1
|
Lima E Silva A, de Medeiros Brito TA, Agra MDF, Sobral da Silva M, Tavares JF. Molecular Networks as Strategy for Dereplication of Steroidal Alkaloids of Herbarium Samples of Solanum jabrense Agra and M. Nee, an Endemic and Unexplored Species. Chem Biodivers 2024:e202402513. [PMID: 39629930 DOI: 10.1002/cbdv.202402513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Solanum jabrense is an endemic species from Brazil, distributed in the phytogeographic domains of the Caatinga and Atlantic Forest, in the states of Northeast. Solanum L. species have great economic importance not only because they are used in human food, but also because they present several secondary metabolites, especially glycosylated steroidal alkaloids, giving them medicinal properties. Recently, dry herbarium specimens have been used to identify metabolites of interest preserved even after years of storage, using a simple and fast method of extraction and analysis by liquid chromatography (LC) coupled to mass spectrometry (MS). Dereplication techniques aided by molecular networks (MNs) were used to analyze the chemical composition from samples of S. jabrense herbarium specimens and to identify chemical markers and bioactive molecules with potential medicinal use. From the LC-MS/MS dataset of the crude extracts and a standard (solasodine), an MN was generated that resulted in the dereplication of 19 spirosolane-type alkaminas. Our results suggest that dereplication using fragments of dried Solanum specimens is a quick tool to identify potential conserved metabolites, being useful not only for chemotaxonomy and metabolomic but also for the discovery of new molecules in natural products.
Collapse
Affiliation(s)
- Anauara Lima E Silva
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Araújo de Medeiros Brito
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maria de Fátima Agra
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcelo Sobral da Silva
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Josean Fechine Tavares
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
2
|
Cook D, Lee ST, Gardner DR, Molyneux RJ, Johnson RL, Taylor CM. Use of Herbarium Voucher Specimens To Investigate Phytochemical Composition in Poisonous Plant Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4037-4047. [PMID: 33797894 DOI: 10.1021/acs.jafc.1c00708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poisonous plants cause large losses to the livestock industry through death, reduced production efficiency, reproductive dysfunction, and compromised harvesting of rangeland and pasture forages. Research investigating poisonous plants is complex because there are hundreds of genera of toxic plants representing thousands of species. To investigate the effects of poisonous plants on livestock, a clear understanding of the taxonomic identity of the plant and the ability to collect the plant in sufficient quantities for scientific studies is required. Subsequently, the active principles must be defined and investigated in the taxa of interest to better predict risk and make recommendations to reduce losses. Herbaria are collections of preserved plant specimens and are an important resource in poisonous plant research. Voucher specimens have often been used in the identification of the plant for the experimental reproduction of suspected livestock poisoning associated with a spontaneous case. More recently, herbarium specimens have been used to investigate the chemical composition of toxic plants as well as the distribution of different chemotypes over the landscape. The primary purpose of this review is to highlight the chemical analysis of herbarium specimens in poisonous plant research.
Collapse
Affiliation(s)
- Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | - Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720-4091, United States
| | - Robert L Johnson
- Stanley L. Welsh Herbarium, Brigham Young University, Provo, Utah 84602, United States
| | - Charlotte M Taylor
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, Missouri 63110, United States
| |
Collapse
|
3
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
4
|
Cook D, Lee ST, Panaccione DG, Leadmon CE, Clay K, Gardner DR. Biodiversity of Convolvulaceous species that contain Ergot Alkaloids, Indole Diterpene Alkaloids, and Swainsonine. BIOCHEM SYST ECOL 2019; 86. [PMID: 31496550 DOI: 10.1016/j.bse.2019.103921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Convolvulaceous species have been reported to contain several bioactive principles thought to be toxic to livestock including the calystegines, swainsonine, ergot alkaloids, and indole diterpene alkaloids. Swainsonine, ergot alkaloids, and indole diterpene alkaloids are produced by seed transmitted fungal symbionts associated with their respective plant host, while the calystegines are produced by the plant. To date, Ipomoea asarifolia and Ipomoea muelleri represent the only Ipomoea species and members of the Convolvulaceae known to contain indole diterpene alkaloids, however several other Convolvulaceous species are reported to contain ergot alkaloids. To further explore the biodiversity of species that may contain indole diterpenes, we analyzed several Convolvulaceous species (n=30) for indole diterpene alkaloids, representing four genera, Argyreia, Ipomoea, Stictocardia, and Turbina, that had been previously reported to contain ergot alkaloids. These species were also verified to contain ergot alkaloids and subsequently analyzed for swainsonine. Ergot alkaloids were detected in 18 species representing all four genera screened, indole diterpenes were detected in two Argyreia species and eight Ipomoea species of the 18 that contained ergot alkaloids, and swainsonine was detected in two Ipomoea species. The data suggest a strong association exists between the relationship of the Periglandula species associated with each host and the occurrence of the ergot alkaloids and/or the indole diterpenes reported here. Likewise there appears to be an association between the occurrence of the respective bioactive principle and the genetic relatedness of the respective host plant species.
Collapse
Affiliation(s)
- Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| | - Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| | - Daniel G Panaccione
- West Virginia University, Division of Plant and Soil Sciences, Morgantown, WV 26506, USA
| | - Caroline E Leadmon
- West Virginia University, Division of Plant and Soil Sciences, Morgantown, WV 26506, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| |
Collapse
|
5
|
Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA. Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep 2019; 36:944-959. [PMID: 31112181 PMCID: PMC6640111 DOI: 10.1039/c9np00019d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2019The chemistry of nature can be beautiful, inspiring, beneficial and poisonous, depending on perspective. Since the isolation of the first secondary metabolites roughly two centuries ago, much of the chemical research on natural products has been both reductionist and static. Typically, compounds were isolated and characterized from the extract of an entire organism from a single time point. While there could be subtexts to that approach, the general premise has been to determine the chemistry with very little in the way of tools to differentiate spatial and/or temporal changes in secondary metabolite profiles. However, the past decade has seen exponential advances in our ability to observe, measure, and visualize the chemistry of nature in situ. Many of those techniques have been reviewed in this journal, and most are tapping into the power of mass spectrometry to analyze a plethora of sample types. In nearly all of the other techniques used to study chemistry in situ, the element of chromatography has been eliminated, instead using various ionization sources to coax ions of the secondary metabolites directly into the mass spectrometer as a mixture. Much of that science has been driven by the great advances in ambient ionization techniques used with a suite of mass spectrometry platforms, including the alphabet soup from DESI to LAESI to MALDI. This review discusses the one in situ analysis technique that incorporates chromatography, being the droplet-liquid microjunction-surface sampling probe, which is more easily termed "droplet probe". In addition to comparing and contrasting the droplet probe with other techniques, we provide perspective on why scientists, particularly those steeped in natural products chemistry training, may want to include chromatography in in situ analyses. Moreover, we provide justification for droplet sampling, especially for samples with delicate and/or non-uniform topographies. Furthermore, while the droplet probe has been used the most in the analysis of fungal cultures, we digest a variety of other applications, ranging from cyanobacteria, to plant parts, and even delicate documents, such as herbarium specimens.
Collapse
Affiliation(s)
- Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Sonja L Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
6
|
Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, "The Queen of Fruits," and new advances in postharvest and in food and engineering applications: A review. J Adv Res 2019; 20:61-70. [PMID: 31210985 PMCID: PMC6562293 DOI: 10.1016/j.jare.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
This review highlights recent advances of mangosteen research in the postharvest, food and engineering fields. In postharvest fields, phytohormones, metabolites, and pest/disease management are described. Mangosteen has also been used in various food products and for animal feed supplementation. In engineering, mangosteen extract is useful in solar cells, carbon dots and advanced materials. Mangosteen-based products may benefit consumers and the engineering and biomedical industries.
One of the most prolific plants utilized in various applications is mangosteen (Garcinia mangostana L.). Rich in potent bioactive compounds, such as xanthones, mangosteen is known to possess pharmacologically important anti-inflammatory and anti-tumor properties. However, most previous reviews have only discussed the application of mangosteen in medicinal areas, yet more recent studies have diverged and valorized its usage in other scientific fields. In this review, the utilization of this exotic fruit in postharvest biology (phytohormone roles, metabolite profiling, bioactive compounds, isolation method optimization, chemical contaminant identification, and management of pests and fruit disorders), food science (food products, animal feed supplementation, and food shelf-life determination), and engineering fields (fabric and solar cell dyes, carbon dots, activated carbon, and biomedical advanced materials) is presented in detail. Research papers published from 2016 onward were selected and reviewed to show the recent research trends in these areas. In conclusion, mangosteen has been utilized for various purposes, ranging from usage in industrially important products to applications in advanced technologies and biomedical innovation.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Faridda Hannim Ahmad-Hashim
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Sharifah Nabihah Syed Jaafar
- Bioresource and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Ren Y, Carcache de Blanco EJ, Fuchs JR, Soejarto DD, Burdette JE, Swanson SM, Kinghorn AD. Potential Anticancer Agents Characterized from Selected Tropical Plants. JOURNAL OF NATURAL PRODUCTS 2019; 82:657-679. [PMID: 30830783 PMCID: PMC6441492 DOI: 10.1021/acs.jnatprod.9b00018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants are well known for their value in affording clinically useful anticancer agents, with such compounds acting against cancer cells by a range of mechanisms of action. There remains a strong interest in the discovery and development of plant secondary metabolites as additional cancer chemotherapeutic lead compounds. In the present review, progress on the discovery of plant-derived compounds of the biflavonoid, lignan, sesquiterpene, steroid, and xanthone structural types is presented. Several potential anticancer leads of these types have been characterized from tropical plants collected in three countries as part of our ongoing collaborative multi-institutional project. Preliminary structure-activity relationships and work on in vivo testing and cellular mechanisms of action are also discussed. In addition, the relevant work reported by other groups on the same compound classes is included herein.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
8
|
Chollet-Krugler M, Nguyen TTT, Sauvager A, Thüs H, Boustie J. Mycosporine-Like Amino Acids (MAAs) in Time-Series of Lichen Specimens from Natural History Collections. Molecules 2019; 24:E1070. [PMID: 30893758 PMCID: PMC6471344 DOI: 10.3390/molecules24061070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/15/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) were quantified in fresh and preserved material of the chlorolichen Dermatocarpon luridum var. luridum (Verrucariaceae/Ascomycota). The analyzed samples represented a time-series of over 150 years. An HPLC coupled with a diode array detector (HPLC-DAD) in hydrophilic interaction liquid chromatography (HILIC) mode method was developed and validated for the quantitative determination of MAAs. We found evidence for substance specific differences in the quality of preservation of two MAAs (mycosporine glutamicol, mycosporine glutaminol) in Natural History Collections. We found no change in average mycosporine glutamicol concentrations over time. Mycosporine glutaminol concentrations instead decreased rapidly with no trace of this substance detectable in collections older than nine years. Our data predict that a screening for MAAs in organism samples from Natural History Collections can deliver results that are comparable to those obtained from fresh collections only for some MAAs (e.g., mycosporine glutamicol). For other MAAs, misleading, biased, or even false negative results will occur as a result of the storage sensitivity of substances such as mycosporine glutaminol. Our study demonstrates the value of pilot studies with time-series based on model taxa with a rich representation in the Natural History Collections.
Collapse
Affiliation(s)
- Marylène Chollet-Krugler
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
| | - Thi Thu Tram Nguyen
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
- Department of Chemistry, Faculty of Science, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, An Khanh, Ninh Kieu, Can Tho, 902495 Vietnam.
| | - Aurelie Sauvager
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
| | - Holger Thüs
- State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany.
- The Natural History Museum London, Cromwell Rd, Kensington, London SW7 5BD, UK.
| | - Joël Boustie
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
| |
Collapse
|
9
|
Bioactive Metabolites of the Stem Bark of Strychnos aff. darienensisand Evaluation of Their Antioxidant and UV Protection Activity in Human Skin Cell Cultures. COSMETICS 2019. [DOI: 10.3390/cosmetics6010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genus Strychnos (Loganiaceae) is well-known as a rich source of various bioactive metabolites. In continuation of our phytochemical studies on plants from Amazonia, we examined Strychnosaff. darienensis, collected in Peru. This species has been traditionally used in South America and is still presently used as a drug by the Yanesha tribe in Peru. Phytochemical investigation of this plant led to the isolation and structure elucidation by ΝuclearΜagnetic Resonance and High Resolution Mass Spectroscopy of 14 compounds that belong to the categories of phenolic acids [p-hydroxybenzoic acid (1) and vanillic acid (2)], flavonoids [luteolin, (3),3-O-methyl quercetin (4), strychnobiflavone (5), minaxin (6) and 3’,4’,7-trihydroxy-flavone (7)], lignans [syringaresinol-β-D-glucoside (8), balanophonin (9) and ficusal (10)] and alkaloids [venoterpine (11), 11-methoxyhenningsamine (12), diaboline (13) and 11-methoxy diaboline (14)]. The isolated flavonoids—a class known for its anti-aging activities—were further evaluated for their biological activities on normal human skin fibroblasts. Among them, only (6), and to a lesser extent (7), exhibited cytotoxicity at 100 µg/ml. All five flavonoids suppressed intracellularreactive oxygen species (ROS) levels, either basal or following stimulation with hydrogen peroxide or both. Moreover, luteolin and strychnobiflavone protected skin fibroblasts against ultraviolet (UV)-irradiation-induced cell death. The isolated flavonoids could prove useful bioactive ingredients in the cosmetic industry.
Collapse
|