1
|
Liu Z, Wang Y, Jiao Q, Liu Y, Shen S, Zhao H, Gao Z, Yao GD, Gu L, Liu Q, Song SJ. 20-Deoxyingenol ester and ether derivatives: Synthesis, properties and cytotoxicity. Bioorg Chem 2025; 156:108207. [PMID: 39864376 DOI: 10.1016/j.bioorg.2025.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior. In addition, a series of 20-deoxyingenol ether derivatives, including 1,3,4-oxadiazole derivatives, were synthesized. The cytotoxic activities of 20-deoxyingenol derivatives were evaluated on A549 and HepG2 cell lines. Notably, 20-deoxyingenol 1,3,4-oxadiazole derivative 22 (IC50 = 8.8 μM) exhibited significant anticancer activity against HepG2 cells with low toxicity to normal cells (IC50 > 50 μM), making it a promising compound. We investigated the potential anticancer mechanism of compound 22 by examining protein expression changes in HepG2 cells using quantitative proteomics. Our findings indicated that 22 induced G1/S phase cell cycle arrest and, In a dose-dependent manner, inhibited CDK4 and CyclinD1 expression while upregulating P21. Moreover, 22 promoted the accumulation of autophagosomes and the proteins LC3 and PINK1, enhancing autophagy and mitophagy in HepG2 cells. Collectively, compound 22 might serve as a novel autophagy agonist with anticancer properties.
Collapse
Affiliation(s)
- Zijian Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaxu Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingning Jiao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shuai Shen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China
| | - Ziang Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Ma RF, Wu Q, Pan YP, Liu H, Zhuang XC, Zhang H. Ingenane diterpenoids with anti-inflammatory activity from Euphorbia antiquorum. Fitoterapia 2025; 180:106350. [PMID: 39701500 DOI: 10.1016/j.fitote.2024.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
The Euphorbia plants are famous for their diterpenoid constituents with diverse structures and broad biological activities. Herein, the discovery of 15 ingenane diterpenoids including 10 previously unreported ones (1-10) from Euphorbia antiquorum was presented. Structures of the undescribed compounds were established via detailed spectroscopic analyses. Meanwhile, a preliminary anti-inflammatory screening revealed that compound 6 showed significant inhibitory activity against the production of nitric oxide, as well as downregulated the expression of COX-2 and IL-6, in lipopolysaccharide-stimulated RAW264.7 macrophages. Further mechanistical exploration revealed that compound 6 could exert its anti-inflammatory effect by inhibiting NF-κB and activating Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Ren-Fen Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Qian Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yin-Po Pan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hu Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xin-Cheng Zhuang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Feng X, Wang L, Pu L, Li J, Li H, Liu D, Li R. An Ingenane-Type Diterpene from Euphorbia kansui Promoted Cell Apoptosis and Macrophage Polarization via the Regulation of PKC Signaling Pathways. Int J Mol Sci 2024; 25:10123. [PMID: 39337608 PMCID: PMC11432454 DOI: 10.3390/ijms251810123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Euphorbia kansui, a toxic Chinese medicine used for more than 2000 years, has the effect of "purging water to promote drinking" and "reducing swelling and dispersing modules". Diterpenes and triterpenes are the main bioactive components of E. kansui. Among them, ingenane-type diterpenes have multiple biological activities as a protein kinase C δ (PKC-δ) activator, which have previously been shown to promote anti-proliferative and pro-apoptotic effects in several human cancer cell lines. However, the activation of PKC subsequently promoted the survival of macrophages. Recently, we found that 13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (compound A) from E. kansui showed dual bioactivity, including the inhibition of tumor-cell-line proliferation and regulation of macrophage polarization. This study identifies the possible mechanism of compound A in regulating the polarization state of macrophages, by regulating PKC-δ-extracellular signal regulated kinases (ERK) signaling pathways to exert anti-tumor immunity effects in vitro, which might provide a new treatment method from the perspective of immune cell regulation.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lizhong Wang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Li Pu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianchun Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongmei Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongtao Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Wang S, Shi Z, Zhang H, Hou J, Lee D, Xu J, Guo Y. Cycloartane-type triterpenoids and steroids from Trichilia connaroides and their multidrug resistance reversal activities. PHYTOCHEMISTRY 2023; 216:113867. [PMID: 37757926 DOI: 10.1016/j.phytochem.2023.113867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Four undescribed cycloartane-type triterpenoids (1-4) and seven undescribed steroids (6-12), along with five known analogues (5 and 13-16), were isolated from the leaves of Trichilia connaroides. Their structures were identified based on the NMR data and HRESIMS, and the absolute configurations were determined through single-crystal X-ray diffraction analysis, Mosher's method, and ECD calculations. The multidrug resistance (MDR) reversal activities of all the isolates were assessed, and compounds 10 and 11 showed significant activities to reverse the MDR of MCF-7/DOX cells with IC50 values of 2.90 and 3.76 μM, respectively. These bioactive compounds may bring fresh insights into the research and development of MDR reversal agents.
Collapse
Affiliation(s)
- Sibei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Cai Q, Zha HJ, Yuan SY, Sun X, Lin X, Zheng XY, Qian YX, Xia RF, Luo YS, Shi Z, Su JC, Wan LS. Diterpenoids from Euphorbia fischeriana with Kv1.3 Inhibitory Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2379-2390. [PMID: 37796721 DOI: 10.1021/acs.jnatprod.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Euphorbia diterpenoids possess inhibitory effects of Kv1.3 ion channel, but most of this research has focused on diterpenoids with jatrophane-related or ingenane-related skeletons. In the present study, nine undescribed (1-9) and 16 known (10-25) diterpenoids, based on jatrophane, lathyrane, ingenane, abietane, and atisane skeletons, were identified from the methanol extract of the aerial parts of Euphorbia fischeriana. The structures were established by analysis of the spectroscopic data as well as by single-crystal X-ray diffraction analysis. Among the isolated diterpenoids, macrocyclic jatrophanes and lathyranes exerted Kv1.3 blocking activity. Compound 8 exhibited good selectivity on the inhibition of the Kv 1.3 channel rather than hERG channel, with a selectivity index over 7.0. The selective activity of lathyrane diterpenoids indicates that macrocyclic diterpenoids have the potential to be further investigated as therapeutic agents for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Qin Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong-Jing Zha
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shi-Ying Yuan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China
| | - Xin Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xin-Yu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying-Xian Qian
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yue-Shan Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhimian Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Zhao Y, Hua C, Sha YO, Wu PQ, Liu QF, Lu L, Zhou B, Jiang SB, Fan YY, Yue JM. Diterpenoids from Euphorbia lactea and their anti-HIV-1 activity. PHYTOCHEMISTRY 2023:113745. [PMID: 37277012 DOI: 10.1016/j.phytochem.2023.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Nine undescribed diterpenoids, euphlactenoids A-I (1-9), including four ingol-type diterpenoids (1-4) with a 5/3/11/3-tetracyclic framework and five ent-pimarane-type diterpenoids (5-9), together with thirteen known diterpenoids (10-22), were identified from the leaves and stems of Euphorbia lactea Haw. The structures and absolute configurations of compounds 1-9 were unequivocally elucidated on the basis of spectroscopic analysis, ECD calculations and single crystal X-ray diffraction. Compounds 3 and 16 showed anti-HIV-1 effects with IC50 values of 1.17 μM (SI = 16.54) and 13.10 μM (SI = 1.93), respectively.
Collapse
Affiliation(s)
- Ye Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Chen Hua
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Ou Sha
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pei-Qian Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China
| | - Shi-Bo Jiang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China.
| |
Collapse
|
7
|
Zhang Z, Xu Y, Shen A, Fu D, Liu D, Liu Y, Liang X. Offline two-dimensional normal-phase × reversed-phase liquid chromatography coupled with high-resolution mass spectrometry for comprehensive analysis of chemical constituents in Euphorbia kansui. J Chromatogr A 2023; 1693:463897. [PMID: 36857981 DOI: 10.1016/j.chroma.2023.463897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Euphorbia kansui is the dried root of Euphorbia kansui T. N. Liou ex T.P. Wang. Its main chemical components are diterpenoids, triterpenes, and volatile oil. In this study, an offline two-dimensional (2D) normal-phase × reversed-phase liquid chromatography method coupled with quadrupole time-of-flight mass spectrometry was established to comprehensively analyze the chemical constituents in E. kansui. A total of 240 compounds were identified from the E. kansui extract, including 218 diterpenoids (77 known, 141 new), 16 known volatile oils, and six known triterpenes. The relationship between the structural characteristics and tandem mass spectroscopy fragments of diterpenoids was further analyzed. Based on the characteristic fragment ions, 141 new diterpenoids were determined as 118 ingenane diterpenoids and 23 jatrophane diterpenoids. The newly identified diterpenoids may provide lead compounds for drug discovery, improving the medicinal value of E. kansui.
Collapse
Affiliation(s)
- Zihui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Xu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijin Shen
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dongmei Fu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Dian Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
8
|
Li JC, Li SY, Tang JX, Liu D, Feng XY, Rao KR, Zhao XD, Li HM, Li RT. Triterpenoids, steroids and other constituents from Euphorbia kansui and their anti-inflammatory and anti-tumor properties. PHYTOCHEMISTRY 2022; 204:113449. [PMID: 36170888 DOI: 10.1016/j.phytochem.2022.113449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Six undescribed triterpenoids (euphokanols A-F), two undescribed C21-steroidal glycosides (euphokanosides A and B), together with fifty-four known compounds were isolated from the roots of Euphorbia kansui. Their structures were demonstrated by extensive spectroscopic data (1D, 2D NMR and HR-ESI-MS), and the absolute configuration of euphokanol A was elucidated based on electronic circular dichroism (ECD) calculation. Among them, euphokanol A was a tetracyclic triterpenoid with a 5,10-epoxy moiety and concurrent rearrangement of Me-19(10 → 9) and Me-30 (14 → 8), while euphokanols B and C were rare 19(10 → 9) abeo-tirucallane-type triterpenoids with Δ5(10) double bonds and 7,8-epoxy moieties. In addition, ten C21-steroidal glycosides were isolated from Euphorbia plants for the first time. Moreover, cynotophylloside B, caudatin, 5α,8α-epidioxy-22E-ergosta-6,22-diene-3β-ol, 6β,7β-epoxy-3β,4β,5β-trihydroxyl-20-deoxyingenol, 13-hydroxyingenol-3-(2,3- dimethylbutanoate)-13-dodecanoate, ingenol, 3-O-benzoyl-13-O-dodecanoateingenol, 3-O-(2'E,4'Z-decadienoyl)-20-O-acetylingenol, 20-O-acetylingenol and 20- deoxyingenol exhibited significant inhibition on NO production with IC50 values of 9.10, 17.38, 1.71, 0.55, 0.57, 12.22, 0.56, 0.30, 11.21 and 2.98 μM, respectively. Furthermore, wilfoside KIN, cynsaccatol L, kanesulone A, and 3β,7β,15β-triacetyloxy-5α-benzoyloxy-2α,8α-dihydroxyjatropha-6(17),11E-diene-9, 14-dione showed cytotoxicity against HepG2 cell line, with IC50 values of 12.55, 12.61, 18.24 and 18.26 μM, respectively. 13-Hydroxyingenol-3-(2,3-dimethylbutanoate)-13- dodecanoate exhibited anti-proliferation activity on MCF-7 cell line with an IC50 value of 17.12 μM. Specifically, euphol selectively inhibited the growth of human glioma stem cells (GSC-3# and GSC-12#), with IC50 values of 8.89 and 13.00 μM, respectively.
Collapse
Affiliation(s)
- Jian-Chun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Shu-Yi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Jian-Xian Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Dan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Xiao-Yi Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Kai-Rui Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Xu-Dong Zhao
- Laboratory of Animal Tumor Models, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hong-Mei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| |
Collapse
|
9
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
10
|
Deng ZF, Bakunina I, Yu H, Han J, Dömling A, Ferreira MJU, Zhang JY. Research Progress on Natural Diterpenoids in Reversing Multidrug Resistance. Front Pharmacol 2022; 13:815603. [PMID: 35418870 PMCID: PMC8996378 DOI: 10.3389/fphar.2022.815603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in successful chemotherapy in cancer treatment. Overexpression of ATP-binding cassette (ABC) transporter proteins is one of the most important mechanisms of MDR. Natural products have their unique advantages in reversing MDR, among which diterpenoids have attracted great attention of the researchers around the world. This review article summarizes and discusses the research progress on diterpenoids in reversing MDR.
Collapse
Affiliation(s)
- Zhuo-fen Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Plant Science and Technology, Chung-Ang University, Anseong, Korea
| | - Alexander Dömling
- Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jian-ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Xiang ZN, Tong QL, Su JC, Hu ZF, Zhao N, Xia RF, Wu JL, Chen C, Chen JC, Wan LS. Diterpenoids with Rearranged 9(10→11)- abeo-10,12-Cyclojatrophane Skeleton and the First (15 S)-Jatrophane from Euphorbia helioscopia: Structural Elucidation, Biomimetic Conversion, and Their Immunosuppressive Effects. Org Lett 2022; 24:697-701. [PMID: 34965138 DOI: 10.1021/acs.orglett.1c04145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel diterpenoids, one with a rearranged trans,trans-fused tricyclo[10.3.0.04,6]pentadecane framework (1) and the other with an unprecedented 15S configuration (2), were isolated from Euphorbia helioscopia. Their structures were elucidated by extensive analysis of HR-ESI-MS, NMR, quantum-chemical calculation, and X-ray crystallographic data. Biosynthetically, 1 has a unique "cyclopropane-shift-like" biogenesis involving an oxa-di-π-methane (ODPM) rearrangement, which inspired us to accomplish the biomimetic conversion of 3 to 1. Moreover, compound 1 displayed a potent immunosuppressive effect by inhibiting Kv1.3 voltage-gated channels.
Collapse
Affiliation(s)
- Zhi-Nan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qi-Lin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Zhuo-Fan Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ning Zhao
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Le Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Chun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|