1
|
Subramanian SK, Morgan RT, Rasmusson C, Shepherd KM, Li CL. Genetic polymorphisms and post-stroke upper limb motor improvement - A systematic review and meta-analysis. J Cent Nerv Syst Dis 2024; 16:11795735241266601. [PMID: 39049838 PMCID: PMC11268047 DOI: 10.1177/11795735241266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Post-stroke upper limb (UL) motor improvement is associated with adaptive neuroplasticity and motor learning. Both intervention-related (including provision of intensive, variable, and task-specific practice) and individual-specific factors (including the presence of genetic polymorphisms) influence improvement. In individuals with stroke, most commonly, polymorphisms are found in Brain Derived Neurotrophic Factor (BDNF), Apolipoprotein (APOE) and Catechol-O-Methyltransferase (COMT). These involve a replacement of cystine by arginine (APOEε4) or valines by 1 or 2 methionines (BDNF:val66met, met66met; COMT:val158met; met158met). However, the implications of these polymorphisms on post-stroke UL motor improvement specifically have not yet been elucidated. Objective Examine the influence of genetic polymorphism on post-stroke UL motor improvement. Design Systematic Review and Meta-Analysis. Methods We conducted a systematic search of the literature published in English language. The modified Downs and Black checklist helped assess study quality. We compared change in UL motor impairment and activity scores between individuals with and without the polymorphisms. Meta-analyses helped assess change in motor impairment (Fugl Meyer Assessment) scores based upon a minimum of 2 studies/time point. Effect sizes (ES) were quantified based upon the Rehabilitation Treatment Specification System as follows: small (0.08-0.18), medium (0.19 -0.40) and large (≥0.41). Results We retrieved 10 (4 good and 6 fair quality) studies. Compared to those with BDNF val66met and met66met polymorphism, meta-analyses revealed lower motor impairment (large ES) in those without the polymorphism at intervention completion (0.5, 95% CI: 0.11-0.88) and at retention (0.58, 95% CI:0.06-1.11). The presence of CoMT val158met or met158met polymorphism had similar results, with lower impairment (large ES ≥1.5) and higher activity scores (large ES ranging from 0.5-0.76) in those without the polymorphism. Presence of APOEε4 form did not influence UL motor improvement. Conclusion Polymorphisms with the presence of 1 or 2 met alleles in BDNF and COMT negatively influence UL motor improvement. Registration https://osf.io/wk9cf/.
Collapse
Affiliation(s)
- Sandeep K. Subramanian
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Neurosciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Riley T. Morgan
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carl Rasmusson
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kayla M. Shepherd
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carol L. Li
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Health Administration, Polytrauma Rehabilitation Center, San Antonio, TX, USA
| |
Collapse
|
2
|
Yilmaz E, Acar G, Onal U, Erdogan E, Baltaci AK, Mogulkoc R. Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia-Reperfusion Model of Rats. Neuromolecular Med 2024; 26:4. [PMID: 38457013 PMCID: PMC10924031 DOI: 10.1007/s12017-023-08771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.
Collapse
Affiliation(s)
- Esen Yilmaz
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Gozde Acar
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Ummugulsum Onal
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | - Ender Erdogan
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | | | - Rasim Mogulkoc
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
3
|
Muraleedharan Nair A, Ramamoorthi C, Arumugam Senthilkumar M, Kanniyapillai R, Chandra Sekar PK, Rehman Syed Rasheed AH, Kannaian S, Veerabathiran R. Genetic variants in BDNF ( rs6265 and rs11030119) and stroke susceptibility: a case-control analysis in South India. Ann Hum Biol 2024; 51:2415984. [PMID: 39494487 DOI: 10.1080/03014460.2024.2415984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/31/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Stroke occurs when the blood supply to part of the cerebral cortex is blocked, depriving it of oxygen and glucose, leading to cell death. It is a multifactorial disorder influenced by genetic, vascular, and environmental factors. AIM This study investigated the association between two polymorphisms of the brain-derived neurotrophic factor (BDNF) gene, rs6265 and rs11030119, and stroke risk in a South Indian population. SUBJECTS AND METHODS The study included 163 stroke cases and 160 healthy controls. Genomic DNA was extracted, and genotyping of rs6265 and rs11030119 polymorphisms was done using ARMS-PCR. Allelic and genotype frequencies were calculated, and odds ratios (OR) with 95% confidence intervals (CI) were determined using SPSS version 21.0. RESULTS The rs6265 polymorphism was significantly associated with stroke risk, with the GG genotype more frequent in controls (OR 1.79, 95% CI 1.05-1.76, p = 0.01). The rs11030119 polymorphism showed a positive association, with the AA genotype more prevalent in cases (OR 2.70, 95% CI 1.34-5.44, p = 0.003). CONCLUSION This study suggests an association between BDNF polymorphisms (rs6265, rs11030119) and stroke risk in a South Indian population. Further research in larger populations is necessary to confirm these findings and explore the mechanisms involved.
Collapse
Affiliation(s)
- Anushree Muraleedharan Nair
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Chandrasudan Ramamoorthi
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Madhushri Arumugam Senthilkumar
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Remasri Kanniyapillai
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Praveen Kumar Chandra Sekar
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Akram Husain Rehman Syed Rasheed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Subramaniyan Kannaian
- Department of Neurology, Chettinad Super Speciality Hospital, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
4
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
5
|
Vallejo P, Cueva E, Martínez-Lozada P, García-Ríos CA, Miranda-Barros DH, Leon-Rojas JE. Repetitive Transcranial Magnetic Stimulation in Stroke: A Literature Review of the Current Role and Controversies of Neurorehabilitation Through Electromagnetic Pulses. Cureus 2023; 15:e41714. [PMID: 37575778 PMCID: PMC10414689 DOI: 10.7759/cureus.41714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective method used for the treatment of various neurological diseases, including stroke, epilepsy, and movement disorders. The pathophysiological mechanism for the effect of TMS is not clear. In this literature review, we conducted a detailed search regarding the effect of rTMS on neurotransmission and neuronal plasticity through the modulation of neuronal excitability. Evidence suggests that intramolecular subatomic mechanisms, including genetic changes related to neuronal prevention and death, play an important role. We also discuss the use of rTMS in the rehabilitation of patients with stroke and its main complications, as well as alternative mechanisms related to recovery, emphasizing the findings of available evidence and touching on possible controversies and limitations of the method.
Collapse
Affiliation(s)
- Paula Vallejo
- Medical School, Universidad de Las Américas, Quito, ECU
- Medical Research Department, NeurALL Research Group, Quito, ECU
| | - Emily Cueva
- Medical Research Department, NeurALL Research Group, Quito, ECU
| | | | | | | | - Jose E Leon-Rojas
- Neurological Surgery, Universidad de Las Américas, Quito, ECU
- Medical Research Department, NeurALL Research Group, Quito, ECU
- Research and Development Department, Medignosis, Quito, ECU
| |
Collapse
|
6
|
Lee Friesen C, Lawrence M, Ingram TGJ, Boe SG. Home-based portable fNIRS-derived cortical laterality correlates with impairment and function in chronic stroke. Front Hum Neurosci 2022; 16:1023246. [PMID: 36569472 PMCID: PMC9780676 DOI: 10.3389/fnhum.2022.1023246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Improved understanding of the relationship between post-stroke rehabilitation interventions and functional motor outcomes could result in improvements in the efficacy of post-stroke physical rehabilitation. The laterality of motor cortex activity (M1-LAT) during paretic upper-extremity movement has been documented as a useful biomarker of post-stroke motor recovery. However, the expensive, labor intensive, and laboratory-based equipment required to take measurements of M1-LAT limit its potential clinical utility in improving post-stroke physical rehabilitation. The present study tested the ability of a mobile functional near-infrared spectroscopy (fNIRS) system (designed to enable independent measurement by stroke survivors) to measure cerebral hemodynamics at the motor cortex in the homes of chronic stroke survivors. Methods Eleven chronic stroke survivors, ranging widely in their level of upper-extremity motor deficit, used their stroke-affected upper-extremity to perform a simple unilateral movement protocol in their homes while a wireless prototype fNIRS headband took measurements at the motor cortex. Measures of participants' upper-extremity impairment and function were taken. Results Participants demonstrated either a typically lateralized response, with an increase in contralateral relative oxyhemoglobin (ΔHbO), or response showing a bilateral pattern of increase in ΔHbO during the motor task. During the simple unilateral task, M1-LAT correlated significantly with measures of both upper-extremity impairment and function, indicating that participants with more severe motor deficits had more a more atypical (i.e., bilateral) pattern of lateralization. Discussion These results indicate it is feasible to gain M1-LAT measures from stroke survivors in their homes using fNIRS. These findings represent a preliminary step toward the goals of using ergonomic functional neuroimaging to improve post-stroke rehabilitative care, via the capture of neural biomarkers of post-stroke motor recovery, and/or via use as part of an accessible rehabilitation brain-computer-interface.
Collapse
Affiliation(s)
- Christopher Lee Friesen
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada
- Axem Neurotechnology, Halifax, NS, Canada
- School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Michael Lawrence
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada
- Axem Neurotechnology, Halifax, NS, Canada
- School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Tony Gerald Joseph Ingram
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada
- Axem Neurotechnology, Halifax, NS, Canada
- School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Shaun Gregory Boe
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada
- School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
- School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Bagrowski B. Perspectives for the application of neurogenetic research in programming Neurorehabilitation. Mol Aspects Med 2022; 91:101149. [PMID: 36253186 DOI: 10.1016/j.mam.2022.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Certain genetic variants underlie the proper functioning of the nervous system. They affect the nervous system in all aspects - molecular, systemic, cognitive, computational and sensorimotor. The greatest changes in the nervous system take place in the process of its maturation in the period of psychomotor development, as well as during neurorehabilitation, the task of which is to rebuild damaged neuronal pathways, e.g. by facilitating movement or training cognitive functions. Certain genetic polymorphisms affect the effectiveness of the processes of reconstruction or restoration of neural structures, which is clearly reflected in the effects of neurorehabilitation. This review presents the perspectives for the application of neurogenetic research in programming neurorehabilitation by determining the relationship of as many as 16 different genetic polymorphisms with specific functions of importance in rehabilitation. Thanks to this broad view, it may be possible to predict the effectiveness of rehabilitation on the basis of genetic testing, which would significantly contribute to the development of personalized medicine and to the optimal management of medical services in healthcare systems.
Collapse
Affiliation(s)
- Bartosz Bagrowski
- Poznan University of Medical Sciences, Department of Mother and Child Health, Department of Practical Training in Obstetrics, Poland; Gynecology and Obstetrics Clinical Hospital of Poznan University of Medical Sciences, Rehabilitation Center for Children, Poland.
| |
Collapse
|
8
|
Xia W, Xu Y, Gong Y, Cheng X, Yu T, Yu G. Microglia Involves in the Immune Inflammatory Response of Poststroke Depression: A Review of Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2049371. [PMID: 35958023 PMCID: PMC9363171 DOI: 10.1155/2022/2049371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Poststroke depression (PSD) does not exist before and occurs after the stroke. PSD can appear shortly after the onset of stroke or be observed in the weeks and months after the acute or subacute phase of stroke. The pathogenesis of PSD is unclear, resulting in poor treatment effects. With research advancement, immunoactive cells in the central nervous system, particularly microglia, play a role in the occurrence and development of PSD. Microglia affects the homeostasis of the central nervous system through various factors, leading to the occurrence of depression. The research progress of microglia in PSD has been summarized to review the evidence regarding the pathogenesis and treatment target of PSD in the future.
Collapse
Affiliation(s)
- Weili Xia
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yong Xu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yuandong Gong
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Tiangui Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Gongchang Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
9
|
Expression of miR-210, miR-137, and miR-153 in Patients with Acute Cerebral Infarction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4464945. [PMID: 34901272 PMCID: PMC8660189 DOI: 10.1155/2021/4464945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Aim To explore the expression levels of miR-210, miR-137, and miR-153 in patients with acute cerebral infarction. Material and Methods. 76 patients with acute cerebral infarction treated in our hospital from April 2016 to October 2017 were enrolled as the observation group. Another 64 normal patients were selected as the control group. The patients were divided into the death and survival groups based on 1-year mortality of patients. qRT-PCR was used to detect the expression of miR-210, miR-137, and miR-153 in the serum of each group. Receiver operating characteristic (ROC) curve was employed to analyze the diagnostic value and predictive value of miR-210, miR-137 and miR-153 death in patients. The correlation between miR-210, miR-137, and miR-153 in the serum of the observation group was analyzed by Pearson's test. Results Levels of miR-210 and miR-137 in the observation group were significantly lower than those in the control group, while levels of miR-153 in the observation group were significantly higher than those in the control group (all P < 0.05). The ROC curve of diagnosis of acute cerebral infarction showed that the area under curve of miR-210 was 0.836, that of miR-137 was 0.843, and that of miR-153 was 0.842. The 1-year survival rate was 71.05%. The 1-year survival of the low-expression group of miR-210 and miR-137 was significantly lower than that of the high-expression group, while the 1-year survival of the low-expression group of miR-153 was significantly higher than that of the high-expression group (all P < 0.05). The ROC curve for predicting death showed that the area under curve of miR-210 was 0.786, that of miR-137 was 0.824, and that of miR-153 was 0.858. Pearson's correlation analysis showed that the expression of miR-210 was positively correlated with that of miR-137, while miR-137 was negatively correlated with that of miR-153 and miR-210 was negatively correlated with that of miR-153. Conclusion miR-210, miR-137, and miR-153 have a certain value in the diagnosis and prediction of 1-year death of acute cerebral infarction and may be potential diagnostic and predictive indicators.
Collapse
|
10
|
Sasaki R, Miyaguchi S, Onishi H. Effect of brain-derived neurotrophic factor gene polymorphisms on motor performance and motor learning: A systematic review and meta-analysis. Behav Brain Res 2021; 420:113712. [PMID: 34915075 DOI: 10.1016/j.bbr.2021.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) gene polymorphisms may modulate neurotransmitter efficiency, thereby influencing motor performance and motor learning. However, studies to date have provided no consensus regarding the genetic influence of BDNF genotypes (i.e., Val/Val, Val/Met, or Met/Met type). This study aimed to investigate the effect of BDNF genotype on motor performance and motor learning in healthy human adults via a systematic review and meta-analysis. A total of 19 relevant studies were identified using PubMed and Web of Science search for articles published between 2000 and 2021 with motor performance or motor learning as the primary outcome measures. The results of our systematic review suggest that the BDNF genotype is unlikely to contribute to motor performance and motor learning abilities because only 2/32 datasets (6.3%) from 16 studies on motor performance and 3/19 datasets (17.6%) from 13 studies on motor learning indicated a significant genetic effect. Moreover, a meta-analysis of motor learning publications involving 17 datasets from 11 studies revealed that there was no significant difference in the learning score normalized using baseline data between Val/Val and Met carriers (Val/Met + Met/Met or Val/Met; standardized mean differences = 0.08, P = 0.37) with zero heterogeneity (I2 = 0) and a relatively low risk of publication bias. Taken together, the BDNF genotype may have only a minor impact on individual motor performance and motor learning abilities.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
11
|
Moya Gómez A, Font LP, Brône B, Bronckaers A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front Mol Biosci 2021; 8:742596. [PMID: 34557522 PMCID: PMC8453690 DOI: 10.3389/fmolb.2021.742596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke. Based on their characteristics, they can be divided into stationary, pulsed, and sinusoidal EMF. The aim of this review is to provide an extensive literature overview ranging from in vitro to even clinical studies within the field of ischemic stroke of all EMF types. A thorough comparison between EMF types and their effects is provided, as well as an overview of the signal pathways activated in cell types relevant for ischemic stroke such as neurons, microglia, astrocytes, and endothelial cells. We also discuss which steps have to be taken to improve their therapeutic efficacy in the frame of the clinical translation of this promising therapy.
Collapse
Affiliation(s)
- Amanda Moya Gómez
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium.,Department of Biomedical Engineering, Faculty of Telecommunications, Informatics and Biomedical Engineering, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Bert Brône
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium
| | | |
Collapse
|
12
|
Guan W, Gu JH, Ji CH, Liu Y, Tang WQ, Wang Y, Jiang B. Xanthoceraside administration produces significant antidepressant effects in mice through activation of the hippocampal BDNF signaling pathway. Neurosci Lett 2021; 757:135994. [PMID: 34058291 DOI: 10.1016/j.neulet.2021.135994] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Current available antidepressants have various adverse reactions and slow pharmacodynamics, so it is necessary to find novel antidepressants for effective treatment. Xanthoceraside (XAN), a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolium Bunge, has anti-amnesic and neuroprotective properties. The purpose and significance of this study is to assess whether XAN has antidepressant effects in mice using the forced swim test (FST), tail suspension test (TST) and chronic unpredictable mild stress (CUMS) model of depression. The effects of XAN treatment on the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway and neurogenesis were examined. The antidepressant mechanism of XAN was explored using a BDNF inhibitor (K252a) and an anti-BDNF antibody. It was found that XAN administration significantly reversed the depressive-like behaviors of CUMS-treated mice. XAN treatment also significantly prevented the decreasing effects of CUMS on the hippocampal BDNF signaling and neurogenesis. The antidepressant effects of XAN in mice were blocked by both administration of K252a and anti-BDNF antibody. Collectively, these findings indicate that XAN possesses antidepressant effects in mice which are mediated by activation of hippocampal BDNF signaling pathway, thus providing the first evidence that XAN can be a potential antidepressant candidate.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 PingHai Road, Suzhou 215000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| |
Collapse
|
13
|
Stephan JS, Sleiman SF. Exercise Factors Released by the Liver, Muscle, and Bones Have Promising Therapeutic Potential for Stroke. Front Neurol 2021; 12:600365. [PMID: 34108925 PMCID: PMC8181424 DOI: 10.3389/fneur.2021.600365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world. Stroke not only affects the patients, but also their families who serve as the primary caregivers. Discovering novel therapeutic targets for stroke is crucial both from a quality of life perspective as well as from a health economic perspective. Exercise is known to promote neuroprotection in the context of stroke. Indeed, exercise induces the release of blood-borne factors that promote positive effects on the brain. Identifying the factors that mediate the positive effects of exercise after ischemic stroke is crucial for the quest for novel therapies. This approach will yield endogenous molecules that normally cross the blood brain barrier (BBB) and that can mimic the effects of exercise. In this minireview, we will discuss the roles of exercise factors released by the liver such as beta-hydroxybutyrate (DBHB), by the muscle such as lactate and irisin and by the bones such as osteocalcin. We will also address their therapeutic potential in the context of ischemic stroke.
Collapse
Affiliation(s)
- Joseph S Stephan
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sama F Sleiman
- Biology Program, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
14
|
Liu X, Fang JC, Zhi XY, Yan QY, Zhu H, Xie J. The Influence of Val66Met Polymorphism in Brain-Derived Neurotrophic Factor on Stroke Recovery Outcome: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2021; 35:550-560. [PMID: 33957818 DOI: 10.1177/15459683211014119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and purpose. A single nucleotide polymorphism at nucleotide 196 (G/A) in the human brain-derived neurotrophic factor (BDNF) gene produces an amino acid substitution (valine to methionine) at codon 66(Val66Met). It is unclear whether carriers of this substitution may have worse functional outcomes after stroke. We aimed to explore the distribution of Val66Met polymorphism and evaluate the effect of different genotypes on stroke functional recovery. Methods. Several databases were searched using the keywords BDNF or brain-derived neurotrophic factor, codon66, G196A, rs6265, or Val66Met, and stroke. Results. A total of 25 articles were relevant to estimate the distribution of alleles; 5 reports were applied in the meta-analysis to assess genetic differences on recovery outcomes. The genetic model analysis showed that the recessive model should be used; we combined data for AA versus GA+GG (GG-Val/Val, GA-Val/Met, AA-Met/Met). The results showed that stroke patients with AA might have worse recovery outcomes than those with GA+GG (odds ratio = 1.90; 95% CI: 1.17-3.10; P = .010; I2 = 69.2%). Overall, the A allele may be more common in Asian patients (48.6%; 95% CI: 45.8%-51.4%, I2 = 54.2%) than Caucasian patients (29.8%; 95% CI: 7.5%-52.1%; I2 = 99.1%). However, in Caucasian patients, the frequency of the A allele in Iranians (87.9%; 95% CI: 83.4%-92.3%) was quite higher than that in other Caucasians (18.7%; 95% CI: 16.6%-20.9%; I2 = 0.00%). Conclusion. Val66Met AA carriers may have worse rehabilitation outcomes than GA+GG carriers. Further studies are needed to determine the effect of Val66Met polymorphism on stroke recovery and to evaluate this relationship with ethnicity, sex, age, stroke type, observe duration, stroke severity, injury location, and therapies.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jun-Chao Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin-Yue Zhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Qiu-Yu Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Juan Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
15
|
Yin Q, Du T, Yang C, Li X, Zhao Z, Liu R, Yang B, Liu B. Gadd45b is a novel mediator of depression-like behaviors and neuroinflammation after cerebral ischemia. Biochem Biophys Res Commun 2021; 554:107-113. [PMID: 33784505 DOI: 10.1016/j.bbrc.2021.03.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Poststroke depression (PSD) is an important consequence after stroke, with a negative impact on stroke outcome. Recent evidence points to a modulatory role of Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in depression. Herein, we evaluated the antidepressant efficacy and mechanism underlying the potent therapeutic effects of Gadd45b after cerebral ischemia. METHODS Adult male Sprague-Dawley rats were subjected to cerebral ischemia by permanent middle cerebral artery occlusion (MCAO). The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were performed after completing MCAO to study the antidepressant-like effects. The expression of brain-derived neurotrophic factor (BDNF) and neuroinflammation were determined in the hippocampus. RESULTS We showed that Gadd45b knockdown induced depression-like behaviors after cerebral ischemia, including increased immobility time in the FST and TST and reduced sucrose preference. Gadd45b knockdown enhanced the expression of pro-inflammatory cytokines IL-6 and TNF-α, accompanying with decreased protein levels of BDNF in the hippocampus. Moreover, the levels of phosphorylated ERK and CREB, which have been implicated in events downstream of BDNF signaling, were also decreased after cerebral ischemia. CONCLUSION Hence, the results showed that Gadd45b is a promising drug candidate for treating PSD and possibly other nervous system diseases associated with neuroinflammation. Gadd45b may have therapeutic potential for PSD through BDNF-ERK-CREB pathway and neuroinflammation.
Collapse
Affiliation(s)
- Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital, School of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Chunlin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Xiaoli Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Zeyu Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Rutao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
16
|
Sasaki R, Otsuru N, Miyaguchi S, Kojima S, Watanabe H, Ohno K, Sakurai N, Kodama N, Sato D, Onishi H. Influence of Brain-Derived Neurotrophic Factor Genotype on Short-Latency Afferent Inhibition and Motor Cortex Metabolites. Brain Sci 2021; 11:brainsci11030395. [PMID: 33804682 PMCID: PMC8003639 DOI: 10.3390/brainsci11030395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The Met allele of the brain-derived neurotrophic factor (BDNF) gene confers reduced cortical BDNF expression and associated neurobehavioral changes. BDNF signaling influences the survival, development, and synaptic function of cortical networks. Here, we compared gamma-aminobutyric acid (GABA)ergic network activity in the human primary motor cortex (M1) between the Met (Val/Met and Met/Met) and non-Met (Val/Val) genotype groups. Short- and long-interval intracortical inhibition, short-latency afferent inhibition (SAI), and long-latency afferent inhibition were measured using transcranial magnetic stimulation (TMS) as indices of GABAergic activity. Furthermore, the considerable inter-individual variability in inhibitory network activity typically measured by TMS may be affected not only by GABA but also by other pathways, including glutamatergic and cholinergic activities; therefore, we used 3-T magnetic resonance spectroscopy (MRS) to measure the dynamics of glutamate plus glutamine (Glx) and choline concentrations in the left M1, left somatosensory cortex, and right cerebellum. All inhibitory TMS conditions produced significantly smaller motor-evoked potentials than single-pulses. SAI was significantly stronger in the Met group than in the Val/Val group. Only the M1 Glx concentration was significantly lower in the Met group, while the BDNF genotype did not affect choline concentration in any region. Further, a positive correlation was observed between SAI and Glx concentrations only in M1. Our findings provide evidence that the BDNF genotype regulates both the inhibitory and excitatory circuits in human M1. In addition, lower Glx concentration in the M1 of Met carriers may alter specific inhibitory network on M1, thereby influencing the cortical signal processing required for neurobehavioral functions.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel.: +81-25-257-4445
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
| | - Ken Ohno
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Noriko Sakurai
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
17
|
Free Fatty Acids and Their Inflammatory Derivatives Affect BDNF in Stroke Patients. Mediators Inflamm 2020; 2020:6676247. [PMID: 33343231 PMCID: PMC7728491 DOI: 10.1155/2020/6676247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Objective The neurotrophin brain-derived neurotrophic factor (BDNF) affects poststroke functional outcome, neurogenesis, neuroprotection, and neuroplasticity. Its level is related to the diet and nutritional status, and more specifically, it is free fatty acids (FFAs) and eicosanoids that can have an impact on the BDNF level. The aim of this study was to analyze the potential impact of FFAs and eicosanoids on the BDNF level in stroke patients. Material and Methods. Seventy-three ischemic stroke patients were prospectively enrolled in the study. Laboratory tests were performed in all subjects, including the levels of FFAs, eicosanoids, and BDNF. FFAs and inflammatory metabolites were determined by gas chromatography and liquid chromatography, while BDNF was evaluated by the immune-enzymatic method (ELISA). Results The plasma level of BDNF negatively correlated with C22:1n9 13 erucic acid, C18:3n3 linolenic acid (ALA), and lipoxin A4 15-epi-LxA4. A direct association was observed in relation to BDNF and C16:1 palmitoleic acid and C20:3n6 eicosatrienoic acid (dihomo-gamma-linolenic acid (DGLA)). Conclusions Saturated fatty acids and omega-3 and omega-9 erucic acids can affect signaling in the BDNF synthesis resulting in the decrease in BDNF. There is a beneficial effect of DGLA on the BDNF level, while the effect of ALA on BDNF can be inhibitory. Specialized proresolving lipid mediators can play a role in the BDNF metabolism. BDNF can interact with inflammation as the risk factor in the cardiovascular disorders, including stroke.
Collapse
|
18
|
Boroujeni NB, Ashkezari MD, Seifati SM. The rs6265 polymorphism might not affect the secretion of BDNF protein directedly. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Rezaei S, Asgari Mobarake K, Saberi A. BDNF (rs6265) Val < Met polymorphism can buffer cognitive functions against post stroke CT/MRI pathological findings. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:971-982. [PMID: 33073590 DOI: 10.1080/23279095.2020.1830774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain lesions following stroke have been shown prevalently in CT/MRI, and it was confirmed that lesions usually are accompanied by cognitive deficits. Although previous studies have emphasized that BDNF Val66Met polymorphism had a substantial role in neurogenesis and synaptic plasticity, it remains unclear to what extent an interaction may be appeared between neuroimaging findings and Val66Met variants on different cognitive functions following stroke. In a case-control study the carriers of at least one Val allele (n = 56), were compared with the carriers of Met/Met homozygotes (n = 156) in order to find possible neuroimaging factors in relation to cognitive functions in a sample from the north of Iran. The third edition of Addenbrooke's Cognitive Examination (ACE-III) was used to determine the cognitive functions. There were interactive effects among Val66Met genotypes with dominant hemisphere lesions [F = 6.97, ή2 = 0.03, p = 0.009], cerebral atrophy [F = 5.43, ή2 = 0.03, p = 0.011] and number of lesions [F = 4.32, ή2 = 0.04, p = 0.014], for visuospatial skills, memory, and attention functions respectively; implying that the effect of dominant hemisphere lesions, cerebral atrophy, and multiple lesions on cognitive functions have been modulated by Met/Met homozygosity. The destructive effect of Val/Met homozygosity on cognitive functions was shown to be exacerbated by dominant hemispheric lesions, cerebral atrophy, and multiple lesions following stroke. The findings of present research support our hypothesis that interaction of Val66Met variants with cerebral lesions is associated with cognitive dysfunctions in post stroke conditions; particularly through Met/Met homozygosity which act as a buffer mechanism against some CT/MRI pathological findings.
Collapse
Affiliation(s)
- Sajjad Rezaei
- Department of Psychology, University of Guilan, Rasht, Iran
| | | | - Alia Saberi
- Neuroscience Research Center, Department of Neurology, School of Medicine, PourSina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
20
|
Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020; 141:104862. [PMID: 33031857 DOI: 10.1016/j.neuint.2020.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Aerobic exercise facilitates optimal neurological function and exerts beneficial effects in neurologic injuries. Both animal and clinical studies have shown that aerobic exercise reduces brain lesion volume and improves multiple aspects of cognition and motor function after stroke. Studies using animal models have proposed a wide range of potential molecular mechanisms that underlie the neurological benefits of aerobic exercise. Furthermore, additional exercise parameters, including time of initiation, exercise dosage (exercise duration and intensity), and treatment modality are also critical for clinical application, as identifying the optimal combination of parameters will afford patients with maximal functional gains. To clarify these issues, the current review summarizes the known neurological benefits of aerobic exercise under both physiological and pathological conditions and then considers the molecular mechanisms underlying these benefits in the contexts of stroke-like focal cerebral ischemia and cardiac arrest-induced global cerebral ischemia. In addition, we explore the key roles of exercise parameters on the extent of aerobic exercise-induced neurological benefits to elucidate the optimal combination for aerobic exercise intervention. Finally, the current challenges for aerobic exercise implementation after stroke are discussed.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xudong Zhao
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lei Li
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
21
|
Koroleva ES, Tolmachev IV, Alifirova VM, Boiko AS, Levchuk LA, Loonen AJM, Ivanova SA. Serum BDNF's Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke. Brain Sci 2020; 10:E623. [PMID: 32916851 PMCID: PMC7564457 DOI: 10.3390/brainsci10090623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND brain-derived neurotrophic factor (BDNF) may play a role during neurorehabilitation following ischemic stroke. This study aimed to elucidate the possible role of BDNF during early recovery from ischemic stroke assisted by motor training. METHODS fifty patients were included after acute recovery from ischemic stroke: 21 first received classical rehabilitation followed by 'motor rehabilitation using motion sensors and augmented reality' (AR-rehabilitation), 14 only received AR-rehabilitation, and 15 were only observed. Serum BDNF levels were measured on the first day of stroke, on the 14th day, before AR-based rehabilitation (median, 45th day), and after the AR-based rehabilitation (median, 82nd day). Motor impairment was quantified clinically using the Fugl-Meyer scale (FMA); functional disability and activities of daily living (ADL) were measured using the Modified Rankin Scale (mRS). For comparison, serum BDNF was measured in 50 healthy individuals. RESULTS BDNF levels were found to significantly increase during the phase with AR-based rehabilitation. The pattern of the sequentially measured BDNF levels was similar in the treated patients. Untreated patients had significantly lower BDNF levels at the endpoint. CONCLUSIONS the fluctuations of BDNF levels are not consistently related to motor improvement but seem to react to active treatment. Without active rehabilitation treatment, BDNF tends to decrease.
Collapse
Affiliation(s)
- Ekaterina S. Koroleva
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Ivan V. Tolmachev
- Department of Medical and Biological Cybernetics, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia;
| | - Valentina M. Alifirova
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Anton J. M. Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
22
|
Treatment with AAV1-Rheb(S16H) provides neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Neuroreport 2020; 31:971-978. [PMID: 32694311 DOI: 10.1097/wnr.0000000000001506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently reported that upregulation of the constitutively active ras homolog enriched in brain [Rheb(S16H)], which induces the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, can protect adult neurons, mediated by the induction of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), in animal models of neurodegenerative diseases. Here we show that neuronal transduction of Rheb(S16H) using adeno-associated virus serotype 1 provides neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Rheb(S16H)-expressing neurons exhibited neurotrophic effects, such as mTORC1 activation, increases in neuronal size, and BDNF production, in mouse cerebral cortex. Moreover, the upregulation of neuronal Rheb(S16H) significantly attenuated ischemic damage and behavioral impairments as compared to untreated mice, suggesting that Rheb(S16H) upregulation in cortical neurons may be a useful strategy to treat ischemic stroke.
Collapse
|
23
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
24
|
Aljuhni R, Cleland BT, Roth S, Madhavan S. Genetic polymorphisms for BDNF, COMT, and APOE do not affect gait or ankle motor control in chronic stroke: A preliminary cross-sectional study. Top Stroke Rehabil 2020; 28:72-80. [PMID: 32378476 DOI: 10.1080/10749357.2020.1762060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Motor deficits after stroke are a primary cause of long-term disability. The extent of functional recovery may be influenced by genetic polymorphisms. Objectives: Determine the effect of genetic polymorphisms for brain-derived neurotrophic factor (BDNF), catechol-O-methyltransferase (COMT), and apolipoprotein E (APOE) on walking speed, walking symmetry, and ankle motor control in individuals with chronic stroke. Methods: 38 participants with chronic stroke were compared based upon genetic polymorphisms for BDNF (presence [MET group] or absence [VAL group] of a Met allele), COMT (presence [MET group] or absence [VAL group] of a Met allele), and APOE (presence [ε4+ group] of absence [ε4- group] of ε4 allele). Comfortable and maximal walking speed were measured with the 10-m walk test. Gait spatiotemporal symmetry was measured with the GAITRite electronic mat; symmetry ratios were calculated for step length, step time, swing time, and stance time. Ankle motor control was measured as the accuracy of performing an ankle tracking task. Results: No significant differences were detected (p ≥ 0.11) between the BDNF, COMT, or APOE groups for any variables. Conclusions: In these preliminary findings, genetic polymorphisms for BDNF, COMT, and APOE do not appear to affect walking speed, walking symmetry, or ankle motor performance in chronic stroke.
Collapse
Affiliation(s)
- Rehab Aljuhni
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, IL, USA
| | - Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, IL, USA
| | - Stephen Roth
- Department of Kinesiology, School of Public Health, University of Maryland , College Park, MD, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, IL, USA
| |
Collapse
|
25
|
Zhao F, Yue Y, Jiang H, Yuan Y. Shared genetic risk factors for depression and stroke. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:55-70. [PMID: 30898617 DOI: 10.1016/j.pnpbp.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The comorbidity of major depressive disorder (MDD) and stroke are common in clinic. There is a growing body of evidence suggesting a bi-directional relationship between stroke and depression. However, the mechanisms underlying the relationship between MDD and stroke are poorly investigated. Considering that both MDD and stroke can be heritable and are influenced by multiple risk genes, shared genetic risk factors between MDD and stroke may exist. OBJECTIVE The objective is to review the existing evidence for common genetic risk factors for both MDD and stroke and to outline the possible pathophysiological mechanisms mediating this association. METHODS A systematic review and meta-analysis was performed. Gene association studies regarding stroke and depression were searched in the database PubMed, CNKI, and Chinese Biomedical Literature Database before December 2018. Statistical analysis was performed using the software Revman 5.3. RESULTS Genetic polymorphisms of 4 genes, methylenetetrahydrofolate reductase (MTHFR) and apolipoprotein E (ApoE) have been demonstrated to associate with the increased risk for both MDD and stroke, while the association between identified polymorphisms in angiotensin converting enzyme (ACE) and serum paraoxonase (PON1) with depression is still under debate, for the existing studies are insufficient in sample size. These results suggest the possible pathophysiological mechanisms that are common to these two disorders, including immune-inflammatory imbalance, increased oxidative and nitrative stress, dysregulation of lipoprotein and lipid metabolism, and changes of cerebrovascular morphology and function. Other associated genes with few or conflicting results have also been included, and a few studies have investigated the effects of the described polymorphisms on MDD and stroke comorbidity, such as post stroke depression. CONCLUSION These findings suggest that shared genetic pathways may contribute to the comorbidity of MDD and stroke. Studies to evaluate the shared genetic variations between MDD and stroke may provide insights into the molecular mechanisms that trigger disease progression.
Collapse
Affiliation(s)
- Fuying Zhao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China.
| |
Collapse
|
26
|
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10:486. [PMID: 31105589 PMCID: PMC6499070 DOI: 10.3389/fphys.2019.00486] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Astrocytes, oligodendrocytes, and microglia are abundant cell types found in the central nervous system and have been shown to play crucial roles in regulating both normal and disease states. An increasing amount of evidence points to the critical importance of glia in mediating neurodegeneration in Alzheimer’s and Parkinson’s diseases (AD, PD), and in ischemic stroke, where microglia are involved in initial tissue clearance, and astrocytes in the subsequent formation of a glial scar. The importance of these cells for neuronal survival has previously been studied in co-culture experiments and the search for neurotrophic factors (NTFs) initiated after finding that the addition of conditioned media from astrocyte cultures could support the survival of primary neurons in vitro. This led to the discovery of the potent dopamine neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF). In this review, we focus on the relationship between glia and NTFs including neurotrophins, GDNF-family ligands, CNTF family, and CDNF/MANF-family proteins. We describe their expression in astrocytes, oligodendrocytes and their precursors (NG2-positive cells, OPCs), and microglia during development and in the adult brain. Furthermore, we review existing data on the glial phenotypes of NTF knockout mice and follow NTF expression patterns and their effects on glia in disease models such as AD, PD, stroke, and retinal degeneration.
Collapse
Affiliation(s)
- Suvi Pöyhönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Safak Er
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Zhou J, Ma MM, Fang JH, Zhao L, Zhou MK, Guo J, He L. Differences in brain-derived neurotrophic factor gene polymorphisms between acute ischemic stroke patients and healthy controls in the Han population of southwest China. Neural Regen Res 2019; 14:1404-1411. [PMID: 30964066 PMCID: PMC6524511 DOI: 10.4103/1673-5374.253525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of ischemic stroke. This case-control study included 778 patients (475 males and 303 females, mean age of 64.0 ± 12.6 years) in the acute phase of ischemic stroke and 865 control subjects (438 males and 427 females, mean age of 51.7 ± 14.7 years) from the Department of Neurology, West China Hospital, Sichuan University, China between September 2011 and December 2014. The patients’ severities of neurological deficits in the acute phase were assessed using the National Institutes of Health Stroke Scale immediately after admission to hospital. The ischemic stroke patients were divided into different subtypes according to the Trial of Org 10172 in Acute Stroke Treatment classification. Early prognosis was evaluated using the Modified Rankin Scale when the patients were discharged. Genomic DNA was extracted from peripheral blood of participants. Genotyping of rs7124442 and rs6265 was performed using Kompetitive Allele Specific polymerase chain reaction genotyping technology. Our results demonstrated that patients who carried the C allele of the rs7124442 locus had a lower risk of poor prognosis than the T allele carriers (odds ratio [OR] = 0.67; 95% confidence interval [CI]: 0.45–1.00; P = 0.048). The patients with the CC or TC genotype also exhibited lower risk than TT carriers (OR = 0.65; 95% CI: 0.42–1.00; P = 0.049). The AA genotype at the rs6265 locus was associated with the occurrence of ischemic stroke in patients with large-artery atherosclerosis (OR = 0.58; 95% CI: 0.37–0.90; P = 0.015). We found that the C allele (CC and TC genotypes) at the rs7124442 locus may be protective for the prognosis of ischemic stroke. The AA genotype at the rs6265 locus is likely a protective factor against the occurrence of ischemic stroke in patients with large-artery atherosclerosis. The study protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval ID number 2008[4]) on July 25, 2008.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Meng-Meng Ma
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing-Huan Fang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mu-Ke Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
28
|
Xingnao Jieyu Decoction Ameliorates Poststroke Depression through the BDNF/ERK/CREB Pathway in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5403045. [PMID: 30410555 PMCID: PMC6206522 DOI: 10.1155/2018/5403045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Background. The neurotrophic pathway regulated by the brain-derived neurotrophic factor (BDNF) plays a crucial role in the pathogenesis of poststroke depression (PSD). How the traditional Chinese medicine compound preparation Xingnao Jieyu (XNJY) decoction regulates the neurotrophic pathway to treat PSD is unclear. Objective. This study aimed to investigate the antidepressant effect of XNJY decoction on a rat model of PSD and the molecular mechanism intervening in the neurotrophic pathway. Methods. After a middle cerebral artery occlusion model was established, chronic unpredictable mild stress was applied for 21 days to prepare a PSD model. XNJY groups and a fluoxetine (Flu) group of rats were intragastrically administered with XNJY and Flu, respectively, for 21 consecutive days. Depressive-like behaviors, including sucrose preference, open field test, and forced swimming test, were assessed. The survival and apoptosis of cortical and hippocampal neurons were evaluated by immunofluorescence assay and TUNEL staining. The contents of serotonin (5-HT), norepinephrine (NE), and BDNF in the cortex and hippocampus were determined by ELISA. The protein levels of BDNF, p-ERK/ERK, and p-CREB/CREB in the cortical and hippocampal regions were tested by Western blot. Results. The depressive-like behaviors markedly improved after XNJY and Flu treatment. XNJY and Flu promoted neuronal survival and protected cortical and hippocampal neurons from apoptosis. XNJY also increased the contents of 5-HT, NE, and BDNF and recovered the protein levels of p-ERK/ERK, p-CREB/CREB, and BDNF in the cortical and hippocampal regions. Conclusion. These results indicated that the XNJY decoction exerts an obvious antidepressant effect, which may be due to the regulation of the BDNF/ERK/CREB signaling pathway.
Collapse
|
29
|
Wang H, Gaur U, Xiao J, Xu B, Xu J, Zheng W. Targeting phosphodiesterase 4 as a potential therapeutic strategy for enhancing neuroplasticity following ischemic stroke. Int J Biol Sci 2018; 14:1745-1754. [PMID: 30416389 PMCID: PMC6216030 DOI: 10.7150/ijbs.26230] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Sensorimotor recovery following ischemic stroke is highly related with structural modification and functional reorganization of residual brain tissues. Manipulations, such as treatment with small molecules, have been shown to enhance the synaptic plasticity and contribute to the recovery. Activation of the cAMP/CREB pathway is one of the pivotal approaches stimulating neuroplasticity. Phosphodiesterase 4 (PDE4) is a major enzyme controlling the hydrolysis of cAMP in the brain. Accumulating evidences have shown that inhibition of PDE4 is beneficial for the functional recovery after cerebral ischemia; i. subtype D of PDE4 (PDE4D) is viewed as a risk factor for ischemic stroke; ii. inhibition of PDE4 enhances neurological behaviors, such as learning and memory, after stroke in rodents; iii.PDE4 inhibition increases dendritic density, synaptic plasticity and neurogenesis; iv. activation of cAMP/CREB signaling by PDE4 inhibition causes an endogenous increase of BDNF, which is a potent modulator of neuroplasticity; v. PDE4 inhibition is believed to restrict neuroinflammation during ischemic stroke. Cumulatively, these findings provide a link between PDE4 inhibition and neuroplasticity after cerebral ischemia. Here, we summarized the possible roles of PDE4 inhibition in the recovery of cerebral stroke with an emphasis on neuroplasticity. We also made some recommendations for future research.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
30
|
Wang P, Yang F, Liu CX, Wu YM, Gu C, Zhu HJ. Association between PDE4D rs966221 polymorphism and risk of ischemic stroke: a systematic review and meta-analysis. Metab Brain Dis 2018; 33:637-645. [PMID: 29234926 DOI: 10.1007/s11011-017-0158-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
PDE4D polymorphism (SNP83/rs966221) was reported to be associated with the susceptibility to ischemic stroke (IS), however, the results were inconclusive. An electronic search of Embase, PubMed, CNKI and Wan Fang Date was performed to identify relevant studies published throughout April 2017. A total of 26 studies were enrolled in the analysis. No significant association between the rs9662221 polymorphism and IS was observed in the overall analysis. Nevertheless, in the subgroup analysis, our results showed a significant association between the SNP83 polymorphism and IS in CC+ CT vs. TT (OR = 1.19, 95% CI: 1.02-1.38), CT vs.TT (OR = 1.14, 95% CI: 1.01-1.29) and C vs. T (OR = 1.25, 95% CI: 1.06-1.48) in Asian population. But we did not found any association in CC vs. CT + TT (OR = 1.2, 95% CI: 0.9-1.61) and CC vs. TT (OR = 1.26, 95% CI: 0.91-1.75) in the Asian populations. Meantime, no significant correlations were observed under the five genetic model in Caucasian population (p > 0.05). In conclusion, our meta-analysis demonstrated that the SNP83 polymorphism in the PDE4D gene might contribute to IS susceptibility especially in Asian populations. Whereas the relationship of the polymorphism to the disease in Caucasian population was still in controversial. In future, additional well designed studies with larger sample sizes are still required to further elucidate this association.
Collapse
Affiliation(s)
- Peng Wang
- Intervertional Radiology and Vascular Department, The Third Affiliated Hospital of Nantong University, Wuxi, Jiang Su, 214041, China
| | - Fei Yang
- Intervertional Radiology and Vascular Department, The Third Affiliated Hospital of Nantong University, Wuxi, Jiang Su, 214041, China
| | - Cai Xiang Liu
- Nephrology Department, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiang Su, 214071, China.
| | - Yan Min Wu
- Gastroenterology Department, The Third Affiliated Hospital of Nantong University, Wuxi, Jiang Su, 214041, China
| | - Chen Gu
- Intervertional Radiology and Vascular Department, The Third Affiliated Hospital of Nantong University, Wuxi, Jiang Su, 214041, China
| | - Hua Jian Zhu
- Surgery of Traditional Chinese Medicine, The Third Affiliated Hospital of Nantong University, Wuxi, Jiang Su, 214041, China
| |
Collapse
|
31
|
Duan X, Yao G, Liu Z, Cui R, Yang W. Mechanisms of Transcranial Magnetic Stimulation Treating on Post-stroke Depression. Front Hum Neurosci 2018; 12:215. [PMID: 29899693 PMCID: PMC5988869 DOI: 10.3389/fnhum.2018.00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Post-stroke depression (PSD) is a neuropsychiatric affective disorder that can develop after stroke. Patients with PSD show poorer functional and recovery outcomes than patients with stroke who do not suffer from depression. The risk of suicide is also higher in patients with PSD. PSD appears to be associated with complex pathophysiological mechanisms involving both psychological and psychiatric problems that are associated with functional deficits and neurochemical changes secondary to brain damage. Transcranial magnetic stimulation (TMS) is a non-invasive way to investigate cortical excitability via magnetic stimulation of the brain. TMS is currently a valuable tool that can help us understand the pathophysiology of PSD. Although repetitive TMS (rTMS) is an effective treatment for patients with PSD, its mechanism of action remains unknown. Here, we review the known mechanisms underlying rTMS as a tool for better understanding PSD pathophysiology. It should be helpful when considering using rTMS as a therapeutic strategy for PSD.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Gang Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhongliang Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Li CX, Weng H, Zheng J, Feng ZH, Ou JL, Liao WJ. Association Between MicroRNAs Polymorphisms and Risk of Ischemic Stroke: A Meta-Analysis in Chinese Individuals. Front Aging Neurosci 2018; 10:82. [PMID: 29643803 PMCID: PMC5882832 DOI: 10.3389/fnagi.2018.00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Abstract
Objective: Previous studies have demonstrated that some single-nucleotide polymorphisms (SNPs) in miRNAs are related to the risk of ischemic stroke (IS), but the conclusions are still controversial and inconclusive. We performed this meta-analysis to further assess the association between miR-146a C>G (rs2910164), miR-149 T>C (rs2292832), miR-196a2 T>C (rs11614913), miR-499 A>G (rs3746444) and risk of IS in Chinese individuals. Methods: Relevant studies were identified in the databases of PubMed, Embase. The strength of correlation between microRNAs polymorphisms and IS risk was assessed by odds ratios (ORs) and 95% confidence intervals (95% CIs) under five genetic models. Results: 5 studies, containing 2,632 cases and 3,191 controls, were included in this meta-analysis. The overall results of meta-analysis indicated that there were no significant association between miR-146a C>G (rs2910164), miR-149 T>C (rs2292832), miR-196a2 T>C (rs11614913), and the IS risk in the overall analyses. MiR-499 A>G (rs3746444) was associated with an increased IS risk under allele model (OR = 1.30, 95% CI = 1.02-1.66), heterozygous model (OR = 1.35, 95% CI = 1.01-1.79) and dominant model (OR = 1.36, 95% CI = 1.02-1.80) in Chinese. The sensitivity analysis results of these four polymorphisms were similar to the overall results. Conclusion: MiR-499 A>G (rs3746444) G allele and AG, AG + AA genotype might be risk factors of IS in Chinese. No significant association was observed between miR-146a C>G (rs2910164), miR-149 T>C (rs2292832), miR-196a2 T>C (rs11614913), and IS risk. The associations may be different due to geographical factors of China. More explorations in more diverse geographically regions with large sample size are expected to further verify the findings in the future.
Collapse
Affiliation(s)
- Chen-Xi Li
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-He Feng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Lin Ou
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|