1
|
Ji T, Liang M, Li S, Wang X, Cui L, Bu Y, Gao L, Ma S, Tian Y. CsBZR1-CsCEL1 module regulates the susceptibility of cucumber to Meloidogyne incognita by mediating cellulose metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70094. [PMID: 40121570 DOI: 10.1111/tpj.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Plant-parasitic root knot nematode is a pernicious menace to agriculture. Therefore, uncovering the mechanism of nematode infection is a critical task for crop improvement. Here, with cucumber as material, we found that CsCEL1, encoding β-1,4-endoglucanase to facilitate cellulose degradation, was profoundly induced in the root infected by Meloidogyne incognita. Intriguingly, suppressing the expression of CsCEL1 in cucumber conferred resistance to M. incognita infection with reduced activity of β-1,4-endoglucanase but promoted cellulose in the root. Conversely, overexpressing CsCEL1 in Arabidopsis increased the number of nematode-induced galls. These results suggest that CsCEL1 negatively regulates the resistance to M. incognita. Furthermore, we verified the transcriptional activation of CsCEL1 by CsBZR1, a key transcription factor involved in brassinosteroid signaling. Suppressing the expression of CsBZR1 in cucumber significantly reduced the size and number of galls and suppressed giant cell formation, with promoted cellulose content. Conversely, overexpressing CsBZR1 in Arabidopsis decreased resistance to M. incognita. Exogenous application of brassinosteroid to cucumber suppressed both CsCEL1 and CsBZR1 expressions, significantly reduced the gall numbers, thus improved resistance to M. incognita. Collectively, these results suggest that the CsBZR1-CsCEL1 module is implicated in modulating cellulose content, which may influence M. incognita infection. The finding provides novel insight into the molecular regulations of nematode resistance for breeding resistant varieties or nematode management.
Collapse
Affiliation(s)
- Tingting Ji
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
- Fujian Vegetable Engineering Technology Research Center, Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Meiting Liang
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Lujing Cui
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Yaqi Bu
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing, 100193, China
| |
Collapse
|
2
|
Chen H, Zhang S, Chang J, Wei H, Li H, Li C, Yang J, Song Z, Wang Z, Lun J, Zhang X, Li L, Zhang X. Foliar application of 24-epibrassinolide enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco by regulating cold stress tolerance. BMC PLANT BIOLOGY 2025; 25:77. [PMID: 39828684 PMCID: PMC11744823 DOI: 10.1186/s12870-025-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Low temperatures disrupt nitrogen metabolism in tobacco, resulting in lower nicotine content in the leaves. 24-epibrassinolide (EBR) is a widely used plant growth regulator known for its roles in enhancing cold tolerance and nitrogen metabolism. Nevertheless, it remains unclear whether EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco. RESULTS To investigate the effects of EBR on leaf nicotine content under low temperature conditions during the mature stage of 'Yunyan 87' flue-cured tobacco, four treatments (foliar spraying of 0, 0.1, 0.2 and 0.4 mg·L- 1 EBR solutions) were performed by using a single-factor randomized complete block design. The result showed that foliar spraying of different concentrations of EBR notably improve the agronomic and economic traits of flue-cured tobacco to varying degrees, as well as increase the total nitrogen and nicotine content in the tobacco leaves. 0.2 mg·L- 1 EBR treatment showed better results, with nicotine content in the middle and upper leaves after curing increasing by 11.11% and 19.90%, respectively, compared to CK. Compared to the single EBR, foliar spraying of EBR compound containing α-Cyclodextrin and Tween 80 prolongs the effect of EBR, promotes the growth and development of tobacco plants. Combining EBR with CaCl2 and ZnSO4·7H2O significantly enhances the cold resistance of tobacco plants. Furthermore, combining EBR with higher concentrations of KH2PO4 is more effective in promoting the maturation and yellowing of the upper leaves than those with lower concentrations. CONCLUSIONS This study provides new insights that foliar application of EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco by regulating cold stress tolerance. The integration of EBR with α-Cyclodextrin, Tween 80, CaCl2, ZnSO4·7H2O and KH2PO4 showcases a novel approach to extending the effectiveness of plant growth regulators and improving agricultural sustainability. Furthermore, these findings may be applicable to other cold-sensitive crops, offering broader benefits for improving resilience and productivity under low temperatures. However, the research focuses on two growth cycles, without investigating the long-term impact of EBR on soil health, crop sustainability, and ecosystem. And further research is needed to elucidate the molecular mechanisms of EBR on enhancing leaf nicotine content. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Haiyang Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
- Postdoctoral Station of Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shuaitao Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianbo Chang
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, Sanmenxia, 472000, China
| | - Hongru Wei
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongchen Li
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, Sanmenxia, 472000, China
| | - Chaoyang Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junjie Yang
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, Sanmenxia, 472000, China
| | - Zhengxiong Song
- Luoyang Branch of Henan Provincial Tobacco Corporation, Luoyang, 471026, China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jin Lun
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450002, China
| | - Xuelin Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Lihua Li
- Luoyang Branch of Henan Provincial Tobacco Corporation, Luoyang, 471026, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Furuya T, Ohashi-Ito K, Kondo Y. Multiple Roles of Brassinosteroid Signaling in Vascular Development. PLANT & CELL PHYSIOLOGY 2024; 65:1601-1607. [PMID: 38590039 DOI: 10.1093/pcp/pcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signaling pathways. Genetic studies have revealed that mutants that are defective in BR biosynthesis or the BR signaling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
4
|
Xie J, Cao B, Xu K. Uncovering the dominant role of root lignin accumulation in silicon-induced resistance to drought in tomato. Int J Biol Macromol 2024; 259:129075. [PMID: 38161004 DOI: 10.1016/j.ijbiomac.2023.129075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The role of lignin accumulation in silicon-induced resistance has not been fully elucidated. Based on the finding that the root cell wall is protected by silicon, this study explored the role of lignin accumulation in silicon-induced drought resistance in tomato. The decreased silicon concentration of the root confirmed the dominant role of lignin accumulation in silicon-induced drought resistance. The lignin monomer content in the root was enhanced by silicon, and was accompanied by the enhancement of drought resistance. Histochemical and transcriptional analyses of lignin showed that lignin accumulation was promoted by silicon under drought stress. In addition, in the root zone, silicon-induced lignin accumulation increased as the distance from the root tip increased under drought stress. Surprisingly, the Dwarf gene was upregulated by silicon in the roots. Micro Tom Dwarf gene mutation and Micro Tom-d + Dwarf gene functional complementation were further used to confirm that Dwarf regulates the spatial accuracy of SHR expression in the root. Therefore, root lignin accumulation plays a dominant role in silicon-induced drought resistance in tomato and the regulation of spatial accuracy of root lignification by silicon under drought stress is through the BR pathway, thereby avoiding the inhibition of root growth caused by root lignification.
Collapse
Affiliation(s)
- Jiaqi Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
5
|
Zhang S, Cao L, Chang R, Zhang H, Yu J, Li C, Liu G, Yan J, Xu Z. Network Analysis of Metabolome and Transcriptome Revealed Regulation of Different Nitrogen Concentrations on Hybrid Poplar Cambium Development. Int J Mol Sci 2024; 25:1017. [PMID: 38256092 PMCID: PMC10816006 DOI: 10.3390/ijms25021017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Secondary development is a key biological characteristic of woody plants and the basis of wood formation. Exogenous nitrogen can affect the secondary growth of poplar, and some regulatory mechanisms have been found in the secondary xylem. However, the effect of nitrogen on cambium has not been reported. Herein, we investigated the effects of different nitrogen concentrations on cambium development using combined transcriptome and metabolome analysis. The results show that, compared with 1 mM NH4NO3 (M), the layers of hybrid poplar cambium cells decreased under the 0.15 mM NH4NO3 (L) and 0.3 mM NH4NO3 (LM) treatments. However, there was no difference in the layers of hybrid poplar cambium cells under the 3 mM NH4NO3 (HM) and 5 mM NH4NO3 (H) treatments. Totals of 2365, 824, 649 and 398 DEGs were identified in the M versus (vs.) L, M vs. LM, M vs. HM and M vs. H groups, respectively. Expression profile analysis of the DEGs showed that exogenous nitrogen affected the gene expression involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the starch and sucrose metabolism pathway and the ubiquitin-mediated proteolysis pathway. In M vs. L, M vs. LM, M vs. HM and M vs. H, differential metabolites were enriched in flavonoids, lignans, coumarins and saccharides. The combined analysis of the transcriptome and metabolome showed that some genes and metabolites in plant hormone signal transduction, phenylpropanoid biosynthesis and starch and sucrose metabolism pathways may be involved in nitrogen regulation in cambium development, whose functions need to be verified. In this study, from the point of view that nitrogen influences cambium development to regulate wood formation, the network analysis of the transcriptome and metabolomics of cambium under different nitrogen supply levels was studied for the first time, revealing the potential regulatory and metabolic mechanisms involved in this process and providing new insights into the effects of nitrogen on wood development.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (R.C.)
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.C.); (H.Z.); (J.Y.); (C.L.); (G.L.)
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (R.C.)
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.C.); (H.Z.); (J.Y.); (C.L.); (G.L.)
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.C.); (H.Z.); (J.Y.); (C.L.); (G.L.)
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.C.); (H.Z.); (J.Y.); (C.L.); (G.L.)
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.C.); (H.Z.); (J.Y.); (C.L.); (G.L.)
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Zhiru Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (R.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.C.); (H.Z.); (J.Y.); (C.L.); (G.L.)
| |
Collapse
|
6
|
Zhou F, Hu B, Li J, Yan H, Liu Q, Zeng B, Fan C. Exogenous applications of brassinosteroids promote secondary xylem differentiation in Eucalyptus grandis. PeerJ 2024; 12:e16250. [PMID: 38188140 PMCID: PMC10768668 DOI: 10.7717/peerj.16250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/18/2023] [Indexed: 01/09/2024] Open
Abstract
Brassinosteroids (BRs) play many pivotal roles in plant growth and development, especially in cell elongation and vascular development. Although its biosynthetic and signal transduction pathway have been well characterized in model plants, their biological roles in Eucalyptus grandis, a major hardwood tree providing fiber and energy worldwide, remain unclear. Here, we treated E. grandis plantlets with 24-epibrassinolide (EBL), the most active BR and/or BR biosynthesis inhibitor brassinazole. We recorded the plant growth and analyzed the cell structure of the root and stem with histochemical methods; then, we performed a secondary growth, BR synthesis, and signaling-related gene expression analysis. The results showed that the BRs dramatically increased the shoot length and diameter, and the exogenous BR increased the xylem area of the stem and root. In this process, EgrBRI1, EgrBZR1, and EgrBZR2 expression were induced by the BR treatment, and the expressions of HD-ZIPIII and cellulose synthase genes were also altered. To further verify the effect of BRs in secondary xylem development in Eucalyptus, we used six-month-old plants as the material and directly applied EBL to the xylem and cambium of the vertical stems. The xylem area, fiber cell length, and cell numbers showed considerable increases. Several key BR-signaling genes, secondary xylem development-related transcription factor genes, and cellulose and lignin biosynthetic genes were also considerably altered. Thus, BR had regulatory roles in secondary xylem development and differentiation via the BR-signaling pathway in this woody plant.
Collapse
Affiliation(s)
- Fangping Zhou
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Bing Hu
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Juan Li
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Huifang Yan
- School of Life Sciences Fudan University, Shanghai, China
| | - Qianyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chunjie Fan
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
7
|
Guo X, Li Y, Li N, Li G, Sun Y, Zhang S. BvCPD promotes parenchyma cell and vascular bundle development in sugar beet ( Beta vulgaris L.) taproot. FRONTIERS IN PLANT SCIENCE 2023; 14:1271329. [PMID: 37771491 PMCID: PMC10523326 DOI: 10.3389/fpls.2023.1271329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Constitutive photomorpogenic dwarf (CPD) is a pivotal enzyme gene for brassinolide (BR) synthesis and plays an important role in plant growth, including increasing plant biomass and plant height, elongating cells, and promoting xylem differentiation. However, little is known about the function of the CPD gene in sugar beet. In the current study, we isolated CPD from Beta vulgaris L. (BvCPD), which encodes protein localized in the nucleus, cell membrane, and cell wall. BvCPD was strongly expressed in parenchyma cells and vascular bundles. The transgenic sugar beet overexpressing BvCPD exhibited larger diameter than that of the wild type (WT), which mainly owing to the increased number and size of parenchyma cells, the enlarged lumen and area of vessel in the xylem. Additionally, overexpression of BvCPD increased the synthesis of endogenous BR, causing changes in the content of endogenous auxin (IAA) and gibberellin (GA) and accumulation of cellulose and lignin in cambium 1-4 rings of the taproot. These results suggest that BvCPD can promote the biosynthesis of endogenous BR, improve cell wall components, promote the development of parenchyma cells and vascular bundle, thereby playing an important role in promoting the growth and development of sugar beet taproot.
Collapse
Affiliation(s)
| | | | | | | | - Yaqing Sun
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China
| | - Shaoying Zhang
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
8
|
Lu H, Chen M, Fu M, Yan J, Su W, Zhan Y, Zeng F. Brassinosteroids affect wood development and properties of Fraxinus mandshurica. FRONTIERS IN PLANT SCIENCE 2023; 14:1167548. [PMID: 37546264 PMCID: PMC10400452 DOI: 10.3389/fpls.2023.1167548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Introduction Xylem development plays a crucial role in wood formation in woody plants. In recent years, there has been growing attention towards the impact of brassinosteroids (BRs) on this xylem development. In the present study, we evaluated the dynamic variation of xylem development in Fraxinus mandshurica (female parent, M8) and a novel interspecific hybrid F. mandshurica × Fraxinus sogdiana (1601) from May to August 2020. Methods We obtained RNA-Seq transcriptomes of three tissue types (xylem, phloem, and leaf) to identify the differences in xylem-differentially expressed genes (X-DEGs) and xylem-specifically expressed genes (X-SEGs) in M8 and 1601 variants. We then further evaluated these genes via weighted gene co-expression network analysis (WGCNA) alongside overexpressing FmCPD, a BR biosynthesis enzyme gene, in transient transgenic F. mandshurica. Results Our results indicated that the xylem development cycle of 1601 was extended by 2 weeks compared to that of M8. In addition, during the later wood development stages (secondary wall thickening) of 1601, an increased cellulose content (14%) and a reduced lignin content (11%) was observed. Furthermore, vessel length and width increased by 67% and 37%, respectively, in 1601 compared with those of M8. A total of 4589 X-DEGs were identified, including enzymes related to phenylpropane metabolism, galactose metabolism, BR synthesis, and signal transduction pathways. WGCNA identified hub X-SEGs involved in cellulose synthesis and BR signaling in the 1601 wood formation-related module (CESA8, COR1, C3H14, and C3H15); in contrast, genes involved in phenylpropane metabolism were significantly enriched in the M8 wood formation-related module (CCoAOMT and CCR). Moreover, overexpression of FmCPD in transient transgenic F. mandshurica affected the expression of genes associated with lignin and cellulose biosynthesis signal transduction. Finally, BR content was determined to be approximately 20% lower in the M8 xylem than in the 1601 xylem, and the exogenous application of BRs (24-epi brassinolide) significantly increased the number of xylem cell layers and altered the composition of the secondary cell walls in F. mandshurica. Discussion Our findings suggest that BR biosynthesis and signaling play a critical role in the differing wood development and properties observed between M8 and 1601 F. mandshurica.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mingjun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Meng Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jialin Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wenlong Su
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Li Y, Hua J, Hou X, Qi N, Li C, Wang C, Yao Y, Huang D, Zhang H, Liao W. Brassinosteroids is involved in methane-induced adventitious root formation via inducing cell wall relaxation in marigold. BMC PLANT BIOLOGY 2023; 23:2. [PMID: 36588160 PMCID: PMC9806907 DOI: 10.1186/s12870-022-04014-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 μmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.
Collapse
Affiliation(s)
- Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture and Ecological Engineering, Hexi University, No.846 Beihuan Road, Zhangye, 734000, Gansu, China
| | - Jun Hua
- Cash-Crops Technology Extension Centre of Zhangye City, No.675 Nanhuan Road, Zhangye, 734000, Gansu, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Nana Qi
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Changxia Li
- College of Agriculture, Guangxi University, No.100 East University Road, Nanning, 530004, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Hongsheng Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Li M, Li P, Wang C, Xu H, Wang M, Wang Y, Niu X, Xu M, Wang H, Qin Y, Tang W, Bai M, Wang W, Wu S. Brassinosteroid signaling restricts root lignification by antagonizing SHORT-ROOT function in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1182-1198. [PMID: 35809074 PMCID: PMC9516771 DOI: 10.1093/plphys/kiac327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/25/2022] [Indexed: 05/20/2023]
Abstract
Cell wall lignification is a key step in forming functional endodermis and protoxylem (PX) in plant roots. Lignified casparian strips (CS) in endodermis and tracheary elements of PX are essential for selective absorption and transport of water and nutrients. Although multiple key regulators of CS and PX have been identified, the spatial information that drives the developmental shift to root lignification remains unknown. Here, we found that brassinosteroid (BR) signaling plays a key role in inhibiting root lignification in the root elongation zone. The inhibitory activity of BR signaling occurs partially through the direct binding of BRASSINAZOLE-RESISTANT 1 (BZR1) to SHORT-ROOT (SHR), repressing the SHR-mediated activation of downstream genes that are involved in root lignification. Upon entering the mature root zone, BR signaling declines rapidly, which releases SHR activity and initiates root lignification. Our results provide a mechanistic view of the developmental transition to cell wall lignification in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | | | | | - Huimin Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanli Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Qin
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
11
|
Sousa-Baena MS, Onyenedum JG. Bouncing back stronger: Diversity, structure, and molecular regulation of gelatinous fiber development. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102198. [PMID: 35286861 DOI: 10.1016/j.pbi.2022.102198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Gelatinous fibers (G-fibers) are specialized contractile cells found in a diversity of vascular plant tissues, where they provide mechanical support and/or facilitate plant mobility. G-fibers are distinct from typical fibers by the presence of an innermost thickened G-layer, comprised mainly of axially oriented cellulose microfibrils. Despite the disparate developmental origins-tension wood fibers from the vascular cambium or primary phloem fibers from the procambium-G-fiber development, composition, and molecular signatures are remarkably similar; however, important distinctions do exist. Here, we synthesize current knowledge of the phylogenetic diversity, compositional makeup, and the molecular profiles that characterize G-fiber development and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Mariane S Sousa-Baena
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA.
| | - Joyce G Onyenedum
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Wang C, Liu N, Geng Z, Ji M, Wang S, Zhuang Y, Wang D, He G, Zhao S, Zhou G, Chai G. Integrated transcriptome and proteome analysis reveals brassinosteroid-mediated regulation of cambium initiation and patterning in woody stem. HORTICULTURE RESEARCH 2022; 9:6497794. [PMID: 35031795 PMCID: PMC8788366 DOI: 10.1093/hr/uhab048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 05/20/2023]
Abstract
Wood formation involves sequential developmental events requiring the coordination of multiple hormones. Brassinosteroids (BRs) play a key role in wood development, but little is known about the cellular and molecular processes that underlie wood formation in tree species. Here, we generated transgenic poplar lines with edited PdBRI1 genes, which are orthologs of Arabidopsis vascular-enriched BR receptors, and showed how inhibition of BR signaling influences wood development at the mRNA and/or proteome level. Six Populus PdBRI1 genes formed three gene pairs, each of which was highly expressed in basal stems. Simultaneous mutation of PdBRI1-1, -2, -3 and - 6, which are orthologs of the Arabidopsis vascular-enriched BR receptors BRI1, BRL1 and BRL3, resulted in severe growth defects. In particular, the stems of these mutant lines displayed a discontinuous cambial ring and patterning defects in derived secondary vascular tissues. Abnormal cambial formation within the cortical parenchyma was also observed in the stems of pdbri1-1;2;3;6. Transgenic poplar plants expressing edited versions of PdBRI1-1 or PdBRI1-1;2;6 exhibited phenotypic alterations in stem development at 4.5 months of growth, indicating that there is functional redundancy among these PdBRI1 genes. Integrated analysis of the transcriptome and proteome of pdbri1-1;2;3;6 stems revealed differential expression of a number of genes/proteins associated with wood development and hormones. Concordant (16%) and discordant (84%) regulation of mRNA and protein expression, including wood-associated mRNA/protein expression, was found in pdbri1-1;2;3;6 stems. This study found a dual role of BRs in procambial cell division and xylem differentiation and provides insights into the multiple layers of gene regulation that contribute to wood formation in Populus.
Collapse
Affiliation(s)
- Congpeng Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| | - Naixu Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao Geng
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Meijing Ji
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shumin Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yamei Zhuang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo He
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Gongke Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
- Corresponding authors. E-mail: ,
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
- Corresponding authors. E-mail: ,
| |
Collapse
|
13
|
Jiang C, Li B, Song Z, Zhang Y, Yu C, Wang H, Wang L, Zhang H. PtBRI1.2 promotes shoot growth and wood formation through a brassinosteroid-mediated PtBZR1-PtWNDs module in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6350-6364. [PMID: 34089602 DOI: 10.1093/jxb/erab260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroid-insensitive-1 (BRI1) plays important roles in various signalling pathways controlling plant growth and development. However, the regulatory mechanism of BRI1 in brassinosteroid (BR)-mediated signalling for shoot growth and wood formation in woody plants is largely unknown. In this study, PtBRI1.2, a brassinosteroid-insensitive-1 gene, was overexpressed in poplar. Shoot growth and wood formation of transgenic plants were examined and the regulatory genes involved were verified. PtBRI1.2 was localized to the plasma membrane, with a predominant expression in leaves. Ectopic expression of PtBRI1.2 in Arabidopsis bri1-201 and bri1-5 mutants rescued their retarded-growth phenotype. Overexpression of PtBRI1.2 in poplar promoted shoot growth and wood formation in transgenic plants. Further studies revealed that overexpression of PtBRI1.2 promoted the accumulation of PtBZR1 (BRASSINAZOLE RESISTANT1) in the nucleus, which subsequently activated PtWNDs (WOOD-ASSOCIATED NAC DOMAIN transcription factors) to up-regulate expression of secondary cell wall biosynthesis genes involved in wood formation. Our results suggest that PtBRI1.2 plays a crucial role in regulating shoot growth and wood formation by activating BR signalling.
Collapse
Affiliation(s)
- Chunmei Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Yuliang Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
14
|
Fan F, Zhou Z, Qin H, Tan J, Ding G. Exogenous Brassinosteroid Facilitates Xylem Development in Pinus massoniana Seedlings. Int J Mol Sci 2021; 22:ijms22147615. [PMID: 34299234 PMCID: PMC8303313 DOI: 10.3390/ijms22147615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Brassinosteroids (BRs) are known to be essential regulators for wood formation in herbaceous plants and poplar, but their roles in secondary growth and xylem development are still not well-defined, especially in pines. Here, we treated Pinus massoniana seedlings with different concentrations of exogenous BRs, and assayed the effects on plant growth, xylem development, endogenous phytohormone contents and gene expression within stems. Application of exogenous BR resulted in improving development of xylem more than phloem, and promoting xylem development in a dosage-dependent manner in a certain concentration rage. Endogenous hormone determination showed that BR may interact with other phytohormones in regulating xylem development. RNA-seq analysis revealed that some conventional phenylpropanoid biosynthesis- or lignin synthesis-related genes were downregulated, but the lignin content was elevated, suggesting that new lignin synthesis pathways or other cell wall components should be activated by BR treatment in P. massoniana. The results presented here reveal the foundational role of BRs in regulating plant secondary growth, and provide the basis for understanding molecular mechanisms of xylem development in P. massoniana.
Collapse
Affiliation(s)
- Fuhua Fan
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
- Correspondence: (F.F.); (G.D.)
| | - Zijing Zhou
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Huijuan Qin
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jianhui Tan
- Timber Forest Research Institute, Guangxi Academy of Forestry, Nanning 530009, China;
| | - Guijie Ding
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
- Correspondence: (F.F.); (G.D.)
| |
Collapse
|
15
|
Sousa B, Soares C, Oliveira F, Martins M, Branco-Neves S, Barbosa B, Ataíde I, Teixeira J, Azenha M, Azevedo RA, Fidalgo F. Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. CHEMOSPHERE 2020; 244:125579. [PMID: 32050351 DOI: 10.1016/j.chemosphere.2019.125579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still compromised by toxic levels of zinc (Zn). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. This study evaluated the potential of 24-epibrassinolide (24-EBL) to boost S. nigrum defence against Zn towards a better growth rate and remediation potential. After 24 days of exposure, the results revealed that Zn-mediated inhibitory effects on biomass and biometry were efficiently mitigated upon application of 24-EBL, without affecting Zn accumulation. The evaluation of oxidative stress markers reported that Zn excess stimulated the accumulation of superoxide anion (O2.-), but reduced hydrogen peroxide (H2O2) levels, while not altering lipid peroxidation (LP). This was accompanied by an up-regulation of the antioxidant system, especially proline, superoxide dismutase (SOD) and ascorbate peroxidase (APX) in both organs, and ascorbate in roots of Zn-exposed plants. Foliar application of 24-EBL, however, induced distinctive effects, lowering proline levels in both organs, as well as APX activity in shoots and SOD in roots, whilst stimulating GSH and total thiols in both organs, as well as SOD and APX activity, in shoots and in roots, respectively. Probably due to a better antioxidant efficiency, levels of O2.- and H2O2 in pre-treated plants remained identical to the control, while LP further decreased in shoots. Overall, our results indicate a protective effect of 24-EBL on S. nigrum response to excess Zn, contributing for a better tolerance and growth rate, without disturbing its phytoremediation potential.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Francisca Oliveira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Simão Branco-Neves
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Beatriz Barbosa
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Inês Ataíde
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Jorge Teixeira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, CP. 83, CEP 13418-900, Piracicaba, Brazil
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
16
|
Du J, Gerttula S, Li Z, Zhao ST, Liu YL, Liu Y, Lu MZ, Groover AT. Brassinosteroid regulation of wood formation in poplar. THE NEW PHYTOLOGIST 2020; 225:1516-1530. [PMID: 31120133 DOI: 10.1111/nph.15936] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 05/06/2023]
Abstract
Brassinosteroids have been implicated in the differentiation of vascular cell types in herbaceous plants, but their roles during secondary growth and wood formation are not well defined. Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar trees and assayed the effects on secondary growth and wood formation, and on gene expression within stems. Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and secondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosynthesis. The results presented here show that brassinosteroids play a foundational role in the regulation of secondary growth and wood formation, in part through the regulation of cell differentiation and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Suzanne Gerttula
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Zehua Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou, 311300, China
| | - Andrew T Groover
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Fan C, Yu H, Qin S, Li Y, Alam A, Xu C, Fan D, Zhang Q, Wang Y, Zhu W, Peng L, Luo K. Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:9. [PMID: 31988661 PMCID: PMC6969456 DOI: 10.1186/s13068-020-1652-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND As a leading biomass feedstock, poplar plants provide enormous lignocellulose resource convertible for biofuels and bio-chemicals. However, lignocellulose recalcitrance particularly in wood plants, basically causes a costly bioethanol production unacceptable for commercial marketing with potential secondary pollution to the environment. Therefore, it becomes important to reduce lignocellulose recalcitrance by genetic modification of plant cell walls, and meanwhile to establish advanced biomass process technology in woody plants. Brassinosteroids, plant-specific steroid hormones, are considered to participate in plant growth and development for biomass production, but little has been reported about brassinosteroids roles in plant cell wall assembly and modification. In this study, we generated transgenic poplar plant that overexpressed DEETIOLATED2 gene for brassinosteroids overproduction. We then detected cell wall feature alteration and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments. RESULTS Compared with wild type, the PtoDET2 overexpressed transgenic plants contained much higher brassinosteroids levels. The transgenic poplar also exhibited significantly enhanced plant growth rate and biomass yield by increasing xylem development and cell wall polymer deposition. Meanwhile, the transgenic plants showed significantly improved lignocellulose features such as reduced cellulose crystalline index and degree of polymerization values and decreased hemicellulose xylose/arabinose ratio for raised biomass porosity and accessibility, which led to integrated enhancement on biomass enzymatic saccharification and bioethanol yield under various chemical pretreatments. In contrast, the CRISPR/Cas9-generated mutation of PtoDET2 showed significantly lower brassinosteroids level for reduced biomass saccharification and bioethanol yield, compared to the wild type. Notably, the optimal green-like pretreatment could even achieve the highest bioethanol yield by effective lignin extraction in the transgenic plant. Hence, this study proposed a mechanistic model elucidating how brassinosteroid regulates cell wall modification for reduced lignocellulose recalcitrance and increased biomass porosity and accessibility for high bioethanol production. CONCLUSIONS This study has demonstrated a powerful strategy to enhance cellulosic bioethanol production by regulating brassinosteroid biosynthesis for reducing lignocellulose recalcitrance in the transgenic poplar plants. It has also provided a green-like process for biomass pretreatment and enzymatic saccharification in poplar and beyond.
Collapse
Affiliation(s)
- Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Hua Yu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shifei Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Yongli Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Aftab Alam
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changzhen Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Qingwei Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanbin Zhu
- College of Biomass Sciences and Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
- College of Biomass Sciences and Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
18
|
Tang X, Wang C, Liu Y, He G, Ma N, Chai G, Li S, Xu H, Zhou G. Brassinosteroid Signaling Converges With Auxin-Mediated C3H17 to Regulate Xylem Formation in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:586014. [PMID: 33193536 PMCID: PMC7652770 DOI: 10.3389/fpls.2020.586014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 05/05/2023]
Abstract
Brassinosteroid (BR) signaling has long been reported to have an effect on xylem development, but the detailed mechanism remains unclear, especially in tree species. In this study, we find PdC3H17, which was demonstrated to mediate xylem formation driven by auxin in our previous report, is also involved in BR-promoted xylem development. Y1H analysis, EMSA, and transcription activation assay confirmed that PdC3H17 was directly targeted by PdBES1, which is a key transcriptional regulator in BR signaling. Tissue specificity expression analysis and in situ assay revealed that PdC3H17 had an overlapping expression profile with PdBES1. Hormone treatment examinations verified that xylem phenotypes in PdC3H17 transgenic plants, which were readily apparent in normal condition, were attenuated by treatment with either brassinolide or the BR biosynthesis inhibitor propiconazole. The subsequent quantitative real-time polymerase chain reaction (qRT-PCR) analyses further revealed that BR converged with PdC3H17 to influence transcription of downstream xylem-related genes. Additionally, the enhancement of xylem differentiation by auxin in PdC3H17 overexpression plants was significantly attenuated compared with wild-type and dominant negative plants due to BR deficiency, which suggested that the BR- and auxin-responsive gene PdC3H17 acted as an mediation of these two hormones to facilitate xylem development. Taken together, our results demonstrate that BR signaling converges with auxin-mediated PdC3H17 to regulate xylem formation in Populus and thus provide insight into the regulation mechanism of BRs and the crosstalk with auxin signaling on xylem formation.
Collapse
Affiliation(s)
- Xianfeng Tang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Congpeng Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Guo He
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hua Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Hua Xu,
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Gongke Zhou,
| |
Collapse
|
19
|
Cabello JV, Chan RL. Arabidopsis and sunflower plants with increased xylem area show enhanced seed yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:717-732. [PMID: 31009150 DOI: 10.1111/tpj.14356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Plant architecture plasticity determines the efficiency at harvesting and plays a major role defining biomass and seed yield. We observed that several previously described transgenic genotypes exhibiting increased seed yield also show wider stems and more vascular bundles than wild-type plants. Here, the relationship between these characteristics and seed yield was investigated. Hanging weight on the main stem of Arabidopsis plants provoked significant stem widening. Such widening was accompanied by an increase in the number of vascular bundles and about 100% of yield increase. In parallel, lignin deposition diminished. Vascular bundle formation started in the upper internode and continued downstream. AUX/LAX carriers were essential for this response. The increase of vascular bundles was reverted 3 weeks after the treatment leading to an enlarged xylem area. Aux1, lax1, and lax3 mutant plants were also able to enlarge their stems after the treatment, whereas lax2 plants did not. However, none of these mutants exhibited more vascular bundles or seed yield compared with untreated plants. Weight-induced xylem area enhancement and increased seed yield were also observed in sunflower plants. Altogether these results showed a strong correlation between the number of vascular bundles and enhanced seed yield under a long-day photoperiod. Furthermore, changes in the levels of auxin carriers affected both these processes in the same manner, suggesting that there may be an underlying causality.
Collapse
Affiliation(s)
- Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional N° 168 km. 0, Paraje El Pozo, (3000), Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional N° 168 km. 0, Paraje El Pozo, (3000), Santa Fe, Argentina
| |
Collapse
|
20
|
Gao J, Yu M, Zhu S, Zhou L, Liu S. Effects of exogenous 24-epibrassinolide and brassinazole on negative gravitropism and tension wood formation in hybrid poplar (Populus deltoids × Populus nigra). PLANTA 2019; 249:1449-1463. [PMID: 30689054 DOI: 10.1007/s00425-018-03074-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Exogenous 24-epibrassinolide (BL) and brassinazole (BRZ) have regulatory roles in G-fiber cell wall development and secondary xylem cell wall carbohydrate biosynthesis during tension wood formation in hybrid poplar. Brassinosteroids (BRs) play important roles in regulating gravitropism and vasculature development. Here, we report the effect of brassinosteroids on negative gravitropism and G-fiber cell wall development of the stem in woody angiosperms. We applied exogenous 24-epibrassinolide (BL) or its biosynthesis inhibitor brassinazole (BRZ) to slanted hybrid poplar trees (Populus deltoids × Populus nigra) and measured the morphology of gravitropic stems, anatomy and chemistry of secondary cell wall. We furthermore analyzed the expression levels of auxin transport and cellulose biosynthetic genes after 24-epibrassinolide (BL) or brassinazole (BRZ) application. The BL-treated seedlings showed no negative gravitropism bending, whereas application of BRZ dramatically enhanced negative gravitropic bending. BL treatment stimulated secondary xylem fiber elongation and G-fiber formation on the upper side of stems but delayed G-fiber maturation. BRZ inhibited xylem fiber elongation but induced the production of more mature G-fibers on the upper side of stems. Wood chemistry analyses and immunolocalization demonstrated that BL and BRZ treatments increased the cellulose content and modified the deposition of cell wall carbohydrates including arabinose, galactose and rhamnose in the secondary xylem. The expression of cellulose biosynthetic genes, especially those related to cellulose microfibril deposition (PtFLA12 and PtCOBL4) was significantly upregulated in BL- and BRZ-treated TW stems compared with control stems. The significant differences of G-fibers development and negative gravitropism bending between 24-epibrassinolide (BL) and brassinazole (BRZ) application suggest that brassinosteroids are important for secondary xylem development during tension wood formation. Our findings provide potential insights into the mechanism by which BRs regulate G-fiber cell wall development to accomplish negative gravitropism in TW formation.
Collapse
Affiliation(s)
- Junlan Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Min Yu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Shiliu Zhu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Liang Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Shengquan Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
21
|
Exogenous Application of Phytohormones Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. Int J Mol Sci 2019; 20:ijms20030792. [PMID: 30759868 PMCID: PMC6387376 DOI: 10.3390/ijms20030792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
Although phytohormones are known to be important signal molecules involved in wood formation, their roles are still largely unclear. Here, Populus simonii × P. nigra seedlings were treated with different concentrations of exogenous phytohormones, indole-3-acetic acid (IAA), gibberellin (GA3), and brassinosteroid (BR), and the effects of phytohormones on growth were investigated. Next, 27 genes with known roles in wood formation were selected for qPCR analysis to determine tissue-specificity and timing of responses to phytohormone treatments. Compared to the control, most IAA, GA3, and BR concentrations significantly increased seedling height. Meanwhile, IAA induced significant seedling stem diameter and cellulose content increases that peaked at 3 and 30 mg·L−1, respectively. Significant increase in cellulose content was also observed in seedlings treated with 100 mg·L−1 GA3. Neither stem diameter nor cellulose content of seedlings were affected by BR treatment significantly, although slight effects were observed. Anatomical measurements demonstrated improved xylem, but not phloem, development in IAA- and BR-treated seedlings. Most gene expression patterns induced by IAA, GA3, and BR differed among tissues. Many IAA response genes were also regulated by GA3, while BR-induced transcription was weaker and slower in Populus than for IAA and GA3. These results reveal the roles played by phytohormones in plant growth and lay the foundation for exploring molecular regulatory mechanisms of wood formation in Populus.
Collapse
|
22
|
Fan C, Guo G, Yan H, Qiu Z, Liu Q, Zeng B. Characterization of Brassinazole resistant ( BZR) gene family and stress induced expression in Eucalyptus grandis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:821-831. [PMID: 30150857 PMCID: PMC6103948 DOI: 10.1007/s12298-018-0543-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 05/10/2023]
Abstract
Brassinosteroids (BRs) are a group of plant hormones which play a pivotal role in modulating cell elongation, stress responses, vascular differentiation and senescence. In response to BRs, BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) accumulate in the nucleus, where they modulate thousands of target genes and coordinate many biological processes, especially in regulating defense against biotic and abiotic stresses. In this study, 6 BZR TFs of Eucalyptus grandis (EgrBZR) from a genome-wide survey were characterized by sequence analysis and expression profiling against several abiotic stresses. The results showed that BZR gene family in Eucalyptus was slightly smaller compared to Populus and Arabidopsis, but all phylogenetic groups were represented. Various systematic in silico analysis of these TFs validated the basic properties of BZRs, whereas comparative studies showed a high degree of similarity with recognized BZRs of other plant species. In the organ-specific expression analyses, 4 EgrBZRs were expressed in vascular tissue indicating their possible functions in wood formation. Meanwhile, almost all EgrBZR genes showed differential transcript abundance levels in response to exogenously applied BR, MeJA, and SA, and salt and cold stresses. Besides, protein interaction analysis showed that all EgrBZR genes were associated with BR signaling directly or indirectly. These TFs were proposed as transcriptional activators or repressors of abiotic stress response and growth and development pathways of E. grandis by participating in BR signaling processes. These findings would be helpful in resolving the regulatory mechanism of EgrBZRs in stress resistance conditions but require further functional study of these potential TFs in Eucalyptus.
Collapse
Affiliation(s)
- Chunjie Fan
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 People’s Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Guangsheng Guo
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 People’s Republic of China
| | - Huifang Yan
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 People’s Republic of China
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 People’s Republic of China
| | - Zhenfei Qiu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 People’s Republic of China
| | - Qianyu Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 People’s Republic of China
| | - Bingshan Zeng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 People’s Republic of China
| |
Collapse
|
23
|
An YH, Zhou H, Yuan YH, Li L, Sun J, Shu S, Guo SR. 24-Epibrassinolide-induced alterations in the root cell walls of Cucumis sativus L. under Ca(NO 3) 2 stress. PROTOPLASMA 2018; 255:841-850. [PMID: 29243177 DOI: 10.1007/s00709-017-1187-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Brassinosteroids (BRs) can effectively alleviate the oxidative stress caused by Ca(NO3)2 in cucumber seedlings. The root system is an essential organ in plants due to its roles in physical anchorage, water and nutrient uptake, and metabolite synthesis and storage. In this study, 24-epibrassinolide (EBL) was applied to the cucumber seedling roots under Ca(NO3)2 stress, and the resulting chemical and anatomical changes were characterized to investigate the roles of BRs in alleviating salinity stress. Ca(NO3)2 alone significantly induced changes in the components of cell wall, anatomical structure, and expression profiles of several lignin biosynthetic genes. Salt stress damaged several metabolic pathways, leading to cell wall reassemble. However, EBL promoted cell expansion and maintained optimum length of root system, alleviating the oxidative stress caused by Ca(NO3)2. The continuous transduction of EBL signal thickened the secondary cell wall of casparian band cells, thus resisting against ion toxicity and maintaining water transport.
Collapse
Affiliation(s)
- Ya-Hong An
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Heng Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Ying-Hui Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Lin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
| | - Shi-Rong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China.
| |
Collapse
|
24
|
Combined Analysis of mRNAs and miRNAs to Identify Genes Related to Biological Characteristics of Autotetraploid Paulownia. FORESTS 2017. [DOI: 10.3390/f8120501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions - A review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Ramakrishna B, Rao SSR. Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. PROTOPLASMA 2015; 252:665-77. [PMID: 25308099 DOI: 10.1007/s00709-014-0714-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/30/2014] [Indexed: 05/03/2023]
Abstract
Growth chamber experiments were conducted to investigate the comparative effect of 24-epibrassinolide (EBL) and 28-homobrassinolide (HBL) at 0.5, 1.0, or 2.0 μM concentrations by foliar application on radish plants growing under Zn(2+) stress. In radish plants exposed to excess Zn(2+), growth was substantially reduced in terms of shoot and root length, fresh and dry weight. However, foliar application of brassinosteroids (BRs) was able to alleviate Zn(2+)-induced stress and significantly improve the above growth traits. Zinc stress decreased chlorophyll a, b, and carotenoids levels in radish plants. However, follow-up treatment with BRs increased the photosynthetic pigments in stressed and stress-free plants. The treatment of BRs led to reduced levels of H2O2, lipid peroxidation and, electrolyte leakage (ELP) and improved the leaf relative water content (RWC) in stressed plants. Increased levels of carbonyls indicating enhanced protein oxidation under Zn(2+) stress was effectively countered by supplementation of BRs. Under Zn(2+) stress, the activities of catalase (CAT), ascorbate peroxidase (APX), and superoxidase dismutase (SOD) were increased but peroxidase (POD) and glutathione reductase (GR) decreased. Foliar spraying of BRs enhanced all these enzymatic activities in radish plants under Zn(2+) stress. The BRs application greatly enhanced contents of ascorbate (ASA), glutathione (GSH), and proline under Zn(2+) stress. The decrease in the activity of nitrate reductase (NR) caused by Zn(2+) stress was restored to the level of control by application of BRs. These results point out that BRs application elevated levels of antioxidative enzymes as well as antioxidants could have conferred resistance to radish plants against Zn(2+) stress resulting in improved plant growth, relative water content and photosynthetic attributes. Of the two BRs, EBL was most effective in amelioration of Zn(2+) stress.
Collapse
|