fragmentations, retention time, UV absorbance, and previous reports. Apigenin-O-(malonyl) hexoside, luteolin-O-(malonyl) hexoside, and chrysoeriol-O-(malonyl) hexoside were identified for the first time from pepper leaves. Pepper genotypes showed a huge variation in their inhibitory activity against α-glucosidase enzyme(AGE) ranging from 17% to 79%. Genotype GP38 with inhibitory activity of 79% was found to be more potent than the positive control acarbose (70.8%.). Orthogonal partial least square (OPLS) analyses were conducted for the prediction of the AGI activities of pepper leaves based on their metabolite composition. Compounds that contributed the most to the bioactivity prediction model (VIP >1.5), showed a strong inhibitory potency. Caffeoyl-putrescine was found to show a stronger inhibitory potency (IC50 = 145 µM) compared to acarbose (IC50 = 197 µM). The chemometric procedure combined with high-throughput AGI screening was effective in selecting polyphenols of pepper leaf for T2DM management.
Collapse
|
44
|
Abstract
Sweet pepper (Capsicum annuum L.) is one of the most consumed vegetables in the world, being recognized as a food with high nutritional value. Recently, the market for sweet and colorful mini peppers has increased, especially among the most demanding consumers in the novelties in vegetables and functional foods. In this sense, we evaluated mini sweet peppers genotypes (Akamu, Kaiki, Kalani, Kaolin e Moke from Isla® seeds) regarding the physical-chemical, nutritional and sensory analysis aspects. A wide variability was observed among genotypes, highlighting the Kalani genotype for total carotenoids, and the genotypes Akamu, Kaiki and Kaolin for phenolic totals content and antioxidant activity. Moke and Kaolin showed higher vitamin C content and fruit firmness. Based on sensory analysis, Kalani, Kaiki, Kaolin and Akamu obtained greater global acceptance. The genotypes can be considered an important marketing strategy of mini sweet peppers trade, associating different shapes, colors and nutritional quality.
Collapse
|
45
|
Suarez DL, Celis N, Ferreira JFS, Reynolds T, Sandhu D. Linking genetic determinants with salinity tolerance and ion relationships in eggplant, tomato and pepper. Sci Rep 2021; 11:16298. [PMID: 34381090 PMCID: PMC8357798 DOI: 10.1038/s41598-021-95506-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
The Solanaceae family includes commercially important vegetable crops characterized by their relative sensitivity to salinity. Evaluation of 8 eggplant (Solanum melongena), 7 tomato (Solanum lycopersicum), and 8 pepper (Capsicum spp.) heirloom cultivars from different geographic regions revealed significant variation in salt tolerance. Relative fruit yield under salt treatment varied from 52 to 114% for eggplant, 56 to 84% for tomato, and 52 to 99% for pepper. Cultivars from all three crops, except Habanero peppers, restricted Na transport from roots to shoots under salinity. The high salt tolerance level showed a strong association with low leaf Na concentration. Additionally, the leaf K-salinity/K-control ratio was critical in determining the salinity tolerance of a genotype. Differences in relative yield under salinity were regulated by several component traits, which was consistent with the gene expression of relevant genes. Gene expression analyses using 12 genes associated with salt tolerance showed that, for eggplant and pepper, Na+ exclusion was a vital component trait, while sequestration of Na+ into vacuoles was critical for tomato plants. The high variability for salt tolerance found in heirloom cultivars helped characterize genotypes based on component traits of salt tolerance and will enable breeders to increase the salt tolerance of Solanaceae cultivars.
Collapse
Affiliation(s)
- Donald L Suarez
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| | - Nydia Celis
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| | - Jorge F S Ferreira
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| | - Trevor Reynolds
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Devinder Sandhu
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA.
| |
Collapse
|
46
|
Genzel F, Dicke MD, Junker-Frohn LV, Neuwohner A, Thiele B, Putz A, Usadel B, Wormit A, Wiese-Klinkenberg A. Impact of Moderate Cold and Salt Stress on the Accumulation of Antioxidant Flavonoids in the Leaves of Two Capsicum Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6431-6443. [PMID: 34081868 DOI: 10.1021/acs.jafc.1c00908] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The horticultural production of bell peppers generates large quantities of residual biomass. Abiotic stress stimulates the production of protective flavonoids, so the deliberate application of stress to the plants after fruit harvest could provide a strategy to valorize horticultural residuals by increasing flavonoid concentrations, facilitating their industrial extraction. Here we exposed two Capsicum cultivars, a chilli and a bell pepper, to cold and salt stress and combinations thereof to determine their valorization potential. Noninvasive image-based phenotyping and multiparametric fluorescence measurements indicated that all stress treatments inhibited plant growth and reduced the leaf chlorophyll fluorescence index, with the chilli cultivar showing greater sensitivity. The fluorescence-based FLAV index allowed the noninvasive assessment of foliar luteolin glycosides. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis showed that moderate cold increased the levels of two foliar antioxidant luteolin glycosides in both cultivars, with bell pepper containing the highest amounts (induced to maximum 5.5 mg g-1 DW cynaroside and 37.0 mg g-1 DW graveobioside A) after combined stress treatment. These data confirm the potential of abiotic stress for the valorization of residual leaf biomass to enhance the industrial extraction of antioxidant and bioactive flavonoids.
Collapse
Affiliation(s)
- Franziska Genzel
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Max Daniel Dicke
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Laura Verena Junker-Frohn
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andrea Neuwohner
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Björn Thiele
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexander Putz
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Björn Usadel
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Bio- and Geosciences-Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexandra Wormit
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Biology I-Botany, RWTH Aachen University, 52074 Aachen, Germany
| | - Anika Wiese-Klinkenberg
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Bio- and Geosciences-Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
47
|
Influence of intra and inter species variation in chilies (Capsicum spp.) on metabolite composition of three fruit segments. Sci Rep 2021; 11:4932. [PMID: 33654228 PMCID: PMC7925605 DOI: 10.1038/s41598-021-84458-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Twenty-one different cultivars from four different species were examined. The highest dry weight was present in seeds (between 35 and 50%) and the average water content was 60%. Placenta and pericarp contained on average 86% water. Total sugars variation between species was 60%. The most concentrated in the various cultivar pericarps were ascorbic acid ranging from 368.1 to 2105.6 mg/100 g DW and citric acid ranging from 1464.3 to 9479.9 mg/100 g DW. Total phenolic content ranged from 2599.1 mg/100 DW in 'Chilli AS- Rot' to 7766.7 mg/100 g DW in 'Carolina Reaper'. The placenta had 23.5 times higher phenolic content than seeds. C. chinense and C. chinense × C. frutescens had 3.5 to 5 times higher capsaicinoid content compared to C. annuum and C. baccatum, with 'Carolina Reaper' having the highest content at 7334.3 mg/100 g DW and 'Chilli AS- Rot' the lowest (318.7 mg/100 g DW).
Collapse
|
48
|
Villa-Rivera MG, Ochoa-Alejo N. Chili Pepper Carotenoids: Nutraceutical Properties and Mechanisms of Action. Molecules 2020; 25:E5573. [PMID: 33260997 PMCID: PMC7729576 DOI: 10.3390/molecules25235573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Chili pepper is a prominent cultivated horticultural crop that is traditionally used for food seasoning and is applied for the treatment and prevention of multiple diseases. Its beneficial health properties are due to its abundance and variety of bioactive components, such as carotenoids, capsaicinoids, and vitamins. In particular, carotenoids have important nutraceutical properties, and several studies have focused on their potential in the prevention and treatment of human diseases. In this article, we reviewed the state of knowledge of general aspects of chili pepper carotenoids (biosynthesis pathway, types and content in Capsicum spp., and the effects of processing on carotenoid content) and recent findings on the effects of carotenoid nutraceuticals, such as antioxidant, cancer preventive, anti-inflammatory, cardiovascular disorder preventive, and anti-obesity effects.
Collapse
Affiliation(s)
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato 36824, Mexico;
| |
Collapse
|
49
|
Diel MI, Lúcio AD, Schmidt D, Valera OVS, Fontana DC, Tartaglia FDL, Tischler AL, Lambrecht DM, Zemolin JA. Relations between fruit chemical components of biquinho pepper cultivars in different crop seasons. Food Res Int 2020; 137:109701. [PMID: 33233275 DOI: 10.1016/j.foodres.2020.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 09/06/2020] [Indexed: 11/15/2022]
Abstract
The species Capsicum chinense, variety biquinho, has been gaining space in cooking, but little is known about its cultivars, mainly related to the chemical composition of fruits. The objective of this study was to characterize the nutritional composition of two biquinho pepper cultivars in different growing seasons and to define the relationships between the variables and their direct and indirect effects. An experiment was conducted in a randomized block design with two cultivars of biquinho pepper, two growing seasons. The variables were plastochron (PLAS), fruit mass (MASS), pH, total soluble solids (Brix), acidity, total phenolic compounds (PHE), carotenoids (CAR), antioxidant potential (ANT), capsaicin (CAP), and dihydrocapsaicin (DIH). The cultivar BRS Moema showed higher levels for chemical compounds, while the cultivar Airetama was the most productive. Principal component analysis (PCA) was performed to determine relationships among variables, and path analysis was used to determine direct and indirect effects between variables. The chemical composition of biquinho pepper is modified according to cultivar and growing season. Important relationships between pH and CAR, ANT, PHE, CAP, and pH. CAR and PHE have an indirect effect and the MASS and PLAS have a direct effect on the ANT.
Collapse
Affiliation(s)
- Maria Inês Diel
- Crop Science Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Denise Schmidt
- Agronomy Department, Federal University of Santa Maria, Frederico Westphalen, RS, Brazil
| | | | - Daniele Cristina Fontana
- Crop Science Department, Luiz de Queiroz College of Agriculture - University of São Paulo, Piracicaba, SP, Brazil
| | | | - André Luís Tischler
- Crop Science Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - João Alberto Zemolin
- Crop Science Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
50
|
Hernández‐Pérez T, Gómez‐García MDR, Valverde ME, Paredes‐López O. Capsicum annuum(hot pepper): An ancient Latin‐American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr Rev Food Sci Food Saf 2020; 19:2972-2993. [DOI: 10.1111/1541-4337.12634] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Talía Hernández‐Pérez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato México
| | - María del Rocío Gómez‐García
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato México
| | - María Elena Valverde
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato México
| | - Octavio Paredes‐López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato México
| |
Collapse
|