1
|
He YL, Yang HY, Zhang L, Gong Z, Li GL, Gao K. Research Progress on Plant-Derived Cardenolides (2010-2023). Chem Biodivers 2024; 21:e202401460. [PMID: 39152549 DOI: 10.1002/cbdv.202401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Cardenolides are a class of steroidal glycoside compounds that are mainly distributed in plants, have significant physiological activity in the heart, and have been used clinically for over 200 years. To provide a reference for further research and development of these compounds, the phytochemical and biological properties of natural cardenolides (295 compounds in total) isolated between 2010 and 2023 from 17 families and hundreds of species belonging to 70-80 genera were reviewed. In vitro and in vivo studies have indicated that antitumor, antibacterial, and antiviral activities are the most commonly reported pharmacological properties of cardenolides. Antitumor activities have been thoroughly studied to understand their structure-activity relationships, revealing numerous potential anticancer molecules that lay the theoretical foundation for further development of traditional Chinese medicinal herbs and the creation of new drugs.
Collapse
Affiliation(s)
- Yi-Lin He
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong-Ying Yang
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Zhang
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Zheng Gong
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Guo-Li Li
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
2
|
Jiang L, Zhu G, Han J, Hou C, Zhang X, Wang Z, Yuan W, Lv K, Cong Z, Wang X, Chen X, Karthik L, Yang H, Wang X, Tan G, Liu G, Zhao L, Xia X, Liu X, Gao S, Ma L, Liu M, Ren B, Dai H, Quinn RJ, Hsiang T, Zhang J, Zhang L, Liu X. Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Appl Microbiol Biotechnol 2021; 105:5407-5417. [PMID: 34155529 DOI: 10.1007/s00253-021-11192-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
Fungal terpenoids catalyzed by bifunctional terpene synthases (BFTSs) possess interesting bioactive and chemical properties. In this study, an integrated approach of genome mining, heterologous expression, and in vitro enzymatic activity assay was used, and these identified a unique BFTS sub-clade critical to the formation of a 5-15 trans-fused bicyclic sesterterpene preterpestacin I (1). The 5-15 bicyclic BFTS gene clusters were highly conserved but showed relatively wide phylogenetic distribution across several species of the diverged fungal classes Dothideomycetes and Sordariomycetes. Further genomic organization analysis of these homologous biosynthetic gene clusters from this clade revealed a glycosyltransferase from the graminaceous pathogen Bipolaris sorokiniana isolate BS11134, which was absent in other 5-15 bicyclic BFTS gene clusters. Targeted isolation guided by BFTS gene deletion led to the identification of two new sesterterpenoids (4, and 6) from BS11134. Compounds 2 and 4 showed moderate effects on LPS-induced nitrous oxide production in the murine macrophage-like cell line RAW264.7 with in vitro inhibition rates of 36.6 ± 2.4% and 24.9 ± 2.1% at 10 μM, respectively. The plausible biosynthetic pathway of these identified compounds was proposed as well. This work revealed that phytopathogenic fungi can serve as important sources of active terpenoids via systematic analysis of the genomic organization of BFTS biosynthetic gene clusters, their phylogenetic distribution in fungi, and cyclization properties of their metabolic products. KEY POINTS: • Genome mining of the first BFTS BGC harboring a glycosyltransferase. • Gene-deletion guided isolation revealed three novel 5-15 bicyclic sesterterpenoids. • Biosynthetic pathway of isolated sesterterpenoids was proposed.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianying Han
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Chengjian Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhixin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weize Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liya Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | | | - Shushan Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mei Liu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huanqin Dai
- The State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, Hegazy MEF, Youssef D, Musharraf SG, Alajlani MM, Xiao J, Efferth T. Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol Res 2019; 141:123-175. [PMID: 30579976 DOI: 10.1016/j.phrs.2018.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023]
Abstract
Cardiac glycosides (CGs) are a class of naturally occurring steroid-like compounds, and members of this class have been in clinical use for more than 1500 years. They have been used in folk medicine as arrow poisons, abortifacients, heart tonics, emetics, and diuretics as well as in other applications. The major use of CGs today is based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme, and they are regarded as an effective treatment for congestive heart failure (CHF), cardiac arrhythmia and atrial fibrillation. Furthermore, increasing evidence has indicated the potential cytotoxic effects of CGs against various types of cancer. In this review, we highlight some of the structural features of this class of natural products that are crucial for their efficacy, some methods of isolating these compounds from natural resources, and the structural elucidation tools that have been used. We also describe their physicochemical properties and several modern biotechnological approaches for preparing CGs that do not require plant sources.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-75123, Uppsala, Sweden; Chemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Eman A Taher
- National Organization for Drug Control and Research (NODCAR), P.O. Box 29, Cairo, Egypt; Department of Chemistry, Royal Institute of Technology, KTH, Sweden
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., 11562 Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mohamed Gamal
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Diaa Youssef
- Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Syed G Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muaaz M Alajlani
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-75123, Uppsala, Sweden
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
4
|
Kamtcha DW, Tene M, Bedane KG, Knauer L, Brieger L, Strohmann C, Tane P, Kusari S, Spiteller M. Cardenolides and dihydro-β-agarofuran sesquiterpenes from the seeds of Salacia staudtiana. Fitoterapia 2018; 131:174-181. [DOI: 10.1016/j.fitote.2018.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 01/07/2023]
|
5
|
Cardenolides from the stem bark of Salacia staudtiana. Fitoterapia 2018; 127:402-409. [DOI: 10.1016/j.fitote.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/11/2023]
|
6
|
Wen S, Chen Y, Lu Y, Wang Y, Ding L, Jiang M. Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia 2016; 112:74-84. [PMID: 27167183 DOI: 10.1016/j.fitote.2016.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
Abstract
Cardenolides, as a group of natural products that can bind to Na(+)/K(+)-ATPase with an inhibiting activity, are traditionally used to treat congestive heart failure. Recent studies have demonstrated that the strong tumor cytotoxicities of cardenolides are mainly due to inducing the tumor cells apoptosis through different expression and cellular location of Na(+)/K(+)-ATPase α-subunits. The leaves, flesh, seeds and juices of numerous plants from the genera of Nerium, Thevetia, Cerbera, Apocynum and Strophanthus in Apocynaceae family, are the major sources of natural cardenolides. So far, 109 cardenolides have been isolated and identified from this family, and about a quarter of them are reported to exhibit the capability to regulate cancer cell survival and death through multiple signaling pathways. In this review, we compile the phytochemical characteristics and anticancer activity of the cardenolides from this family.
Collapse
Affiliation(s)
- Shiyuan Wen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin, International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yanyan Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin, International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yunfang Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin, International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Miaomiao Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Mohamed NH, Liu M, Abdel-Mageed WM, Alwahibi LH, Dai H, Ismail MA, Badr G, Quinn RJ, Liu X, Zhang L, Shoreit AAM. Cytotoxic cardenolides from the latex of Calotropis procera. Bioorg Med Chem Lett 2015; 25:4615-20. [PMID: 26323871 DOI: 10.1016/j.bmcl.2015.08.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
Three new cardenolides (3, 9 and 10), along with eight known ones, were isolated from the latex of Calotropis procera. The structural determination was accomplished by the 1D- and 2D-NMR spectra as well as HRESIMS analysis. The growth inhibitory activity of the latex and its sub-fractions as well as isolated compounds was evaluated against human A549 and Hela cell lines. The results exhibited that latex had strong growth inhibitory activity with IC50s of (3.37 μM, A-549) and (6.45 μM, Hela). Among the four extracts (hexane, chloroform, ethyl acetate and aqueous), chloroform extract displayed the highest potential cytotoxic activity, with IC50s of (0.985 μM, A-549) and (1.471 μM, Hela). All the isolated compounds displayed various degrees of cytotoxic activity and the highest activity was observed by calactin (1) with IC50s values of (0.036 μM, A-549) and (0.083 μM, Hela). None of these isolated compounds exhibited good antimicrobial activity evaluated by determination of their MICs using the broth microdilution method against various infectious pathogens. The structure-activity relationships for cytotoxic activity were also discussed.
Collapse
Affiliation(s)
- Nadia H Mohamed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt; Department of Biology, Faculty of Science and Art, Samtah, Jazan University, Saudi Arabia
| | - Miaomiao Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Wael M Abdel-Mageed
- Pharmacognosy Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Lamya H Alwahibi
- Chemistry Department, Science College, Princess Nora Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Huanqin Dai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mady Ahmed Ismail
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Ronald J Quinn
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ahmed A M Shoreit
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
| |
Collapse
|