1
|
Moura TDBD, Nunes FB, Crestani BDV, Araujo TFC, Hanauer EL, Corleta HVE, Branchini G. Preeclampsia and transport of ions and small molecules: A literature review. Placenta 2024; 156:77-91. [PMID: 39293185 DOI: 10.1016/j.placenta.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Preeclampsia (PE) is a prevalent obstetric complication affecting approximately 3-5% of pregnancies worldwide and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is considered a disease of the endothelial system that can progress to eclampsia, characterized by seizures. Early diagnosis and appropriate management are crucial to improving maternal and fetal outcomes, as preeclampsia can lead to severe complications such as placental abruption, fetal growth restriction, and stroke. The pathophysiology of PE is complex, involving a combination of genetic, acquired, and immunological factors. A central feature of the condition is inadequate placentation and impaired uteroplacental perfusion, leading to local hypoxia, endothelial dysfunction, vasoconstriction, and immunological dysregulation. Recent evidence suggests that dysregulation of ion transporters may play a significant role in the adaptation of uterine circulation during placentation. These transporters are essential for maintaining maternal-fetal homeostasis, influencing processes such as nutrient exchange, hormone synthesis, trophoblast cell migration, and the function of smooth muscle cells in blood vessels. In preeclampsia, adverse conditions like hypoxia and oxidative stress result in the downregulation of ion, solute, and water transporters, impairing their function. This review focuses on membrane transporters involved in PE, discussing functional alterations and their physiological implications. The goal of this investigation is to enhance understanding of how dysregulation of ion and small molecule transporters contributes to the development and progression of preeclampsia, underscoring the importance of exploring these signaling pathways for potential therapeutic interventions.
Collapse
Affiliation(s)
- Thaís Duarte Borges de Moura
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil
| | - Fernanda Bordignon Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil; Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Av, Porto Alegre, RS, ZIP 90619-900, Brazil
| | - Bianca Dalla Vecchia Crestani
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | | | - Eduarda Luiza Hanauer
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | - Helena von Eye Corleta
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2400 Ramiro Barcelos St, Porto Alegre, RS, ZIP 90035-003, Brazil
| | - Gisele Branchini
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil.
| |
Collapse
|
2
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
3
|
Zhang S, Shi Y, Dong P. USP8 targeted by Mir-874-3p promotes trophoblastic cell invasion by stabilizing the expression of ENaC on trophoblast membrane. Hum Immunol 2023; 84:618-630. [PMID: 37741774 DOI: 10.1016/j.humimm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/21/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
The aim of this study was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in human trophoblast cells and its molecular mechanism. Based on the GSE30186 dataset, USP8 was identified as a downregulated gene in pre-eclampsia (PE). Analysis of clinical samples also revealed that USP8 expression at both the mRNA and protein levels in placental tissue from patients with PE was significantly lower than that from healthy pregnant women. Plate clone formation, scratch-wound healing, Transwell, tubule formation, and western blot assays collectively revealed that USP8 overexpression promoted the proliferation, migration, invasion, and pro-angiogenesis function of trophoblast cells, while USP8 knockdown induced the opposite effects. Bioinformatics analysis and luciferase reporter assay results indicated that the 3' untranslated region of USP8 was targeted by miR-874-3p. USP8 expression in the placental tissue of patients with PE was significantly lower than that of healthy pregnant women. USP8 actively regulated the growth and invasion of human trophoblast cells and stabilized the epithelial sodium channel (ENaC) on the cell membrane. MiR-874 targeted USP8 in the trophoblast cells and upregulation of miR-874-3p resulted in a decrease in the proliferation, migration, invasion, and pro-angiogenesis ability of trophoblast cells. These results indicate that USP8 can reverse the above mentioned negative effects of miR-874-3p on trophoblast cells. USP8 targeted by miR-874-3p facilitates the invasion of trophoblastic cells by stabilizing the expression of the ENaC, which may be a possible therapeutic target for PE.
Collapse
Affiliation(s)
- Suqin Zhang
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong, China.
| | - Yanmei Shi
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong, China.
| | - Pingping Dong
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong, China.
| |
Collapse
|
4
|
Mortillo M, Marsit CJ. Select Early-Life Environmental Exposures and DNA Methylation in the Placenta. Curr Environ Health Rep 2023; 10:22-34. [PMID: 36469294 PMCID: PMC10152976 DOI: 10.1007/s40572-022-00385-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
Abstract
PURPOSE OF REVIEW To summarize recent literature relating early-life environmental exposures on DNA methylation in the placenta, to identify how variation in placental methylation is regulated in an exposure-specific manner, and to encourage additional work in this area. RECENT FINDINGS Multiple studies have evaluated associations between prenatal environmental exposures and placental methylation in both gene-specific and epigenome-wide frameworks. Specific exposures lead to unique variability in methylation, and cross-exposure assessments have uncovered certain genes that demonstrate consistency in differential placental methylation. Exposure studies that assess methylation effects in a trimester-specific approach tend to find larger effects during the 1st trimester exposure. Earlier studies have more targeted gene-specific approaches to methylation, while later studies have shifted towards epigenome-wide, array-based approaches. Studies focusing on exposures such as air pollution, maternal smoking, environmental contaminants, and trace metals appear to be more abundant, while studies of socioeconomic adversity and circadian disruption are scarce but demonstrate remarkable effects. Understanding the impacts of early-life environmental exposures on placental methylation is critical to establishing the link between the maternal environment, epigenetic variation, and long-term health. Future studies into this field should incorporate repeated measures of exposure throughout pregnancy, in order to determine the critical windows in which placental methylation is most heavily affected. Additionally, the use of methylation-based scores and sequencing technology could provide important insights into epigenetic gestational age and uncovering more genomic regions where methylation is affected. Studies examining the impact of other exposures on methylation, including pesticides, alcohol, and other chemicals are also warranted.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
5
|
TMBIM4 Deficiency Facilitates NLRP3 Inflammasome Activation-Induced Pyroptosis of Trophoblasts: A Potential Pathogenesis of Preeclampsia. BIOLOGY 2023; 12:biology12020208. [PMID: 36829486 PMCID: PMC9953300 DOI: 10.3390/biology12020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Impaired invasion of EVTs results in inadequate remodelling of arteries and poor placentation, leading to PE. TMBIM4 was found to promote the migration and invasion of human osteosarcoma U2-OS and breast cancer MCF7 cell lines. However, the effect of TMBIM4 on trophoblast biological behaviour and its relevance to PE pathophysiology remain unclear. In this study, we confirmed that TMBIM4 was highly expressed in cytotrophoblasts, syncytiotrophoblasts, and EVTs of the human placenta during early pregnancy. By comparing the expression levels of TMBIM4 in the placenta of women with normal-term pregnancy and PE, TMBIM4 was found to be significantly decreased in PE. Thereafter, we determined the expression of TMBIM4 in the LPS-treated first-trimester human trophoblast cell line HTR-8/SVneo (mimicking a PE-like cell model), and determined the effect of TMBIM4 on trophoblast function and its underlying mechanism. LPS treatment reduced the expression of TMBIM4 and induced NLRP3 inflammasome activity in HTR-8/SVneo cells. KO of TMBIM4 in the HTR-8/SVneo cell line impaired cell viability, migration, and invasion, which was more severe in the LPS/ATP-treated TMBIM4-KO cell line. Moreover, TMBIM4 deficiency enhanced NLRP3 inflammasome activity and promoted subsequent pyroptosis, with or without LPS/ATP treatment. The negative relationship between TMBIM4 expression and NLRP3 inflammatory activity was verified in PE placentas. Inhibiting the NLRP3 inflammasome with MCC950 in HTR-8/SVneo cells alleviated LPS/ATP-induced pyroptosis and damaged cell function in the TMBIM4-KO cell line. Overall, this study revealed a new PE-associated protein, TMBIM4, and its biological significance in trophoblast pyroptosis mediated by the NLRP3 inflammasome. TMBIM4 may serve as a potential target for the treatment of placental inflammation-associated PE.
Collapse
|
6
|
Zhao Y, Pasanen M, Rysä J. Placental ion channels: potential target of chemical exposure. Biol Reprod 2022; 108:41-51. [PMID: 36173899 PMCID: PMC9843680 DOI: 10.1093/biolre/ioac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2023] Open
Abstract
The placenta is an important organ for the exchange of substances between the fetus and the mother, hormone secretion, and fetoplacental immunological defense. Placenta has an organ-specific distribution of ion channels and trophoblasts, and placental vessels express a large number of ion channels. Several placental housekeeping activities and pregnancy complications are at least partly controlled by ion channels, which are playing an important role in regulating hormone secretion, trophoblastic homeostasis, ion transport, and vasomotor activity. The function of several placental ion channels (Na, Ca, and Cl ion channels, cation channel, nicotinic acetylcholine receptors, and aquaporin-1) is known to be influenced by chemical exposure, i.e., their responses to different chemicals have been tested and confirmed in experimental models. Here, we review the possibility that placental ion channels are targets of toxicological concern in terms of placental function, fetal growth, and development.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- Correspondence: School of Pharmacy, University of Eastern Finland, POB 1627, Kuopio 70211, Finland. Tel: +358403552412; E-mail:
| |
Collapse
|
7
|
Mendoza M, Lu D, Ballesteros A, Blois SM, Abernathy K, Feng C, Dimitroff CJ, Zmuda J, Panico M, Dell A, Vasta GR, Haslam SM, Dveksler G. Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand. Glycobiology 2020; 30:895-909. [PMID: 32280962 DOI: 10.1093/glycob/cwaa034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 μM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra M Blois
- Experimental and Clinical Research Center, Charité Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany.,Charité- Universitätsmedizin Berlin, Institute for Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Charles J Dimitroff
- Translational Medicine, Translational Glycobiology Institute, FIU, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Jonathan Zmuda
- Biosciences Division, Thermo Fisher Scientific, 7335 Executive Way, Frederick MD 21704, USA
| | - Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Fodor P, White B, Khan R. Inflammation-The role of ATP in pre-eclampsia. Microcirculation 2019; 27:e12585. [PMID: 31424615 DOI: 10.1111/micc.12585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/23/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
Sterile inflammation may be initiated by molecules in the host organism that signal "damage" or "danger" also known as danger-associated molecular pattern (DAMPs). In pre-eclampsia (PE), a variety of DAMPs may be involved in the etiology or exacerbation of the disorder. Adenosine 5'-triphosphate (ATP) is a key intracellular energy molecule as well as a ligand for purinergic receptors. In humans, under physiological conditions, extracellular ATP (eATP) levels are distinctly low, but can rise to several hundred fold when cells become injured, stressed, or even necrotic. This often initiates a sterile inflammatory response with eATP acting as a DAMP. Extracellular ATP and its derivative nucleotides synthetized by endonucleotidases exhibit many of their effects through purinergic receptors, via inflammatory cascades and the production of proinflammatory molecules. This is clearly seen in the P2X7 gated receptor, which is linked to release of cytokines of the interleukin-1 family. Considering its fundamental role in innate immunity, an imbalance of P2X7 receptor activation may lead to deleterious effects in the coordination of placental vessel tone via the synthesis of various proinflammatory cytokines. This review explores the implication of DAMPs, specifically ATP and uric acid in the inflammation associated with PE.
Collapse
Affiliation(s)
- Paul Fodor
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Benjamin White
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Raheela Khan
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
9
|
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. ENVIRONMENT INTERNATIONAL 2018; 118:334-347. [PMID: 29935799 DOI: 10.1016/j.envint.2018.05.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. OBJECTIVES We investigated whether nitrogen dioxide (NO2), particulate matter (PM10), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. METHODS Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. RESULTS The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO2 and PM10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. CONCLUSIONS The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia.
Collapse
Affiliation(s)
- Emilie Abraham
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Lydiane Agier
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | | | | | - Valérie Siroux
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Marie-Aline Charles
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Barbara Heude
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Anne Forhan
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Rémy Slama
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Johanna Lepeule
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France.
| |
Collapse
|
10
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
11
|
Abstract
INTRODUCTION Preeclampsia is a major pregnancy disease, explained partly by genetic predispositions. STOX1, a transcription factor discovered in 2005, was the first gene directly associated with genetic forms of the disease. Alterations of STOX1 expression as well as STOX1 variants have also been associated to Alzheimer's disease. These observations make of this gene a putative therapeutic target. Area covered: Two major isoforms (STOX1A and STOX1B) are encoded by the gene and are theoretically able to compete for the same binding site, while only the most complete (STOX1A) is supposed to be able to activate gene expression. This makes the ratio between STOX1A and STOX1B as well as their position inside the cell (nucleus or cytoplasm) crucial to understand how STOX1 functions. STOX1 appears to have multiple gene targets, especially in pathways connected to inflammation, oxidative stress, and cell cycle. Expert opinion: STOX1-directed therapies, could be directed either towards its targets (genes or pathways), or directly at STOX1. For this the addressing of STOX1 to various cell compartments could theoretically be modified; also it could be possible of altering the balance between the two isoforms, through selectively inhibiting one of them, possibly improving the outcomes in severe preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| | - Francisco Miralles
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| |
Collapse
|
12
|
Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thomson SJ, Monteith GR. Altered purinergic receptor-Ca²⁺ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 2016; 10:166-78. [PMID: 26433470 PMCID: PMC5528926 DOI: 10.1016/j.molonc.2015.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelial-mesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca(2+) signaling via purinergic receptors is associated with epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP-mediated Ca(2+) signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 μM for normoxic cells versus EC50 of 5.8 μM for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up-regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB-468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hannah Beilby
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Daneth L Marcial
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, USA
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, Victoria, Australia; St Vincent's Institute, Fitzroy, Victoria, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Chu T, Bunce K, Shaw P, Shridhar V, Althouse A, Hubel C, Peters D. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta. PLoS One 2014; 9:e107318. [PMID: 25247495 PMCID: PMC4172433 DOI: 10.1371/journal.pone.0107318] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/09/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome. METHODS We analyzed the DNA methylation status of approximately 27,000 CpG sites in placental tissues in a massively parallel fashion using an oligonucleotide microarray. Follow up analysis of DNA methylation at specific CpG loci was performed using the Epityper MassArray approach and high-throughput bisulfite sequencing. RESULTS Preeclampsia-specific DNA methylation changes were identified in placental tissue samples irrespective of gestational age of delivery. In addition, we identified a group of CpG sites within specific gene sequences that were only altered in early onset-preeclampsia (EOPET) although these DNA methylation changes did not correlate with altered mRNA transcription. We found evidence that fetal gender influences DNA methylation at autosomal loci but could find no clear association between DNA methylation and gestational age. CONCLUSION Preeclampsia is associated with altered placental DNA methylation. Fetal gender should be carefully considered during the design of future studies in which placental DNA is analyzed at the level of DNA methylation. Further large-scale analyses of preeclampsia-associated DNA methylation are necessary.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly Bunce
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patricia Shaw
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Varsha Shridhar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Althouse
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carl Hubel
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Spaans F, de Vos P, Bakker WW, van Goor H, Faas MM. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 2014; 63:1154-60. [PMID: 24688119 DOI: 10.1161/hypertensionaha.114.03240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Floor Spaans
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Díaz P, Wood AM, Sibley CP, Greenwood SL. Intermediate conductance Ca2+-activated K+ channels modulate human placental trophoblast syncytialization. PLoS One 2014; 9:e90961. [PMID: 24595308 PMCID: PMC3940956 DOI: 10.1371/journal.pone.0090961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/05/2014] [Indexed: 12/31/2022] Open
Abstract
Regulation of human placental syncytiotrophoblast renewal by cytotrophoblast migration, aggregation/fusion and differentiation is essential for successful pregnancy. In several tissues, these events are regulated by intermediate conductance Ca2+-activated K+ channels (IKCa), in part through their ability to regulate cell volume. We used cytotrophoblasts in primary culture to test the hypotheses that IKCa participate in the formation of multinucleated syncytiotrophoblast and in syncytiotrophoblast volume homeostasis. Cytotrophoblasts were isolated from normal term placentas and cultured for 66 h. This preparation recreates syncytiotrophoblast formation in vivo, as mononucleate cells (15 h) fuse into multinucleate syncytia (66 h) concomitant with elevated secretion of human chorionic gonadotropin (hCG). Cells were treated with the IKCa inhibitor TRAM-34 (10 µM) or activator DCEBIO (100 µM). Culture medium was collected to measure hCG secretion and cells fixed for immunofluorescence with anti-IKCa and anti-desmoplakin antibodies to assess IKCa expression and multinucleation respectively. K+ channel activity was assessed by measuring 86Rb efflux at 66 h. IKCa immunostaining was evident in nucleus, cytoplasm and surface of mono- and multinucleate cells. DCEBIO increased 86Rb efflux 8.3-fold above control and this was inhibited by TRAM-34 (85%; p<0.0001). Cytotrophoblast multinucleation increased 12-fold (p<0.05) and hCG secretion 20-fold (p<0.05), between 15 and 66 h. Compared to controls, DCEBIO reduced multinucleation by 42% (p<0.05) and hCG secretion by 80% (p<0.05). TRAM-34 alone did not affect cytotrophoblast multinucleation or hCG secretion. Hyposmotic solution increased 86Rb efflux 3.8-fold (p<0.0001). This effect was dependent on extracellular Ca2+, inhibited by TRAM-34 and 100 nM charybdotoxin (85% (p<0.0001) and 43% respectively) but unaffected by 100 nM apamin. In conclusion, IKCa are expressed in cytotrophoblasts and their activation inhibits the formation of multinucleated cells in vitro. IKCa are stimulated by syncytiotrophoblast swelling implicating a role in syncytiotrophoblast volume homeostasis. Inappropriate activation of IKCa in pathophysiological conditions could compromise syncytiotrophoblast turnover and volume homeostasis in pregnancy disease.
Collapse
Affiliation(s)
- Paula Díaz
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| | - Amber M. Wood
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan L. Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
17
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
18
|
Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci 2013; 7:227. [PMID: 24312014 PMCID: PMC3836022 DOI: 10.3389/fncel.2013.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022] Open
Abstract
P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, UK
- Department of Pharmacology, The University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
19
|
Wesselius A, Bours MJL, Jørgensen NR, Wiley J, Gu B, van Helden S, van Rhijn L, Dagnelie PC. Non-synonymous polymorphisms in the P2RX ( 4 ) are related to bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients. Purinergic Signal 2013; 9:123-30. [PMID: 23138503 PMCID: PMC3568421 DOI: 10.1007/s11302-012-9337-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/29/2012] [Indexed: 12/11/2022] Open
Abstract
In the present study we investigated whether single nucleotide polymorphisms (SNPs) in the P2RX ( 4 ), which alter the P2X ( 4 ) R function, are associated with the development of osteoporosis and whether an interaction between the P2X ( 4 ) R and P2X ( 7 ) R confer a synergistic effect of these two receptors on osteoporosis risk. Patients with fracture (690 females and 231 males, aged ≥50 years) were genotyped for three non-synonymous P2X ( 4 ) R SNPs. Bone mineral density (BMD) was measured at the total hip, lumbar spine, and femoral neck. Subject carrying the variant allele of the Tyr315Cys polymorphism showed a 2.68-fold (95 % CI, 1.20-6.02) higher risk of osteoporosis compared with wild-type subject. Furthermore, significant lower lumbar spine BMD values were observed in subjects carrying the Cys315 allele as compared with wild-type (0.85 ± 0.17 and 0.93 ± 0.17 g/cm(2), respectively; p < 0.001). Assuming a recessive model, carriers of the variant allele of the Ser242Gly polymorphism showed increased BMD values at the lumbar spine compare to wild-type subject (1.11 ± 0.35 and 0.92 ± 0.17 g/cm(2), respectively; p = 0.0045). This is the first study demonstrating an association of non-synonymous polymorphisms in the P2RX ( 4 ) and the risk of osteoporosis, suggesting a role of the P2X ( 4 ) R in the regulation of bone mass.
Collapse
Affiliation(s)
- Anke Wesselius
- />Department of Epidemiology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, P O Box 616, Peter Debyeplein 1 6229HA, 6200 MD Maastricht, The Netherlands
| | - Martijn JL Bours
- />Department of Epidemiology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, P O Box 616, Peter Debyeplein 1 6229HA, 6200 MD Maastricht, The Netherlands
| | - Niklas R Jørgensen
- />Research Center for Ageing and Osteoporosis, Department of Diagnostics and Medicine, Glostrup Hospital, University of Copenhagen Glostrup, NdrRingvej 57-59, 2600 Glostrup, Copenhagen, Denmark
| | - James Wiley
- />Florey Neuroscience Institute, University of Melbourne, Melbourne, Victoria Australia
| | - Ben Gu
- />Florey Neuroscience Institute, University of Melbourne, Melbourne, Victoria Australia
| | - Svenjhalmar van Helden
- />Department of Trauma Surgery Isala Clinics, Zwolle; formerly Department of Trauma Surgery, Maastricht University Medical Centre, P O Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Lodewijk van Rhijn
- />Department of Orthopaedic Surgery, Maastricht University Medical Center, P O Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Pieter C Dagnelie
- />Department of Epidemiology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, P O Box 616, Peter Debyeplein 1 6229HA, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
20
|
Stojilkovic SS, Zemkova H. P2X receptor channels in endocrine glands. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2013; 2:173-180. [PMID: 24073387 PMCID: PMC3780426 DOI: 10.1002/wmts.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocrine system is the system of ductless glands and single cells that synthetize hormones and release them directly into the bloodstream. Regulation of endocrine system is very complex and ATP and its degradable products ADP and adenosine contribute to its regulation acting as extracellular messengers for purinergic receptors. These include P2X receptors, a family of ligand-gated ion channels which expression and roles in endocrine tissues are reviewed here. There are seven mammalian purinergic receptor subunits, denoted P2X1 through P2X7, and the majority of these subunits are also expressed in secretory and non-secretory cells of endocrine system. Functional channels have been identified in the neuroendocrine hypothalamus, the posterior and anterior pituitary, the thyroid gland, the adrenals, the endocrine pancreas, the gonads and the placenta. Native channels are capable of promoting calcium influx through its pore in both excitable and non-excitable cells, as well as of increasing electrical activity in excitable cells by membrane depolarization. This leads to generation of calcium transients and stimulation of hormone release. The pattern of expression and action of P2XRs in endocrine system suggests that locally produced ATP amplifies and synchronizes the secretory responses of individual cells.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Huang LT, Hsieh CS, Chang KA, Tain YL. Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int J Mol Sci 2012. [PMID: 23203083 PMCID: PMC3509599 DOI: 10.3390/ijms131114606] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) regulates placental blood flow and actively participates in trophoblast invasion and placental development. Asymmetric dimethylarginine (ADMA) can inhibit NO synthase, which generates NO. ADMA has been associated with uterine artery flow disturbances such as preeclampsia. Substantial experimental evidence has reliably supported the hypothesis that an adverse in utero environment plays a role in postnatal physiological and pathophysiological programming. Growing evidence suggests that the placental nitrergic system is involved in epigenetic fetal programming. In this review, we discuss the roles of NO and ADMA in normal and compromised pregnancies as well as the link between placental insufficiency and epigenetic fetal programming.
Collapse
Affiliation(s)
- Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 800, Taiwan; E-Mail:
- Department of Traditional Chinese Medicine, Chang Gung University, Linkow 333, Taiwan
| | - Chih-Sung Hsieh
- Department of Pediatric Surgery, Pingtung Christian Hospital, Pingtung 900, Taiwan; E-Mail:
- Department of Nursing, MeiHo University, Pingtung 900, Taiwan
| | - Kow-Aung Chang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 800, Taiwan; E-Mail:
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 800, Taiwan; E-Mail:
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 800, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-975056995; Fax: +886-7-7338009
| |
Collapse
|
22
|
Baczyk D, Kingdom JCP, Uhlén P. Calcium signaling in placenta. Cell Calcium 2011; 49:350-6. [PMID: 21236488 DOI: 10.1016/j.ceca.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/19/2022]
Abstract
The placenta sustains the developing fetus throughout gestation and its major functions include nutrition, gas and waste exchange via a variety of passive or active mechanisms. Up to 30 g of calcium (Ca(2+)) actively crosses the trophoblast layer during human pregnancy. The Ca(2+) ion not only plays an important role for skeletal development but is also an essential second messenger. This review is intended to highlight the implications of Ca(2+) signaling during reproduction and specifically placentation. Initially, a Ca(2+) wave induces fertilization of the oocyte. The intracellular Ca(2+) concentration is key for the blastocyst implantation, proper placental development and function. Current knowledge of many proteins involved in placental Ca(2+) regulation and their function in pathologic conditions is largely limited. Recent studies, however, point to alterations in Ca(2+) homeostasis in placental pathologies such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR). A broader understanding of the role of Ca(2+) signaling during human reproduction may offer insight into impaired pregnancy outcomes.
Collapse
Affiliation(s)
- Dora Baczyk
- Research Centre for Women's and Infants' Health (RCWIH) at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
23
|
Myatt L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010; 31 Suppl:S66-9. [PMID: 20110125 DOI: 10.1016/j.placenta.2009.12.021] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/26/2022]
Abstract
The placenta regulates fetal growth and development via transport of nutrients and gases, and synthesis and secretion of steroid and peptide hormones. These functions are determined by vascular development and blood flow and by growth and differentiation of the trophoblast, which contains receptors, transporters and enzymes. The placenta generates reactive oxygen species which may contribute to the oxidative stress seen even in normal pregnancy but this is increased in pregnancies complicated by preeclampsia, IUGR and pregestational diabetes where oxidative and nitrative stress have been clearly documented. Nitrative stress is the covalent modification of proteins and DNA by peroxynitrite formed by the interaction of superoxide and nitric oxide. We have demonstrated nitrative stress by localizing nitrotyrosine residues in these placentas and found increased expression of NADPH oxidase (NOX) enzyme isoforms 1 and 5 as a potential source of superoxide generation. The presence of nitrative stress was associated with diminished vascular reactivity of the fetal placental circulation, a situation that could be reproduced by treatment with peroxynitrite in vitro. We find many nitrated proteins in the placenta, including p38 MAP kinase which has a role in development of the villous vasculature. Nitration of p38 MAPK was increased in the preeclamptic placenta and associated with loss of catalytic activity. We hypothesize that nitration of proteins in the placenta including receptors, transporters, enzymes and structural proteins can alter protein and placental function and this influences fetal growth and development. Increasing nitrative stress but a decrease in oxidative stress, measured as protein carbonylation, is found in the placenta with increasing BMI. Formation of peroxynitrite may then consume superoxide, decreasing nitrative stress. As protein carbonylation is a covalent modification at Lys, Arg, Pro and Thr residues the switch from carbonylation to nitration at tyrosine residues may alter protein function and hence placental function.
Collapse
Affiliation(s)
- L Myatt
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
24
|
|
25
|
Abstract
Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, resolves on delivery of the placenta. Normal pregnancy is itself characterized by systemic inflammation, oxidative stress and alterations in levels of angiogenic factors and vascular reactivity. This is exacerbated in preeclampsia with an associated breakdown of compensatory mechanisms, eventually leading to placental and vascular dysfunction. The underlying pathology of preeclampsia is thought to be a relatively hypoxic or ischemic placenta. Both the placenta and maternal vasculatures are major sources of reactive oxygen and nitrogen species which can interact to produce peroxynitrite a powerful prooxidant that covalently modifies proteins by nitration of tyrosine residues, to possibly alter vascular function in preeclampsia. The linkage between placental hypoxia and maternal vascular dysfunction has been proposed to be via placental syncytiotrophoblast basement membranes shed by the placenta or via angiogenic factors which include soluble flt1 and endoglin secreted by the placenta that bind vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) in the maternal circulation. There is also abundant evidence of altered reactivity of the maternal and placental vasculature and of the altered production of autocoids in preeclampsia. The occurrence of preeclampsia is increased in women with preexisting vascular disease and confers a long-term risk for development of cardiovascular disease. The vascular stress test of pregnancy thus identifies those women with a previously unrecognized at risk vascular system and promotes the development of preeclampsia. Preexisting maternal vascular dysfunction intensified by placental factors is possibly responsible for the individual pathologies of preeclampsia.
Collapse
Affiliation(s)
- L Myatt
- Department of Obstetrics & Gynecology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0526, USA
| | | |
Collapse
|
26
|
Roberts VHJ, Smith J, McLea SA, Heizer AB, Richardson JL, Myatt L. Effect of increasing maternal body mass index on oxidative and nitrative stress in the human placenta. Placenta 2009; 30:169-75. [PMID: 19100619 PMCID: PMC2657925 DOI: 10.1016/j.placenta.2008.11.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 11/17/2022]
Abstract
Maternal obesity is an increasing problem in obstetrics associated with adverse pregnancy outcomes and delivery complications. As an inflammatory state, where elevated levels of pro-inflammatory cytokines are found, obesity can lead to the increased incidence of oxidative and nitrative stress. These stresses may result in protein oxidation and protein nitration respectively, which are post- translational covalent modifications that can modify the structure and subsequently alter the function of a protein. The objective of this study was to examine whether placental oxidative and nitrative stress increase with increasing maternal body mass index. Placental tissue was collected from three groups of patients categorized as lean, overweight and obese. The presence of nitrotyrosine residues, a marker of nitrative stress, and antioxidant enzymes, as markers of oxidative stress, were assessed by immunohistochemistry, Western blot and ELISA. Protein carbonyl formation, a specific measure of protein oxidation, was measured by OxyBlot kit. Nitrotyrosine residues were increased in obese compared to lean and overweight groups although localization was unaltered across the three groups. Superoxide dismutase enzyme expression, localization and activity was unaltered between the groups. Protein carbonyl formation was greater in the lean compared to the overweight individuals. This study demonstrates that with increasing maternal body mass index there is an increase in placental nitrative stress. There does not appear to be a corresponding increase in oxidative stress and indeed we demonstrate some evidence of a decrease in oxidative effects in these placenta samples. Potentially the formation of peroxynitrite may be consuming reactive oxygen species and reducing oxidative stress. There may be a shift in the balance between nitrative and oxidative stress, which may be a protective mechanism for the placenta.
Collapse
Affiliation(s)
- V H J Roberts
- Department of Obstetrics & Gynecology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0526, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Webster RP, Roberts VHJ, Myatt L. Protein nitration in placenta - functional significance. Placenta 2008; 29:985-94. [PMID: 18851882 PMCID: PMC2630542 DOI: 10.1016/j.placenta.2008.09.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 01/30/2023]
Abstract
Crucial roles of the placenta are disrupted in early and mid-trimester pregnancy loss, preeclampsia, eclampsia and intrauterine growth restriction. The pathophysiology of these disorders includes a relative hypoxia of the placenta, ischemia/reperfusion injury, an inflammatory response and oxidative stress. Reactive oxygen species including nitric oxide (NO), carbon monoxide and superoxide have been shown to participate in trophoblast invasion, regulation of placental vascular reactivity and other events. Superoxide, which regulates expression of redox sensitive genes, has been implicated in up-regulation of transcription factors, antioxidant production, angiogenesis, proliferation and matrix remodeling. When superoxide and nitric oxide are present in abundance, their interaction yields peroxynitrite a potent pro-oxidant, but also alters levels of nitric oxide, which in turn affect physiological functions. The peroxynitrite anion is extremely unstable thus evidence of its formation in vivo has been indirect via the occurrence of nitrated moieties including nitrated lipids and nitrotyrosine residues in proteins. Formation of 3-nitrotyrosine (protein nitration) is a "molecular fingerprint" of peroxynitrite formation. Protein nitration has been widely reported in a number of pathological states associated with inflammation but is reported to occur in normal physiology and is thought of as a prevalent, functionally relevant post-translational modification of proteins. Nitration of proteins can give either no effect, a gain or a loss of function. Nitration of a range of placental proteins is found in normal pregnancy but increased in pathologic pregnancies. Evidence is presented for nitration of placental signal transduction enzymes and transporters. The targets and extent of nitration of enzymes, receptors, transporters and structural proteins may markedly influence placental cellular function in both physiologic and pathologic settings.
Collapse
Affiliation(s)
- RP Webster
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, PO Box 670526, Cincinnati, OH 45267, USA
| | - VHJ Roberts
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, PO Box 670526, Cincinnati, OH 45267, USA
| | - L Myatt
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, PO Box 670526, Cincinnati, OH 45267, USA
| |
Collapse
|
28
|
Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal 2007; 4:1-20. [PMID: 18368530 PMCID: PMC2245998 DOI: 10.1007/s11302-007-9078-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/22/2007] [Indexed: 12/11/2022] Open
Abstract
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development.
Collapse
Affiliation(s)
- David Erlinge
- Department of Cardiology, Lund University Hospital, 22185, Lund, Sweden,
| | | |
Collapse
|
29
|
Webster RP, Myatt L. Elucidation of the molecular mechanisms of preeclampsia using proteomic technologies. Proteomics Clin Appl 2007; 1:1147-55. [PMID: 21136764 DOI: 10.1002/prca.200700128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Indexed: 01/30/2023]
Abstract
Preeclampsia, a disease of pregnancy, is a multisystem disorder associated with elevated maternal blood pressure, proteinurea, oedema, and fetal abnormalities. It is a major cause of mortality, morbidity, perinatal death, and premature delivery. Despite active research in the past decade, there is yet no definitive cure for preeclampsia. The disease has been treated symptomatically with antihypertensives, antieclamptics, bed rest, and a whole gamut of isolated therapies. In an attempt to understand the molecular basis of this disease and many other fatal diseases including cancer and heart disease, the scientific community has been turning to understanding the genome and more lately the "proteome". Proteomics enables researchers to identify all proteins expressed in a cell or organ and detect any PTM in the protein expression patterns. Deciphering the placental proteome and studying the differences in protein expression patterns in the normal as against the preeclamptic proteome might possibly in future lead to early detection and therapeutic targeting of preeclampsia.
Collapse
Affiliation(s)
- Rose P Webster
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
30
|
Montalbetti N, Li Q, Wu Y, Chen XZ, Cantiello HF. Polycystin-2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. J Physiol 2007; 579:717-28. [PMID: 17204494 PMCID: PMC2151358 DOI: 10.1113/jphysiol.2006.125583] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/26/2006] [Accepted: 12/18/2006] [Indexed: 12/25/2022] Open
Abstract
Polycystin-2 (PC2), encoded by PKD2, which is one of the genes whose mutations cause polycystic kidney disease, is abundantly produced in the apical domain of the syncytiotrophoblast (hST) of term human placenta. PC2, a TRP-type (TRPP2) non-selective cation channel, is present in primary cilia of renal epithelial cells, a microtubule-based ancillary structure with sensory function. The hST has abundant cytoskeletal structures, and actin filament dynamics regulate PC2 channel function in this epithelium. However, it is expected that the apical hST excludes microtubular structures. Here, we demonstrated by Western blot and immunocytochemical analyses that hST apical vesicles indeed contain microtubule structural components, including tubulin isoforms, acetylated alpha-tubulin, and the kinesin motor proteins KIF3A and KIF3B. PC2 and tubulin were substantially colocalized in hST vesicles. Treatment of hST vesicles with either the microtubular disrupter colchicine (15 microM) or the microtubular stabilizer paclitaxel (taxol, 15 microM) resulted in distinct patterns of microtubular re-organization and PC2 redistribution. We also observed that changes in microtubular dynamics regulate PC2 channel function. Addition of colchicine rapidly inhibited PC2 channel activity in lipid-bilayer reconstituted hST membranes. Addition of either tubulin and GTP, or taxol, however, stimulated PC2 channel activity in control hST membranes. Interestingly, we found that the kinesin motor protein KIF3A was capable of increasing PC2 channel activity in hST. We believe that the data are the first to provide a direct demonstration of a microtubular interaction with PC2 in the hST. This interaction thus plays an important regulatory role in the control of ion transport in the human placenta.
Collapse
Affiliation(s)
- Nicolás Montalbetti
- Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
31
|
Roberts VHJ, Waters LH, Powell T. Purinergic receptor expression and activation in first trimester and term human placenta. Placenta 2006; 28:339-47. [PMID: 16764923 DOI: 10.1016/j.placenta.2006.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
Intracellular calcium concentration ([Ca(2+)](i)) is an important signalling molecule in the human placenta and regulation of [Ca(2+)](i) must be tightly controlled to ensure normal cell function and in order to meet the changing demand for calcium with increased fetal growth over gestation. Little is known about the receptors and mechanisms involved in intracellular calcium signalling in the human placenta but in isolated cytotrophoblast cells members of the P2 purinergic receptor family have been shown to mediate an ATP-stimulated rise in [Ca(2+)](i). In this study we examined activation and expression of several of the purinergic receptor subtypes in human placental villous fragments at two stages of gestation, first trimester and term. We demonstrate mRNA and protein expression of the P2X(4), P2X(7) and P2Y(2) subtypes but found no evidence of P2Y(4) protein in the placenta. Using fluorescent calcium imaging we demonstrate that 300 microM ATP, 450 microM UTP and 300 microM BzATP significantly elevate [Ca(2+)](i) in villous fragments with a significant increase in agonist-induced response seen in the term compared to the first trimester fragments (ATP, P<0.0001; UTP, P=0.018; BzATP, P=0.015). The roles of the purinergic receptors within the human placenta are not known but it seems likely for this study that calcium handling through these receptors is altered with advancing gestation. This may be due to the need to meet increased fetal Ca(2+) requirements due to growth or as a secondary function to alterations in placental [Ca(2+)](i) signalling.
Collapse
Affiliation(s)
- V H J Roberts
- Division of Human Development, St Mary's Hospital, University of Manchester, Manchester M13 0JH, UK.
| | | | | |
Collapse
|