1
|
Zhang M, Wang T, Guo Q, Su Y, Yang F. Systematic Identification and Characterization of O-Methyltransferase Gene Family Members Involved in Flavonoid Biosynthesis in Chrysanthemum indicum L. Int J Mol Sci 2024; 25:10037. [PMID: 39337522 PMCID: PMC11432614 DOI: 10.3390/ijms251810037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Chrysanthemum indicum L. capitulum is an enriched source of flavonoids with broad-ranging biological activities, mainly due to their anti-inflammatory, anti-cancer, immune regulation, anti-microbial activity, hepatoprotective, and neuroprotective effects. The O-methylation of various secondary metabolites has previously been demonstrated to be mainly catalyzed by S-adenosyl-L-methionine-dependent O-methyltransferase (OMT) proteins encoded by the OMT gene family. However, limited comprehensive study was published on the OMT gene family, especially the CCoAOMT subfamily, involved in the O-methylation of flavonoids in Chrysanthemum. Here, we analyzed the spatiotemporal expression patterns of C. indicum OMT genes in leaf and flower at different developmental stages. Transcriptome sequencing and qRT-PCR analysis showed that COMTs were mainly highly expressed in capitulum, especially in full bloom, while CCoAOMTs were mainly highly expressed in leaves. Correlation analysis of OMT gene expression and flavonoids accumulation revealed that four OMTs (CHR00029120, CHR00029783, CHR00077404, and CHR00078333) were putatively involved in most methylated flavonoids biosynthesis in the capitulum. Furthermore, we identified a true CCoAOMT enzyme, CiCCoAOMT1, and found that it catalyzed O-methylation of quercetin and luteolin at the 3'-OH position. In summary, this work provides an important theoretical basis for further research on the biological functions of OMTs in C. indicum.
Collapse
Affiliation(s)
| | | | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (M.Z.); (T.W.); (Y.S.); (F.Y.)
| | | | | |
Collapse
|
2
|
Wang J, Liao N, Liu G, Li Y, Xu F, Shi J. Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids. Crit Rev Biotechnol 2024; 44:1203-1225. [PMID: 38035668 DOI: 10.1080/07388551.2023.2280755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished via the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of O-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing O-methylated flavonoids.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
3
|
He Y, Zhang J, He Y, Liu H, Wang C, Guan G, Zhao Y, Tian Y, Zhong X, Lu X. Two O-methyltransferases are responsible for multiple O-methylation steps in the biosynthesis of furanocoumarins from Angelicadecursiva. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108142. [PMID: 39492167 DOI: 10.1016/j.plaphy.2023.108142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Angelica decursiva, an important traditional medicinal plant, possesses a unique pharmacological activity. Its principal active ingredients are coumarins, including scopoletin, bergapten, and imperatorin. However, the enzymes catalyzing the critical step of coumarins biosynthesis pathway remain unidentified. This study initially screened 14 candidate O-methyltransferases (OMTs) through transcriptomics and metabolic determination. Combined with gene expression profile and biochemical assays, two OMTs (AdOMT1 and AdOMT2) were identified to be responsible for the O-methylation of coumarins in A. decursiva. AdOMT1 showed higher catalytic efficiency for bergaptol (Kcat/Km = 3123.70), while AdOMT2 exhibited higher substrate and catalytic promiscuity, allowing it to catalyze the methylation of various coumarins, phenylpropanes, and flavonoids. Based on molecular docking and site-specific mutagenesis determined that His126/Asn132, Phe171/Phe177, Trp261/Trp267, and Asn312/Ile317 were the key catalytic residues of AdOMT1 and AdOMT2 for the O-methylation of bergaptol and xanthotoxol. Further phylogenetic analysis confirmed the reasons for the catalytic functional differentiation of AdOMT1 and AdOMT2. This study provides a basis for exploring the coumarins O-methylation mechanism and plays a critical role in diversifying the structures used in coumarins drug discovery.
Collapse
Affiliation(s)
- Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jing Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuewei He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yucheng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
4
|
Zhang X, Zhang H, Shen T, Pei J, Zhao L. Biotransformation to synthesize the methylated derivatives of baicalein using engineered Escherichia coli. Bioprocess Biosyst Eng 2023; 46:735-745. [PMID: 36932217 DOI: 10.1007/s00449-023-02860-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Oroxylin A and negletein are flavonoid compounds existing in plants, with excellent pharmacological activities such as anti-inflammatory, anti-viropexis, and anti-cancer. Nevertheless, the natural abundance of these compounds in plants is extremely low. Here, a biotransformation pathway was developed in engineered strains to synthesize oroxylin A and negletein from baicalin by using the crude extract of Scutellaria baicalensis as the substrate. Briefly, the precursor baicalin in this crude extract was hydrolyzed by a β-glucuronidase to form the intermediate baicalein, then O-methyltransferases utilize this intermediate to synthesize oroxylin A and negletein. Through screening strains and carbon sources, regulating intercellular S-adenosyl L-methionine synthesis, and optimizing culture conditions, the titers of the target products increased gradually, with 188.0 mg/L for oroxylin A and 222.7 mg/L for negletein finally. The study illustrates a convenient method to synthesize oroxylin A and negletein from a low-cost substrate, paving the way for the mass acquisition and further bioactivities development and utilization of these rare and high-value compounds.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiyan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Jia D, Jin C, Gong S, Wang X, Wu T. RNA-Seq and Iso-Seq Reveal the Important Role of COMT and CCoAOMT Genes in Accumulation of Scopoletin in Noni ( Morinda citrifolia). Genes (Basel) 2022; 13:1993. [PMID: 36360230 PMCID: PMC9689816 DOI: 10.3390/genes13111993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2023] Open
Abstract
Scopoletin, the main component of clinical drugs and the functional component of health products, is highly abundant in noni fruit (Morinda citrifolia). Multiple enzyme genes regulate scopoletin accumulation. In the present study, differentially expressed genes of noni were analyzed by RNA sequencing (RNA-Seq) and the full-length genes by isoform-sequencing (Iso-Seq) to find the critical genes in the scopoletin accumulation mechanism pathway. A total of 32,682 full-length nonchimeric reads (FLNC) were obtained, out of which 16,620 non-redundant transcripts were validated. Based on KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation and differential expression analysis, two differentially expressed genes, caffeic acid 3-O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT), were found in the scopoletin accumulation pathway of noni. Real-time quantitative polymerase chain reaction (q-PCR), phylogenetic tree analysis, gene expression analysis, and the change in scopoletin content confirmed that these two proteins are important in this pathway. Based on these results, the current study supposed that COMT and CCoAOMT play a significant role in the accumulation of scopoletin in noni fruit, and COMT (gene number: gene 7446, gene 8422, and gene 6794) and CCoAOMT (gene number: gene 12,084) were more significant. These results provide the importance of COMT and CCoAOMT and a basis for further understanding the accumulation mechanism of scopoletin in noni.
Collapse
Affiliation(s)
| | | | | | | | - Tian Wu
- Southwest Landscape Architecture Engineering Research Center of State Forestry Administration, Landscape Architecture and Horticulture Science School, Southwest Forestry University, Kunming 650000, China
| |
Collapse
|
6
|
Xu RX, Ni R, Gao S, Fu J, Xiong RL, Zhu TT, Lou HX, Cheng AX. Molecular cloning and characterization of two distinct caffeoyl CoA O-methyltransferases (CCoAOMTs) from the liverwort Marchantia paleacea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111102. [PMID: 34895539 DOI: 10.1016/j.plantsci.2021.111102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Caffeoyl CoA O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine to a hydroxyl moiety of caffeoyl-CoA as part of the lignin biosynthetic pathway. CCoAOMT-like proteins also catalyze to a variety of flavonoids, coumarins, and phenylpropanoids. Several CCoAOMTs that prefer flavonoids as substrates have been characterized from liverworts. Here, we cloned two CCoAOMT genes, MpalOMT2 and MpalOMT3, from the liverwort Marchantia paleacea. MpalOMT3 has a second ATG codon downstream and the truncated version that lacks 11 amino acids was named MpalOMT3-Tr. Phylogenetic analysis placed MpalOMT3 at the root of the clade with true CCoAOMTs from vascular plants and placed MpalOMT2 between the CCoAOMT and CCoAOMT-like proteins. Recombinant OMTs methylated caffeoyl CoA, phenylpropanoids, and flavonoids containing two or three vicinal hydroxyl groups. MpalOMT3 showed higher catalytic activity for phenylpropanoids than MpalOMT2, but MpalOMT2 showed more promiscuous towards eriodictyol and myricetin. The lignin content in Arabidopsis thaliana stems increased with constitutive heterologous expression of MpalOMT3-Tr, but not MpalOMT2. Subcellular localization experiments indicated that the N-terminus of MpalOMT3 probably served as a chloroplast transit peptide and inhibited its enzymatic activity. Combining the phylogenetic analysis and functional characterization, we conclude that the liverwort M. paleacea harbors true CCoAOMT and CCoAOMT-like genes.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Kamada T, Johanis ML, Ng SY, Phan CS, Suleiman M, Vairappan CS. A New Epi-neoverrucosane-type Diterpenoid from the Liverwort Pleurozia subinflata in Borneo. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:51-56. [PMID: 32062804 PMCID: PMC7046843 DOI: 10.1007/s13659-020-00232-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 06/01/2023]
Abstract
New bioactive 13-epi-neoverrucosane diterpenoid, 5β-acetoxy-13-epi-neoverrucosanic acid (1) along with three known secondary metabolites, 13-epi-neoverrucosan-5β-ol (2), chelodane (3) and (E)-β-farnesene (4) were isolated from the MeOH extract of east Malaysia's liverwort Pleurozia subinflata. The chemical structure of new compound was elucidated by the analyses of its spectroscopic data (FTIR, NMR and HR-ESI-MS). These epi-neoverrucosane-type compounds seem to be notable chemosystematic markers for P. subinflata in Borneo. Compound 3 was widespread in marine sponges however this is the first record for 3 to be found in liverwort. These metabolites were tested for their antifungal potentials against selected fungi from the marine environment. Compound 1 exhibited effective antifungal activity against Lagenidium thermophilum.
Collapse
Affiliation(s)
- Takashi Kamada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan.
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Mary Lyn Johanis
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Shean-Yeaw Ng
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Chin-Soon Phan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Charles S Vairappan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|