1
|
Zi ZF, Xie F, Wang WJ, Xia DD, Wan DY, Geng Y, Dong HX, Gao YH, Zhou H, Ma L. Two Chroman Type Polyketides From Trichoderma sp. YUD24002 Associated With Aconitum. Chem Biodivers 2025; 22:e202402744. [PMID: 39573939 DOI: 10.1002/cbdv.202402744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 04/18/2025]
Abstract
Two previously undescribed chroman-type polyketides, trichrontides A (1) and B (2), along with four known homologous compounds, were isolated from the endophytic fungus Trichoderma sp. YUD24002, which was associated with Aconitum forrestii Stapf. Their structures were confirmed using NMR and HR-ESI-MS techniques. Furthermore, the absolute configurations of the two new compounds were elucidated through TDDFT ECD calculations and Mosher's methods. Notably, compound 1 exhibited significant antifungal activity against Alternaria panax, with a minimum inhibitory concentration (MIC) of 16 µg/mL, while compound 2 demonstrated evident antifungal activity against Epicoccum nigrum, with a MIC of 32 µg/mL.
Collapse
Affiliation(s)
- Zhi-Feng Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Fei Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Wen-Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Dan-Dan Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Dai-Yu Wan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Yan Geng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hai-Xia Dong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Yu-Hong Gao
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Hao Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Ling Ma
- Department of Clinical Pharmacy, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Clinical Pharmacy Center of Yunnan Province, Kunming, China
| |
Collapse
|
2
|
Chen HW, Wu XY, Zhao ZY, Huang ZQ, Lei XS, Yang GX, Li J, Xiong J, Hu JF. Terricoxanthones A-E, unprecedented dihydropyran-containing dimeric xanthones from the endophytic fungus Neurospora terricola HDF-Br-2 associated with the vulnerable conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2024; 219:113963. [PMID: 38171409 DOI: 10.1016/j.phytochem.2023.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 μg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 μg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 μg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xi-Ying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Zi-Qi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xin-Sheng Lei
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
3
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Guo Q, Shi L, Wang X, Li D, Yin Z, Zhang J, Ding G, Chen L. Structures and Biological Activities of Secondary Metabolites from the Trichoderma genus (Covering 2018-2022). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13612-13632. [PMID: 37684097 DOI: 10.1021/acs.jafc.3c04540] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Trichoderma, a genus with more than 400 species, has a long history of use as an industrial bioreactor, biofertilizer, and biocontrol agent. It is considered a significant source of secondary metabolites (SMs) that possess unique structural features and a wide range of bioactivities. In recent years, numerous secondary metabolites of Trichoderma, including terpenoids, polyketides, peptides, alkaloids, and steroids, have been identified. Most of these SMs displayed antimicrobial, cytotoxic, and antifungal effects. This review focuses on the structural diversity, biological activities, and structure-activity relationships (SARs) of the SMs isolated from Trichoderma covered from 2018 to 2022. This study provides insights into the exploration and utilization of bioactive compounds from Trichoderma species in the agriculture or pharmaceutical industry.
Collapse
Affiliation(s)
- Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Lei Shi
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Xinyang Wang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Dandan Li
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Union Medical College, Beijing 100193, People's Republic of China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| |
Collapse
|
5
|
Wang B, He B, Chen T, Li H, Chen L, Chen Y, Tian K, Yang K, Shen D, Yan W, Ye Y. Discovery of Tropolone Stipitaldehyde as a Potential Agent for Controlling Phytophthora Blight and Its Action Mechanism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8693-8703. [PMID: 35793537 DOI: 10.1021/acs.jafc.2c03163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fermentation of endophytic Nigrospora chinensis GGY-3 resulted in the isolation of tropolone stipitaldehyde (1), which exhibited broad-spectrum inhibition activity against fungi and bacteria, especially against Phytophthora capsici, with an EC50 value of 0.83 μg/mL and Xanthomonas oryzae pv. oryzicola, with a minimum inhibitory concentration value of 4.0 μg/mL. The in vitro and in vivo assays demonstrated that 1 had a significant protective effect on P. capsici. Furthermore, 1 inhibited the spore germination of P. capsici and damaged the plasma membrane structure. As observed by SEM and TEM, after exposure to 1, mycelia exhibited swelling, shrunken, branch-increasing phenomena, cell wall and membrane damage, and disordered content. Transcriptome analysis revealed that 1 might affect starch and sucrose metabolism and fatty acid biosynthesis by suppressing the expression of genes relevant to cell wall synthetases and cell membrane-associated genes. These findings indicate that 1 may be a potential agrochemical fungicide for controlling phytophthora blight.
Collapse
Affiliation(s)
- Biao Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Bo He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Tianyu Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Hao Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Liyifan Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yiliang Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kun Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Danyu Shen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572000, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572000, P. R. China
| |
Collapse
|
6
|
Chen MY, Kong FD, Yang L, Ma QY, Xie QY, Yu J, Chen PW, Zhou LM, Wu YG, Dai HF, Zhao YX. Phenethoxy Derivatives with Anti-inflammatory Activities from the Betelnut Endophytic Trichoderma asperellum G10. JOURNAL OF NATURAL PRODUCTS 2022; 85:1193-1200. [PMID: 35512012 DOI: 10.1021/acs.jnatprod.1c00813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eight new phenethoxy derivatives, trichoasperellins A-H (1-8), were isolated from the endophytic fungus Trichoderma asperellum G10 isolated from the medicinal plant Areca catechu L. The structures of these compounds were elucidated from spectroscopic data, J-based configurational analysis, and Mosher's methods. Compounds 1-4 and 6-8 bear one or two multioxidized C7 moieties with the same carbon skeleton. The carbon skeletons of compounds 6-8 are new, all containing three moieties connected via two acetal carbons similar to those of disaccharide glycosides. Compound 4 inhibited nitric oxide production with an IC50 value of 48.3 μM, comparable to that of the positive control indomethacin (IC50, 42.3 μM).
Collapse
Affiliation(s)
- Ming-Yang Chen
- College of Horticulture, Hainan University, Haikou 570228, People's Republic of China
| | - Fan-Dong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Li Yang
- Hainan Institute for Tropical Agricultural Resources, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, People's Republic of China
| | - Qing-Yun Ma
- Hainan Institute for Tropical Agricultural Resources, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, People's Republic of China
| | - Qing-Yi Xie
- Hainan Institute for Tropical Agricultural Resources, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, People's Republic of China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou 570228, People's Republic of China
| | - Peng-Wei Chen
- Hainan Institute for Tropical Agricultural Resources, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, People's Republic of China
| | - Li-Man Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - You-Gen Wu
- College of Horticulture, Hainan University, Haikou 570228, People's Republic of China
| | - Hao-Fu Dai
- Hainan Institute for Tropical Agricultural Resources, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, People's Republic of China
| | - You-Xing Zhao
- Hainan Institute for Tropical Agricultural Resources, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, People's Republic of China
| |
Collapse
|
7
|
Abstract
A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as daphnepapytone A from Daphne papyracea.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|