1
|
Li G, Wang YJ, Zhou SQ, Wu XQ, Li J, Wang WX, Long HP. Neuroprotective furanones from a soil-derived fungus Penicillium paxilli ga254. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-11. [PMID: 40372369 DOI: 10.1080/10286020.2025.2501025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
Three furanone derivatives (1-3), including one new compound, penicifuranone A (1), and one new natural product (2), along with one known dihydropyranone (4) were isolated from the solid rice medium fermentation of Penicillium paxilli ga254. The structures of these compounds were elucidated using comprehensive NMR spectroscopic analysis. This study represents the first report of these furanone derivatives from this fungus. Additionally, the neuroprotective effects of these compounds against oxygen-glucose deprivation/reperfusion injury in pheochromocytoma-12 cells were investigated.
Collapse
Affiliation(s)
- Guang Li
- Department of Medicine, Yueyang Vocational and Technical College, Yueyang 414000, China
| | - Ya-Jing Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Si-Qian Zhou
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xiao-Qian Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410008, China
| | - Jing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410008, China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410008, China
| | - Hong-Ping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
2
|
Hao Z, Lu Y, Hao Y, Luo Y, Wu K, Zhu C, Shi P, Zhu F, Lin Y, Zeng X. Fungal mycobiome dysbiosis in choledocholithiasis concurrent with cholangitis. J Gastroenterol 2025; 60:340-355. [PMID: 39604579 DOI: 10.1007/s00535-024-02183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The gut mycobiome might have an important influence on the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to characterize the fungal mycobiome profiles, explore the correlation and equilibrium of gut interkingdom network among bacteria-fungi-metabolites triangle in CCs. METHODS In a retrospective case-control study, we recruited patients with CC (n = 25) and healthy controls (HCs) (n = 25) respectively to analyze the gut fungal dysbiosis. Metagenomic sequencing was employed to characterize the gut mycobiome profiles, and liquid chromatography/mass spectrometry (LC/MS) analysis was used to quantify the metabolites composition. RESULTS The Shannon index displayed a reduction in fungal α-diversity in CCs compared to HCs (p = 0.041), and the overall fungal composition differed significantly between two groups. The dominant 7 fungi species with the remarkable altered abundance were identified (LDA score > 3.0, p < 0.05), including CC-enriched Aspergillus_niger and CC-depleted fungi Saccharomyces_boulardii. In addition, the correlations between CC-related fungi and clinical variables in CCs were analyzed. Moreover, the increased abundance ratio of Basidiomycota-to-Ascomycota and a dense linkage of bacteria-fungi interkingdom network in CCs were demonstrated. Finally, we identified 30 markedly altered metabolites in CCs (VIP > 1.0 and p < 0.05), including low level of acetate and butyrate, and the deeper understanding on the complexity of bacteria-fungi-metabolites triangle involving bile inflammation was verified. CONCLUSION Our investigation demonstrated a distinct gut fungal dysbiosis in CCs and proposed that, beyond bacteria, the more attention should be paid to significantly potential influence of fungi and bacteria-fungi-metabolites triangle interkingdom interactions on pathogenesis of CC.
Collapse
Affiliation(s)
- Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yiting Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Changpeng Zhu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peimei Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
3
|
Wang J, Wu XQ, Mo JS, Tan YF, Long HP, Zhou SQ, Liu S, Li J, Wang WX. Two pairs of new isobenzofuranone enantiomers from a soil-derived fungus Penicillium canescens DWS225. Nat Prod Res 2024; 38:2667-2675. [PMID: 37039464 DOI: 10.1080/14786419.2023.2198712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Two pairs of new isobenzofuranone derivative enantiomers, (±)-penicifurans E (1) and (±)-penicifurans F (2), together with four know compounds (3-6) were isolated from the solid fermentation of Penicillium canescens DWS225. The structures of these enantiomers were elucidated by extensive NMR spectroscopic data, and their absolute configurations were assigned by the experimental and calculated ECD data. The neuroprotective effects of all the isolates against oxygen-glucose deprivation/reperfusion injury in pheochromocytoma-12 cells (PC12) were investigated.
Collapse
Affiliation(s)
- Jing Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, PR China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, PR China
| | - Xiao-Qian Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, PR China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, PR China
| | - Ji-Song Mo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, PR China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, PR China
| | - Yu-Fen Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Si-Qian Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, PR China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, PR China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
4
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Weng W, Li R, Zhang Y, Pan X, Jiang S, Sun C, Zhang C, Lu X. Polyketides isolated from an endophyte Penicillium oxalicum 2021CDF-3 inhibit pancreatic tumor growth. Front Microbiol 2022; 13:1033823. [PMID: 36225350 PMCID: PMC9549284 DOI: 10.3389/fmicb.2022.1033823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal secondary metabolites are inherently considered valuable resources for new drugs discovery. To search for novel fungal secondary metabolites with lead compounds potential, a fungal strain Penicillium oxalicum 2021CDF-3, an endophyte of the marine red algae Rhodomela confervoides, was chemically studied. Cultivation of this fungus on solid rice medium yielded 10 structurally diverse metabolites (1–10), including two new polyketides, namely oxalichroman A (1) and oxalihexane A (2). Their structures were determined by detailed analysis of NMR and HRESIMS spectroscopic data. Oxalihexane A (2) was elucidated as a novel polyketide formed by a cyclohexane and cyclohexanone moiety via an ether bond. The stereochemistry of 2 was successfully assigned by NMR and ECD calculations. In the cytotoxic assay, the new compound 2 showed remarkable inhibitory effect on the human pancreatic cancer PATU8988T cell line. Further pharmacological study demonstrated that the expression level of Cyclin D1 was down-regulated by the treatment with 2, which suggested that cell cyclin abnormity was involved in pancreatic tumor cell apoptosis. Moreover, the activation of Wnt5a/Cyclin D1 signaling pathway might be involved in the mechanism of panreatic tumor cell apoptosis induced by 2.
Collapse
Affiliation(s)
- Wenya Weng
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ruidian Li
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Endocrinology, Ruian People’s Hospital, Zhejiang, China
| | - Yanxia Zhang
- Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, China
| | - Xiaofu Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chuchu Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Chi Zhang, ; Xuemian Lu,
| | - Xuemian Lu
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Endocrinology, Ruian People’s Hospital, Zhejiang, China
- *Correspondence: Chi Zhang, ; Xuemian Lu,
| |
Collapse
|