1
|
Yousef Almulhim M. The efficacy of novel biomarkers for the early detection and management of acute kidney injury: A systematic review. PLoS One 2025; 20:e0311755. [PMID: 39879206 DOI: 10.1371/journal.pone.0311755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/24/2024] [Indexed: 01/31/2025] Open
Abstract
Acute kidney injury (AKI) is a frequent clinical complication lacking early diagnostic tests and effective treatments. Novel biomarkers have shown promise for enabling earlier detection, risk stratification, and guiding management of AKI. We conducted a systematic review to synthesize evidence on the efficacy of novel biomarkers for AKI detection and management. Database searches yielded 17 relevant studies which were critically appraised. Key themes were biomarker efficacy in predicting AKI risk and severity before functional changes; potential to improve clinical management through earlier diagnosis, prognostic enrichment, and guiding interventions; emerging roles as therapeutic targets and prognostic tools; and ongoing challenges requiring further validation. Overall, novel biomarkers like neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and cell cycle arrest markers ([TIMP-2] •[IGFBP7]) demonstrate capability for very early AKI prediction and accurate risk stratification. Their incorporation has potential to facilitate timely targeted interventions and personalized management. However, factors influencing biomarker performance, optimal cutoffs, cost-effectiveness, and impact on patient outcomes require robust validation across diverse settings before widespread implementation. Addressing these limitations through ongoing research can help translate novel biomarkers into improved detection, prognosis, and management of AKI in clinical practice.
Collapse
|
2
|
Villa G, Fiorentino M, Cappellini E, Lassola S, De Rosa S. Renal implications of pneumoperitoneum in laparoscopic surgery: mechanisms, risk factors, and preventive strategies. Korean J Anesthesiol 2024; 77:575-586. [PMID: 38664893 PMCID: PMC11637592 DOI: 10.4097/kja.24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
Pneumoperitoneum, which is established for laparoscopic surgery, has systemic implications on the renal system and may contribute to acute kidney injury or postoperative renal dysfunction. Specifically, when the pressure exceeds 10 mmHg, pneumoperitoneum decreases renal blood flow, leading to renal dysfunction and temporary oliguria. The renal effects of pneumoperitoneum stem from both the direct effects of increased intra-abdominal pressure and indirect factors such as carbon dioxide absorption, neuroendocrine influences, and tissue damage resulting from oxidative stress. While pneumoperitoneum can exacerbate renal dysfunction in patients with pre-existing kidney issues, preserving the function of the remaining kidney is crucial in certain procedures such as laparoscopic live donor nephrectomy. However, available evidence on the effects of pneumoperitoneum on renal function is limited and of moderate quality. This review focuses on exploring the pathophysiological hypotheses underlying kidney damage, mechanisms leading to oliguria and kidney damage, and fluid management strategies for surgical patients during pneumoperitoneum.
Collapse
Affiliation(s)
- Gianluca Villa
- Department of Health Sciences, Anesthesiology Intensive Care and Pain Medicine, University of Florence, Florence, Italy
- Department of Anesthesia and Intensive Care, Oncological Anesthesia and Intensive Care, AOU Careggi, Florence, Italy
| | - Marco Fiorentino
- Department of Precision and Regenerative Medicine and Ionian Area, Nephrology Unit, University of Bari, Italy
| | - Eleonora Cappellini
- Department of Health Sciences, Anesthesiology Intensive Care and Pain Medicine, University of Florence, Florence, Italy
| | - Sergio Lassola
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Italy
| | - Silvia De Rosa
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Italy
- Center for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
3
|
de Oliveira Bezerra D, Amorim Aita G, Rhands Coelho de Moura C, dos Santos Silva L, Ernanda Sousa de Carvalho C, Rafaela Alves da Silva C, Rebeca Soares Carneiro de Sousa M, Barros Ferraz JC, Cardoso de Brito F, Silva Carvalho M, Gabriel Gomes de Melo W, Benício Campêlo C, Martins de Carvalho MA. Kidney/Aorta Ratio for Renal Morphometric Determination in Swine Subjected to Acute Kidney Injury Using an Optimized Surgical Model. Comp Med 2024; 74:255-262. [PMID: 38849202 PMCID: PMC11373677 DOI: 10.30802/aalas-cm-23-000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
This research aims to establish an experimental surgical model for access to the renal pedicle and kidney and to determine renal length measurement via the kidney/aorta ratio (K/AO) using ultrasound. Fifteen swine underwent ventral median celiotomy with a supraumbilical transverse incision to access the right and left renal pedicles and induce renal ischemia-reperfusion injury (IRR). The kidneys were evaluated using ultrasonography to standardize renal length, aortic diameter, and the K/AO. Assessment was performed at 2 time points: 1 h before and 24 h after the surgery to induce IRR. Blood and urine samples were collected to assess renal function. Histologic evaluation of kidney fragments was also conducted. The proposed abdominal cavity access method proved to be highly efficient for exposing the right and left renal pedicles and inducing IRR. Serum levels of urea, creatinine, calcium, and phosphorus, as well as levels of the urinary protein/urinary creatinine ratio and urinary GGT, did not show significant differences. Acute kidney injury was confirmed through histopathology. The mean lengths of the right and left kidneys were 82.63 and 87.64 mm, respectively. The values of the right and left K/AO were 9.81 and 10.38, respectively. There was no statistically significant difference in the K/AO ratio before and after IRR. The proposed surgical model allowed surgical intervention on the renal pedicles without intra- or postoperative complications. Furthermore, the K/AO could be measured through ultrasonography, establishing a reference for healthy animals.
Collapse
Affiliation(s)
- Dayseanny de Oliveira Bezerra
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | | | - Charlys Rhands Coelho de Moura
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Lucilene dos Santos Silva
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Camila Ernanda Sousa de Carvalho
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Catarina Rafaela Alves da Silva
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | | | | | | | - Marina Silva Carvalho
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Wanderson Gabriel Gomes de Melo
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Camile Benício Campêlo
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Maria Acelina Martins de Carvalho
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
4
|
Cheungpasitporn W, Thongprayoon C, Kashani KB. Artificial intelligence and machine learning's role in sepsis-associated acute kidney injury. Kidney Res Clin Pract 2024; 43:417-432. [PMID: 38934028 PMCID: PMC11237333 DOI: 10.23876/j.krcp.23.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a serious complication in critically ill patients, resulting in higher mortality, morbidity, and cost. The intricate pathophysiology of SA-AKI requires vigilant clinical monitoring and appropriate, prompt intervention. While traditional statistical analyses have identified severe risk factors for SA-AKI, the results have been inconsistent across studies. This has led to growing interest in leveraging artificial intelligence (AI) and machine learning (ML) to predict SA-AKI better. ML can uncover complex patterns beyond human discernment by analyzing vast datasets. Supervised learning models like XGBoost and RNN-LSTM have proven remarkably accurate at predicting SA-AKI onset and subsequent mortality, often surpassing traditional risk scores. Meanwhile, unsupervised learning reveals clinically relevant sub-phenotypes among diverse SA-AKI patients, enabling more tailored care. In addition, it potentially optimizes sepsis treatment to prevent SA-AKI through continual refinement based on patient outcomes. However, utilizing AI/ML presents ethical and practical challenges regarding data privacy, algorithmic biases, and regulatory compliance. AI/ML allows early risk detection, personalized management, optimal treatment strategies, and collaborative learning for SA-AKI management. Future directions include real-time patient monitoring, simulated data generation, and predictive algorithms for timely interventions. However, a smooth transition to clinical practice demands continuous model enhancements and rigorous regulatory oversight. In this article, we outlined the conventional methods used to address SA-AKI and explore how AI and ML can be applied to diagnose and manage SA-AKI, highlighting their potential to revolutionize SA-AKI care.
Collapse
Affiliation(s)
- Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kianoush B Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Zannad F, Sanyal AJ, Butler J, Ferreira JP, Girerd N, Miller V, Pandey A, Parikh CR, Ratziu V, Younossi ZM, Harrison SA. MASLD and MASH at the crossroads of hepatology trials and cardiorenal metabolic trials. J Intern Med 2024; 296:24-38. [PMID: 38738988 DOI: 10.1111/joim.13793] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Steatotic liver disease (SLD) is a worldwide public health problem, causing considerable morbidity and mortality. Patients with SLD are at increased risk for major adverse cardiovascular (CV) events, type 2 diabetes mellitus and chronic kidney disease. Conversely, patients with cardiometabolic conditions have a high prevalence of SLD. In addition to epidemiological evidence linking many of these conditions, there is evidence of shared pathophysiological processes. In December 2022, a unique multi-stakeholder, multi-specialty meeting, called MOSAIC (Metabolic multi Organ Science Accelerating Innovation in Clinical Trials) was convened to foster collaboration across metabolic, hepatology, nephrology and CV disorders. One of the goals of the meeting was to consider approaches to drug development that would speed regulatory approval of treatments for multiple disorders by combining liver and cardiorenal endpoints within a single study. Non-invasive tests, including biomarkers and imaging, are needed in hepatic and cardiorenal trials. They can be used as trial endpoints, to enrich trial populations, to diagnose and risk stratify patients and to assess treatment efficacy and safety. Although they are used in proof of concept and phase 2 trials, they are often not acceptable for regulatory approval of therapies. The challenge is defining the optimal combination of biomarkers, imaging and morbidity/mortality outcomes and ensuring that they are included in future trials while minimizing the burden on patients, trialists and trial sponsors. This paper provides an overview of some of the wide array of CV, liver and kidney measurements that were discussed at the MOSAIC meeting.
Collapse
Affiliation(s)
- Faiez Zannad
- Université de Lorraine, Inserm Clinical Investigation Center at Institut Lorrain du Coeur et des Vaisseaux, University Hospital of Nancy, Nancy, France
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA
- University of Mississippi, Jackson, Mississippi, USA
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department Surgery Physiology, University of Porto, Porto, Portugal
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Nicolas Girerd
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Veronica Miller
- Forum for Collaborative Research, Washington, District of Columbia, USA
- University of California Berkeley School of Public Health, Berkeley, California, USA
| | | | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vlad Ratziu
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Institute for Cardiometabolism and Nutrition, INSERM UMRS, Paris, France
| | | | - Stephen A Harrison
- Visiting Professor of Hepatology Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Ramírez-Guerrero G, Ronco C, Lorenzin A, Brendolan A, Sgarabotto L, Zanella M, Reis T. Development of a new miniaturized system for ultrafiltration. Heart Fail Rev 2024; 29:615-630. [PMID: 38289525 DOI: 10.1007/s10741-024-10384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
Acute decompensated heart failure and fluid overload are the most common causes of hospitalization in heart failure patients, and often, they contribute to disease progression. Initial treatment encompasses intravenous diuretics although there might be a percentual of patients refractory to this pharmacological approach. New technologies have been developed to perform extracorporeal ultrafiltration in fluid overloaded patients. Current equipment allows to perform ultrafiltration in most hospital and acute care settings. Extracorporeal ultrafiltration is then prescribed and conducted by specialized teams, and fluid removal is planned to restore a status of hydration close to normal. Recent clinical trials and European and North American practice guidelines suggest that ultrafiltration is indicated for patients with refractory congestion not responding to medical therapy. Close interaction between nephrologists and cardiologists may be the key to a collaborative therapeutic effort in heart failure patients. Further studies are today suggesting that wearable technologies might become available soon to treat patients in ambulatory and de-hospitalized settings. These new technologies may help to cope with the increasing demand for the care of chronic heart failure patients. Herein, we provide a state-of-the-art review on extracorporeal ultrafiltration and describe the steps in the development of a new miniaturized system for ultrafiltration, called AD1 (Artificial Diuresis).
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Departamento de Medicina Interna, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy.
- Department of Medicine (DIMED), Università degli Studi di Padova, Padua, Italy.
| | - Anna Lorenzin
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Alessandra Brendolan
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Luca Sgarabotto
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
- Department of Medicine (DIMED), Università degli Studi di Padova, Padua, Italy
| | - Monica Zanella
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Thiago Reis
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
- Department of Nephrology and Kidney Transplantation, Fenix Group, Sao Paulo, Brazil
| |
Collapse
|
7
|
Zhao X, Han J, Hu J, Qiu Z, Lu L, Xia C, Zheng Z, Zhang S. Association between albumin-corrected anion gap level and the risk of acute kidney injury in intensive care unit. Int Urol Nephrol 2024; 56:1117-1127. [PMID: 37642797 DOI: 10.1007/s11255-023-03755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE This study was to investigate the association between albumin-corrected anion gap (AG) (ACAG) levels and the risk of acute kidney injury (AKI) in intensive care unit (ICU) patients. METHODS The ICU patients of this retrospective cohort study were collected from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database between 2008 and 2019. ACAG = AG + {4.4 - [albumin (g/dl)]} × 2.5. The incidence of AKI was determined using the Kidney Disease: Improving Global Outcomes (KDIGO) definition. The logistic regression model was used to evaluate the association between ACAG levels and the risk of AKI. Subgroup analyses were applied based on age, gender, mechanical ventilation, vasopressors, the Charlson comorbidity index (CCI), and the Simplified Acute Physiology Score II (SAPS II). RESULTS Totally, 5586 patients were enrolled, of which 1929 patients (34.53%) occurred AKI. The higher levels of ACAG were associated with the risk of AKI in ICU patients, with the odds ratio (OR) value being 1.23 [95% confidence interval (CI): 1.22-1.24, P = 0.005] in ACAG level between 16.5 and 19.5, and OR value being 1.20 (95% CI 1.16-1.24, P = 0.016) in ACAG level > 19.5. A higher ACAG level was associated with a higher risk of AKI in ICU patients aged < 65 years, in ICU patients of female gender, in ICU patients who used mechanical ventilation, in ICU patients who did not use vasopressors, in patients without cardiogenic shock, and in ICU patients with CCI ≥ 2, and SAPS II > 31 (all P < 0.05). CONCLUSION There is an association between ACAG level and the risk of AKI in ICU patients. A higher ACAG value in ICU patients should therefore receive more attention.
Collapse
Affiliation(s)
- Xi Zhao
- Intensive Care Unit, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou, 310023, People's Republic of China
| | - Jiayu Han
- Intensive Care Unit, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou, 310023, People's Republic of China
| | - Jianliang Hu
- Intensive Care Unit, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou, 310023, People's Republic of China
| | - Zhilei Qiu
- Intensive Care Unit, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou, 310023, People's Republic of China
| | - Lihai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Chunxiao Xia
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Zihao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Siquan Zhang
- Intensive Care Unit, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou, 310023, People's Republic of China.
| |
Collapse
|
8
|
Storjord E, Wahlin S, Karlsen BO, Hardersen RI, Dickey AK, Ludviksen JK, Brekke OL. Potential Biomarkers for the Earlier Diagnosis of Kidney and Liver Damage in Acute Intermittent Porphyria. Life (Basel) 2023; 14:19. [PMID: 38276268 PMCID: PMC11154556 DOI: 10.3390/life14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Acute intermittent porphyria (AIP) is an inherited metabolic disorder associated with complications including kidney failure and hepatocellular carcinoma, probably caused by elevations in the porphyrin precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA). This study explored differences in modern biomarkers for renal and hepatic damage between AIP patients and controls. Urine PBG testing, kidney injury panels, and liver injury panels, including both routine and modern biomarkers, were performed on plasma and urine samples from AIP cases and matched controls (50 and 48 matched pairs, respectively). Regarding the participants' plasma, the AIP cases had elevated kidney injury marker-1 (KIM-1, p = 0.0002), fatty acid-binding protein-1 (FABP-1, p = 0.04), and α-glutathione S-transferase (α-GST, p = 0.001) compared to the matched controls. The AIP cases with high PBG had increased FABP-1 levels in their plasma and urine compared to those with low PBG. In the AIP cases, KIM-1 correlated positively with PBG, CXCL10, CCL2, and TCC, and the liver marker α-GST correlated positively with IL-13, CCL2, and CCL4 (all p < 0.05). In conclusion, KIM-1, FABP-1, and α-GST could represent potential early indicators of renal and hepatic damage in AIP, demonstrating associations with porphyrin precursors and inflammatory markers.
Collapse
Affiliation(s)
- Elin Storjord
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
| | - Staffan Wahlin
- Hepatology Division, Department of Upper GI Diseases, Porphyria Centre Sweden, Karolinska Institute and Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Bård Ove Karlsen
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Research Laboratory, Nordland Hospital Trust, 8092 Bodø, Norway;
| | - Randolf I. Hardersen
- Department of Nephrology, Nordland Hospital Trust, 8092 Bodø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Amy K. Dickey
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ole-Lars Brekke
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
9
|
Meena J, Thomas CC, Kumar J, Mathew G, Bagga A. Biomarkers for prediction of acute kidney injury in pediatric patients: a systematic review and meta-analysis of diagnostic test accuracy studies. Pediatr Nephrol 2023; 38:3241-3251. [PMID: 36862250 DOI: 10.1007/s00467-023-05891-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Severity of acute kidney injury (AKI) confers higher odds of mortality. Timely recognition and early initiation of preventive measures may help mitigate the injury further. Novel biomarkers may aid in the early detection of AKI. The utility of these biomarkers across various clinical settings in children has not been evaluated systematically. OBJECTIVE To synthesize the currently available evidence on different novel biomarkers for the early diagnosis of AKI in pediatric patients. DATA SOURCES We searched four electronic databases (PubMed, Web of Science, Embase, and Cochrane Library) for studies published between 2004 and May 2022. STUDY ELIGIBILITY CRITERIA Cohort and cross-sectional studies evaluating the diagnostic performance of biomarkers in predicting AKI in children were included. PARTICIPANTS AND INTERVENTIONS Participants in the study included children (aged less than 18 years) at risk of AKI. STUDY APPRAISAL AND SYNTHESIS METHODS We used the QUADAS-2 tool for the quality assessment of the included studies. The area under the receiver operating characteristics (AUROC) was meta-analyzed using the random-effect inverse-variance method. Pooled sensitivity and specificity were generated using the hierarchical summary receiver operating characteristic (HSROC) model. RESULTS We included 92 studies evaluating 13,097 participants. Urinary NGAL and serum cystatin C were the two most studied biomarkers, with summary AUROC of 0.82 (0.77-0.86) and 0.80 (0.76-0.85), respectively. Among others, urine TIMP-2*IGFBP7, L-FABP, and IL-18 showed fair to good predicting ability for AKI. We observed good diagnostic performance for predicting severe AKI by urine L-FABP, NGAL, and serum cystatin C. LIMITATIONS Limitations were significant heterogeneity and lack of well-defined cutoff value for various biomarkers. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Urine NGAL, L-FABP, TIMP-2*IGFBP7, and cystatin C showed satisfactory diagnostic accuracy in the early prediction of AKI. To further improve the performance of biomarkers, they need to be integrated with other risk stratification models. SYSTEMATIC REVIEW REGISTRATION PROSPERO (CRD42021222698). A higher resolution version of the Graphical abstract is available as "Supplementary information".
Collapse
Affiliation(s)
- Jitendra Meena
- Division of Nephrology, Department of Pediatrics, ICMR Centre for Advanced Research in Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Jogender Kumar
- Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Georgie Mathew
- Division of Nephrology, Department of Pediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, ICMR Centre for Advanced Research in Nephrology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Fiorentino M, Bagagli F, Deleonardis A, Stasi A, Franzin R, Conserva F, Infante B, Stallone G, Pontrelli P, Gesualdo L. Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management. Biomedicines 2023; 11:1474. [PMID: 37239144 PMCID: PMC10216683 DOI: 10.3390/biomedicines11051474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Kidney transplantation is the first-choice treatment for end-stage renal disease (ESRD). Kidney transplant recipients (KTRs) are at higher risk of experiencing a life-threatening event requiring intensive care unit (ICU) admission, mainly in the late post-transplant period (more than 6 months after transplantation). Urosepsis and bloodstream infections account for almost half of ICU admissions in this population; in addition, potential side effects related to immunosuppressive treatment should be accounted for cytotoxic and ischemic changes induced by calcineurin inhibitor (CNI), sirolimus/CNI-induced thrombotic microangiopathy and posterior reversible encephalopathy syndrome. Throughout the ICU stay, Acute Kidney Injury (AKI) incidence is common and ranges from 10% to 80%, and up to 40% will require renal replacement therapy. In-hospital mortality can reach 30% and correlates with acute illness severity and admission diagnosis. Graft survival is subordinated to baseline estimated glomerular filtration rate (eGFR), clinical presentation, disease severity and potential drug nephrotoxicity. The present review aims to define the impact of AKI events on short- and long-term outcomes in KTRs, focusing on the epidemiologic data regarding AKI incidence in this subpopulation; the pathophysiological mechanisms underlying AKI development and potential AKI biomarkers in kidney transplantation, graft and patients' outcomes; the current diagnostic work up and management of AKI; and the modulation of immunosuppression in ICU-admitted KTRs.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Francesca Bagagli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Annamaria Deleonardis
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Francesca Conserva
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| |
Collapse
|
11
|
Sandokji I, Greenberg JH. Biomarkers for acute kidney injury in children - where are we now? Curr Opin Pediatr 2023; 35:245-250. [PMID: 36601976 DOI: 10.1097/mop.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Review the literature over the last 2 years on commonly evaluated biomarkers of acute kidney injury (AKI) and highlight the findings of these biomarkers. RECENT FINDINGS Among several studied AKI biomarkers, urine neutrophil gelatinase-associated lipocalin (NGAL) and the combination of urine tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7) have been recently studied most frequently as diagnostic biomarkers of AKI and for AKI risk stratification. Urine NGAL has continued to show good discriminative value to predict and diagnose AKI in childhood. Urine TIMP-2∗IGFBP7 can provide modest improvement to clinical models of AKI. SUMMARY Prior research supports that AKI biomarkers may identify AKI at an earlier time point and indicate clinically meaningful tubular injury. More effort should be made to understand if AKI biomarkers can guide treatments and improve outcomes.
Collapse
Affiliation(s)
- Ibrahim Sandokji
- Department of Pediatrics, Section of Nephrology, Taibah University College of Medicine, Medina, Saudi Arabia
| | - Jason H Greenberg
- Department of Pediatrics, Section of Nephrology, Clinical and Translational Research Accelerator, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Dobrek L. A Synopsis of Current Theories on Drug-Induced Nephrotoxicity. Life (Basel) 2023; 13:life13020325. [PMID: 36836682 PMCID: PMC9960203 DOI: 10.3390/life13020325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The overriding goal of the treatment of patients is its effectiveness and safety. However, all medications currently being used also exert some adverse pharmaceutical reactions, which may be regarded as an unintended but inevitable cost of pharmacotherapy. The kidney, as the main organ that eliminates xenobiotics, is an organ especially predisposed and vulnerable to the toxic effects of drugs and their metabolites during their excretion from the body. Moreover, some drugs (e.g., aminoglycosides, cyclosporin A, cisplatin, amphotericin B, and others) have a "preferential" nephrotoxicity potential, and their use is associated with an increased risk of kidney damage. Drug nephrotoxicity is, therefore, both a significant problem and a complication of pharmacotherapy. It should be noted that, currently, there is no generally recognized definition of drug-induced nephrotoxicity and no clear criteria for its diagnosis. This review briefly describes the epidemiology and diagnosis of drug-induced nephrotoxicity and characterizes its pathomechanisms, including immunological and inflammatory disturbances, altered kidney blood flow, tubulointerstitial injury, increased lithogenesis-crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. The study also lists the basic drugs with nephrotoxicity potential and provides a short overview of the preventive methods for reducing the risk of drug-related kidney damage developing.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Li X, Yuan F, Zhou L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J Clin Med 2022; 11:jcm11226637. [PMID: 36431113 PMCID: PMC9693488 DOI: 10.3390/jcm11226637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Acute kidney injury (AKI) is becoming a public health problem worldwide. AKI is usually considered a complication of lung, heart, liver, gut, and brain disease, but recent findings have supported that injured kidney can also cause dysfunction of other organs, suggesting organ crosstalk existence in AKI. However, the organ crosstalk in AKI and the underlying mechanisms have not been broadly reviewed or fully investigated. In this review, we summarize recent clinical and laboratory findings of organ crosstalk in AKI and highlight the related molecular mechanisms. Moreover, their crosstalk involves inflammatory and immune responses, hemodynamic change, fluid homeostasis, hormone secretion, nerve reflex regulation, uremic toxin, and oxidative stress. Our review provides important clues for the intervention for AKI and investigates important therapeutic potential from a new perspective.
Collapse
|