1
|
Cárdenas-Aquino MDR, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A, Cabrera-Ponce JL. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass ( Cymbopogon citratus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3637. [PMID: 37896100 PMCID: PMC10610249 DOI: 10.3390/plants12203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).
Collapse
Affiliation(s)
- María del Rosario Cárdenas-Aquino
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Alberto Camas-Reyes
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Unidad de Microscopia Avanzada, Instituto de Ecología, A.C. INECOL 1975–2023, Carretera antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Mexico;
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| |
Collapse
|
2
|
Hudeček M, Nožková V, Plíhalová L, Plíhal O. Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1103088. [PMID: 36743569 PMCID: PMC9889983 DOI: 10.3389/fpls.2022.1103088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.
Collapse
Affiliation(s)
- Martin Hudeček
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
3
|
Savelieva EM, Zenchenko AA, Drenichev MS, Kozlova AA, Kurochkin NN, Arkhipov DV, Chizhov AO, Oslovsky VE, Romanov GA. In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities. Int J Mol Sci 2022; 23:ijms231911334. [PMID: 36232653 PMCID: PMC9569578 DOI: 10.3390/ijms231911334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.
Collapse
Affiliation(s)
- Ekaterina M. Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
| | - Anastasia A. Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Anna A. Kozlova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nikolay N. Kurochkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitry V. Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
| | - Alexander O. Chizhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky pr. 47, 119991 Moscow, Russia
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Georgy A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
- Correspondence: or
| |
Collapse
|
4
|
Klos D, Dušek M, Samol'ová E, Zatloukal M, Nožková V, Nesnas N, Plačková L, Koprna R, Spíšek Z, Vylíčilová H, Plíhal O, Doležal K, Voller J, Kadlecová A, Strnad M, Plíhalová L. New Water-Soluble Cytokinin Derivatives and Their Beneficial Impact on Barley Yield and Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7288-7301. [PMID: 35658447 DOI: 10.1021/acs.jafc.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solubility of growth regulators is essential for their use in agriculture. Four new cytokinin salts─6-benzylaminopurine mesylate (1), 6-(2-hydroxybenzylamino)purine mesylate (2), 6-(3-hydroxybenzylamino)purine mesylate (3), and 6-(3-methoxybenzylamino)purine mesylate (4)─were synthesized, and their crystal structures were determined to clarify structural influence on water solubility. The mesylates were several orders of magnitude more water-soluble than the parent CKs. The new salts significantly reduced chlorophyll degradation and impairment of photosystem II functionality in barley leaf segments undergoing artificial senescence and had pronounced effects on the leaves' endogenous CK pools, maintaining high concentrations of functional metabolites for several days, unlike canonical CKs. A foliar treatment with 1 and 3 increased the harvest yield of spring barley by up to 8% when compared to treatment with the parent CKs while also increasing the number of productive tillers. This effect was attributed to the higher bioavailability of the mesylate salts and the avoidance of dimethyl sulfoxide exposure.
Collapse
Affiliation(s)
- Dardan Klos
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Praha, Czech Republic
| | - Erika Samol'ová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Praha, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Lenka Plačková
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Radoslav Koprna
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Spíšek
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Hana Vylíčilová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Alena Kadlecová
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
5
|
Del Rosario Cárdenas-Aquino M, Sarria-Guzmán Y, Martínez-Antonio A. Review: Isoprenoid and aromatic cytokinins in shoot branching. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111240. [PMID: 35487650 DOI: 10.1016/j.plantsci.2022.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is an important event of plant development that defines growth and reproduction. The BRANCHED1 gene (BRC1/TB1/FC1) is crucial for this process. Within the phytohormones, cytokinins directly activate axillary buds to promote shoot branching. In addition, strigolactones and auxins inhibit bud outgrowth. This review addresses the involvement of aromatic and isoprenoid cytokinins in shoot branching. And how auxins and strigolactones contribute to regulating this process also. The results obtained by others and our working group with lemongrass (Cymbopogon citratus) show that cytokinins affect both shoot and root apical meristem development, consistent with other plant species. However, many questions remain about how cytokinins and strigolactones antagonistically regulate BRC1 gene expression. Additionally, many details of the interaction among cytokinins, auxins, and strigolactones need to be clarified. We will gain a more comprehensive scheme of bud outgrowth with these details.
Collapse
Affiliation(s)
| | - Yohanna Sarria-Guzmán
- Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria del Área Andina, Transv 22 Bis #4-105, Valledupar 200005, Cesar, Colombia
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, México.
| |
Collapse
|
6
|
Hallmark HT, Rashotte AM. Cytokinin isopentenyladenine and its glucoside isopentenyladenine-9G delay leaf senescence through activation of cytokinin-associated genes. PLANT DIRECT 2020; 4:e00292. [PMID: 33364544 PMCID: PMC7751127 DOI: 10.1002/pld3.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 06/01/2023]
Abstract
Cytokinins (CKs) are well-known as a class of phytohormones capable of delaying senescence in detached leaves. However, CKs are often treated as a monolithic group of compounds even though dozens of CK species are present in plants with varied degrees of reported biological activity. One specific type of CK, isopentenyladenine base (iP), has been demonstrated as having roles in delaying leaf senescence, inhibition of root growth, and promoting shoot regeneration. However, its N-glucosides isopentenyladenine-7- and -9-glucoside (iP7G, iP9G) have remained understudied and thought of as inactive cytokinins for several decades, despite their relatively high concentrations in plants such as the model species Arabidopsis thaliana. Here we show that iP and one of its glucosides, iP9G, are capable of delaying senescence in leaves, though the glucosides having little to no activity in other bioassays. Additionally, we performed the first transcriptomic study of iP-delayed cotyledon senescence which shows that iP is capable of upregulating photosynthetic genes and downregulating catabolic genes in detached cotyledons. Transcriptomic analysis also shows iP9G has limited effects on gene expression, but that the few affected genes are CK-related and are similar to those seen from iP effects during senescence as seen for the type-A response regulator ARR6. These findings suggest that iP9G functions as an active CK during senescence.
Collapse
|
7
|
The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production. Int J Mol Sci 2020; 21:ijms21218109. [PMID: 33143091 PMCID: PMC7662598 DOI: 10.3390/ijms21218109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022] Open
Abstract
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
Collapse
|
8
|
Oshchepkov MS, Kalistratova AV, Savelieva EM, Romanov GA, Bystrova NA, Kochetkov KA. Natural and synthetic cytokinins and their applications in biotechnology, agrochemistry and medicine. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review is devoted to cytokinins — classical plant hormones known for more than six decades. Nevertheless, different aspects of the action of cytokinins are still being investigated. Relevant studies produced interesting, often unexpected, results, which cast doubt on the old paradigms and open new prospects for the use of these phytohormones. Particular attention is given to recent advances in the applications of natural cytokinins and their synthetic analogues in biotechnology, agriculture, medicine and cosmetics. The chemical synthesis, properties and the possible use of artificial cytokinins are considered in detail. The review is aimed at researchers interested in the development and applications of new biologically active compounds with a wide spectrum of action on diverse biological objects, from plants to humans.
The bibliography includes 233 references.
Collapse
|
9
|
Bryksová M, Dabravolski S, Kučerová Z, Zavadil Kokáš F, Špundová M, Plíhalová L, Takáč T, Grúz J, Hudeček M, Hloušková V, Koprna R, Novák O, Strnad M, Plíhal O, Doležal K. Aromatic Cytokinin Arabinosides Promote PAMP-like Responses and Positively Regulate Leaf Longevity. ACS Chem Biol 2020; 15:1949-1963. [PMID: 32520524 DOI: 10.1021/acschembio.0c00306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokinins are plant hormones with biological functions ranging from coordination of plant growth to the regulation of biotic and abiotic stress-related responses and senescence. The components of the plant immune system can learn from past elicitations by microbial pathogens and herbivores and adapt to new threats. It is known that plants can enter the primed state of enhanced defense induced by either natural or synthetic compounds. While the involvement of cytokinins in defense priming has been documented, no comprehensive model of their action has been provided to date. Here, we report the functional characterization of two aromatic cytokinin derivatives, 6-benzylaminopurine-9-arabinosides (BAPAs), 3-methoxy-BAPA and 3-hydroxy-BAPA, that proved to be effective in delaying senescence in detached leaves while having low interactions with the cytokinin pathway. An RNA-seq profiling study on Arabidopsis leaves treated with 3-methoxy-BAPA revealed that short and extended treatments with this compound shifted the transcriptional response markedly toward defense. Both treatments revealed upregulation of genes involved in processes associated with plant innate immunity such as cell wall remodeling and upregulation of specific MAP kinases, most importantly MPK11, which is a MAPK module involved in stress-related signaling during the pathogen-associated molecular patterns (PAMPs) response. In addition, elevated levels of JA and its metabolites, jasmonate/ethylene-driven upregulation of PLANT DEFENSIN 1.2 (PDF1.2) and other defensins, and also temporarily elevated levels of reactive oxygen species marked the plant response to 3-methoxy-BAPA treatment. Synergistic interactions were observed when plants were cotreated with 3-hydroxy-BAPA and the flagellin-derived bacterial PAMP peptide (flg22), leading to the enhanced expression of the PAMP-triggered immunity (PTI) marker gene FRK1. Our data collectively show that some BAPAs can sensitively prime the PTI responses in a low micromolar range of concentrations while having no observable negative effects on the overall fitness of the plant.
Collapse
Affiliation(s)
- Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Siarhei Dabravolski
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zuzana Kučerová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Filip Zavadil Kokáš
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Žlutý kopec 7, CZ-65653 Brno, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Grúz
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Hudeček
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Veronika Hloušková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Radoslav Koprna
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Plíhal
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
10
|
Vylíčilová H, Bryksová M, Matušková V, Doležal K, Plíhalová L, Strnad M. Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back. Biomolecules 2020; 10:biom10060832. [PMID: 32485963 PMCID: PMC7356397 DOI: 10.3390/biom10060832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/18/2023] Open
Abstract
Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Vlasta Matušková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
- Correspondence:
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| |
Collapse
|
11
|
Janečková H, Husičková A, Lazár D, Ferretti U, Pospíšil P, Špundová M. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:43-51. [PMID: 30639921 DOI: 10.1016/j.plaphy.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 05/01/2023]
Abstract
Recent studies have shown that chlorophyll (Chl) b has an important role in the regulation of leaf senescence. However, there is only limited information about senescence of plants lacking Chl b and senescence-induced decrease in photosystem II (PSII) and photosystem I (PSI) function has not even been investigated in such plants. We have studied senescence-induced changes in photosynthetic pigment content and PSII and PSI activities in detached leaves of Chl b-deficient barley mutant, chlorina f2f2 (clo). After 4 days in the dark, the senescence-induced decrease in PSI activity was smaller in clo compared to WT leaves. On the contrary, the senescence-induced impairment in PSII function (estimated from Chl fluorescence parameters) was much more pronounced in clo leaves, even though the relative decrease in Chl content was similar to wild type (WT) leaves (Hordeum vulgare L., cv. Bonus). The stronger impairment of PSII function seems to be related to more pronounced damage of reaction centers of PSII. Interestingly, exogenously applied plant hormone cytokinin 6-benzylaminopurine (BA) was able to maintain PSII function in the dark senescing clo leaves to a similar extent as in WT. Thus, considering the fact that without BA the senescence-induced decrease in PSII photochemistry in clo was more pronounced than in WT, the relative protective effect of BA was higher in Chl b-deficient mutant than in WT.
Collapse
Affiliation(s)
- Helena Janečková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Dušan Lazár
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Ursula Ferretti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Pavel Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Martina Špundová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
12
|
Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci 2018; 19:E4045. [PMID: 30558142 PMCID: PMC6321018 DOI: 10.3390/ijms19124045] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
Collapse
Affiliation(s)
- Martin Hönig
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Alexandra Husičková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jaroslav Nisler
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Janečková H, Husičková A, Ferretti U, Prčina M, Pilařová E, Plačková L, Pospíšil P, Doležal K, Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. PLANT, CELL & ENVIRONMENT 2018; 41:1870-1885. [PMID: 29744884 DOI: 10.1111/pce.13329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild-type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis-zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6 -(Δ2 -isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.
Collapse
Affiliation(s)
- Helena Janečková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Ursula Ferretti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Maroš Prčina
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Eva Pilařová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Martina Špundová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| |
Collapse
|
14
|
Savelieva EM, Oslovsky VE, Karlov DS, Kurochkin NN, Getman IA, Lomin SN, Sidorov GV, Mikhailov SN, Osolodkin DI, Romanov GA. Cytokinin activity of N 6-benzyladenine derivatives assayed by interaction with the receptors in planta, in vitro, and in silico. PHYTOCHEMISTRY 2018; 149:161-177. [PMID: 29544164 DOI: 10.1016/j.phytochem.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Biological effects of hormones in both plants and animals are based on high-affinity interaction with cognate receptors resulting in their activation. The signal of cytokinins, classical plant hormones, is perceived in Arabidopsis by three homologous membrane receptors: AHK2, AHK3, and CRE1/AHK4. To study the cytokinin-receptor interaction, we used 25 derivatives of potent cytokinin N6-benzyladenine (BA) with substituents in the purine heterocycle and/or in the side chain. The study was focused primarily on individual cytokinin receptors from Arabidopsis. The main in planta assay system was based on Arabidopsis double mutants retaining only one isoform of cytokinin receptors and harboring cytokinin-sensitive reporter gene. Classical cytokinin biotest with Amaranthus seedlings was used as an additional biotest. In parallel, the binding of ligands to individual cytokinin receptors was assessed in the in vitro test system. Quantitative comparison of results of different assays confirmed the partial similarity of ligand-binding properties of receptor isoforms. Substituents at positions 8 and 9 of adenine moiety, elongated linker up to 4 methylene units, and replacement of N6 by sulfur or oxygen have resulted in the suppression of cytokinin activity of the derivative toward all receptors. Introduction of a halogen into position 2 of adenine moiety, on the contrary, often increased the ligand activity, especially toward AHK3. Features both common and distinctive of cytokinin receptors in Arabidopsis and Amaranthus were revealed, highlighting species specificity of the cytokinin perception apparatus. Correlations between the extent to which a compound binds to a receptor in vitro and its ability to activate the same receptor in planta were evaluated for each AHK protein. Interaction patterns between individual receptors and ligands were rationalized by structure analysis and molecular docking in sensory modules of AHK receptors. The best correlation between docking scores and specific binding was observed for AHK3. In addition, receptor-specific ligands have been discovered with unique properties to predominantly activate or block distinct cytokinin receptors. These ligands are promising for practical application and as molecular tools in the study of the cytokinin perception by plant cells.
Collapse
Affiliation(s)
- Ekaterina M Savelieva
- Laboratory of Signaling Systems of Ontogeny Control, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Vladimir E Oslovsky
- Laboratory of Design and Synthesis of Biologically Active Compounds, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Russia.
| | - Dmitry S Karlov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, 143026 Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny Proezd 1, Chernogolovka, Moscow Region, 142432 Russia.
| | - Nikolay N Kurochkin
- Laboratory of Design and Synthesis of Biologically Active Compounds, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Russia.
| | - Irina A Getman
- Laboratory of Signaling Systems of Ontogeny Control, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Sergey N Lomin
- Laboratory of Signaling Systems of Ontogeny Control, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Georgy V Sidorov
- Laboratory of Isotope Labelled Physiologically Active Compounds, Institute of Molecular Genetics, Russian Academy of Sciences, Pl. Akad. Kurchatova 2, 123182 Moscow, Russia.
| | - Sergey N Mikhailov
- Laboratory of Design and Synthesis of Biologically Active Compounds, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Russia.
| | - Dmitry I Osolodkin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, Poselok Instituta Poliomelita 8 bd. 1, Poselenie Moskovsky, Moscow 108819, Russia; Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Moscow 119991, Russia.
| | - Georgy A Romanov
- Laboratory of Signaling Systems of Ontogeny Control, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia; Department of Molecular Basis of Ontogenesis, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia.
| |
Collapse
|
15
|
Šmehilová M, Dobrůšková J, Novák O, Takáč T, Galuszka P. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance. FRONTIERS IN PLANT SCIENCE 2016; 7:1264. [PMID: 27602043 PMCID: PMC4993776 DOI: 10.3389/fpls.2016.01264] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 05/18/2023]
Abstract
Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in all UGT mutants. In contrast, a specific regulation of CKX7, CKX1 and CKX2 was observed for each individual UGT mutant isoform after exogenous CK uptake. Employing an in silico prediction we proposed cytosolic localization of UGT76C1 and UGT76C2, that we further confirmed by GFP tagging of UGT76C2. Integrating all the results, we therefore hypothesize that UGTs possess different physiological roles in Arabidopsis and serve as a fine-tuning mechanism of active CK levels in cytosol.
Collapse
Affiliation(s)
- Mária Šmehilová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Jana Dobrůšková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc and Institute of Experimental Botany ASCROlomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| |
Collapse
|