1
|
Pan S, Xu A, Chen B, Lu X, Zou J, Hua Y. Sodium tanshinone IIA sulfonate alleviates fetal growth restriction by mediating aquaporin-3 expression in placental trophoblast cells. FASEB J 2025; 39:e70314. [PMID: 39825721 DOI: 10.1096/fj.202402346rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence. The case-control study compared AQP3 expression in placental trophoblast cells of pregnant women with FGR and those with normal pregnancies. Then mouse FGR models were induced via cadmium exposure, and placental trophoblast cells (JEG-3) were similarly treated. The study assessed the effects of Sodium tanshinone IIA sulfonate (STS) and the role of the PI3K/Akt pathway in improving AQP3 expression and trophoblast cell function. Placental trophoblast cells in FGR cases exhibited significantly reduced AQP3 expression. AQP3-knockdown cells displayed dysfunction. Cadmium exposure in mice and JEG-3 cells led to decreased AQP3 expression and trophoblast cell dysfunction, both of which were ameliorated by STS. Fetal mouse weight increased with STS treatment. STS upregulated AQP3 expression and improved trophoblast cell function in AQP3-knockdown cells. Inhibiting the PI3K/Akt pathway diminished STS's beneficial effects. ThereforeSTS may enhance AQP3 expression in placental trophoblast cells affected by FGR through the activation of the PI3K/Akt pathway, ultimately bolstering placental trophoblast cell function and alleviating FGR. As above, STS appears to be a potential therapeutic agent for alleviating FGR.
Collapse
Affiliation(s)
- Shuangjia Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anjian Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieni Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Pan S, Lan Y, Chen B, Zhou Y, Ying X, Hua Y. Tanshinone IIA changed the amniotic fluid volume and regulated expression of AQP1 and AQP3 in amniotic epithelium cells: a promising drug treating abnormal amniotic fluid volume. Mol Med 2023; 29:83. [PMID: 37386378 DOI: 10.1186/s10020-023-00687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Many studies have confirmed the association of aquaporins (AQPs) with abnormal amniotic fluid volume (AFV). In our previous experiments, we found that Tanshinone IIA was able to regulate the expression of AQP1 and AQP3. However, the exact mechanism by which Tanshinone IIA regulates AQPs protein expression and its effect on AFV remains unclear. The purpose of this study was to investigate the effects of Tanshinone IIA on AFV and the possible molecular mechanism of regulation of AQP1 and AQP3. METHODS The expression of AQPs protein in the amniotic membranes was compared between pregnant women with normal pregnancy and those with isolated oligohydramnios. The AQP1 knockout (AQP1-KO) mice and wild-type (WT) mice were treated with saline or Tanshinone IIA (10 mg/kg) at 13.5GD and 16.5GD. Human amniotic epithelium cells (hAECs) from pregnant women with normal AFV and isolated oligohydramnios were incubated with 35 μmmol/L Tanshinone IIA or 25 mmol/L LiCl [inhibitor of glycogen synthetic kinase 3β (GSK-3β)]. The protein expressions of AQPs, GSK-3β, phospho-GSK-3β (Ser9) in fetal membranes of mice and human amniotic epithelium cells were detected by western blotting. RESULTS The expression of AQP1 protein in the amniotic membrane of isolated oligohydramnios was increased compared with normal pregnancy. The AFV in AQP1-KO mice is higher than that in WT mice. In wild-type mice, AFV in Tanshinone IIA group was significantly higher than that in control group, and AQP1 protein expression was significantly lower than that in control group, but in AQP1 knockout mice, Tanshinone IIA reduced amniotic fluid volume and AQP3 protein expression at 16.5GD. Tanshinone IIA reduced AQP1, AQP3 and p-GSK-3β (Ser9) protein expression in normal hAECs, and this effect was inhibited by LiCl. In hAECs with oligohydramnios, the down-regulation of AQP1 and up-regulation of AQP3 by Tanshinone IIA was independent of GSK-3β signaling pathway. CONCLUSIONS Tanshinone IIA may increase AFV in normal pregnancy by downregulating AQP1 protein expression in the fetal membranes, which may be associated with p-GSK-3β signaling pathway. But a larger AFV in AQP1-KO mice was significantly attenuated by Tanshinone IIA, which may be related to AQP3. Tanshinone IIA is a promising drug for the treatment of amniotic fluid abnormality.
Collapse
Affiliation(s)
- Shuangjia Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yehui Lan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yujia Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinxin Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Importance of Water Transport in Mammalian Female Reproductive Tract. Vet Sci 2023; 10:vetsci10010050. [PMID: 36669051 PMCID: PMC9865491 DOI: 10.3390/vetsci10010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are involved in water homeostasis in tissues and are ubiquitous in the reproductive tract. AQPs are classified into classical aquaporins (AQP0, 1, 2, 4, 5, 6 and 8), aquaglycerolporins (AQP3, 7, 9, and 10) and superaquaporins (AQP11 and 12). Nine AQPs were described in the mammalian female reproductive tract. Some of their functions are influenced by sexual steroid hormones. The continuous physiological changes that occur throughout the sexual cycle, pregnancy and parturition, modify the expression of AQPs, thus creating at every moment the required water homeostasis. AQPs in the ovary regulate follicular development and ovulation. In the vagina and the cervix, AQPs are involved mainly in lubrication. In the uterus, AQPs are mostly mediated by estradiol and progesterone to prepare the endometrium for possible embryo implantation and fetal development. In the placenta, AQPs are responsible for the fluid support to the fetus to maintain fetal homeostasis that ensures correct fetal development as pregnancy goes on. This review is focused on understanding the role of AQPs in the mammalian female reproductive tract during the sexual cycle of pregnancy and parturition.
Collapse
|
4
|
Shao H, Pan S, Lan Y, Chen X, Dai D, Peng L, Hua Y. Tanshinone IIA increased amniotic fluid volume through down-regulating placental AQPs expression via inhibiting the activity of GSK-3β. Cell Tissue Res 2022; 389:547-558. [PMID: 35674921 DOI: 10.1007/s00441-022-03646-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The mechanism of idiopathic oligohydramnios is still uncertain, and there is no effective and targeted treatment for it. Placental aquaporins (AQPs) were associated with idiopathic oligohydramnios. This study aimed to investigate the effect of tanshinone IIA on amniotic fluid volume (AFV) and its underlying molecular mechanisms related to placental AQPs (AQP1, AQP3, AQP8, AQP9). Results showed that compared with the women with normal AFV, placental AQP1, AQP3, AQP8, and AQP9 protein expressions were decreased in women with idiopathic oligohydramnios. Immunohistochemistry revealed localization of AQP1, AQP3, AQP8, and AQP9 mainly in trophoblast cells within labyrinth zone of mouse placenta. Also, AQP1 was located in fetal vascular endothelial cells. Pregnant mice were administered with tanshinone IIA (10 mg/kg or 50 mg/kg, n = 8, respectively) or vehicle (n = 8) from 9.5 to 18.5 gestational day (GD). Tanshinone IIA markedly increased the AFV in pregnant mice, without the effects on embryo numbers per litter, atrophic embryo rate, fetal weight, and placental weight, as well as increased the expressions of AQPs and inhibited the activity of GSK-3β in mice placenta. In JEG-3 cells, tanshinone IIA downregulated AQP1, AQP3, AQP8, AQP9 expressions and inhibited the activity of GSK-3β. Activating GSK-3β with MK-2206 eliminated these alterations. Thus, tanshinone IIA could increase AFV in pregnant mice, possibly through downregulating placental AQP1, AQP3, AQP8, and AQP9 expression via inhibiting the activity of GSK-3β. Tanshinone IIA may be optional for the treatment of idiopathic oligohydramnios.
Collapse
Affiliation(s)
- Hailing Shao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Shuangjia Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yehui Lan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xianjun Chen
- Taizhou Women and Childrens Hospital of Wenzhou Medical University, Taizhou, China
| | - Dongru Dai
- Department of Obstetrics and Gynecology, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Lingli Peng
- Department of Obstetrics and Gynecology, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
5
|
Sekulić S, Jakovljević B, Korovljev D, Simić S, Čapo I, Podgorac J, Martać L, Kesić S, Rakić S, Petković B. Chronic Polyhydramnios: A Medical Entity Which Could Be a Model of Muscle Development in Decreased Mechanical Loading Condition. Front Physiol 2022; 12:810391. [PMID: 35095567 PMCID: PMC8792844 DOI: 10.3389/fphys.2021.810391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydramnios is a condition related to an excessive accumulation of amniotic fluid in the third trimester of pregnancy and it can be acute and chronic depending on the duration. Published data suggest that during muscle development, in the stage of late histochemical differentiation decreased mechanical loading cause decreased expression of myosin heavy chain (MHC) type 1 leading to slow-to-fast transition. In the case of chronic polyhydramnios, histochemical muscle differentiation could be affected as a consequence of permanent decreased physical loading. Most affected would be muscles which are the most active i.e., spine extensor muscles and muscles of legs. Long-lasting decreased mechanical loading on muscle should cause decreased expression of MHC type 1 leading to slow-to-fast transition, decreased number of muscle fiber type I especially in extensor muscles of spine and legs. Additionally, because MHC type 1 is present in all skeletal muscles it could lead to various degrees of hypotrophy depending on constituting a percentage of MHC type 1 in affected muscles. These changes in the case of preexisting muscle disorders have the potential to deteriorate the muscle condition additionally. Given these facts, idiopathic chronic polyhydramnios is a rare opportunity to study the influence of reduced physical loading on muscle development in the human fetus. Also, it could be a medical entity to examine the influence of micro- and hypogravity conditions on the development of the fetal muscular system during the last trimester of gestation.
Collapse
Affiliation(s)
- Slobodan Sekulić
- Department of Neurology, University Clinical Center of Vojvodina, Novi Sad, Serbia
- Faculty of Medicine of Novi Sad, University of Novi Sad, Novi Sad, Serbia
- *Correspondence: Slobodan Sekulić,
| | | | - Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Svetlana Simić
- Department of Neurology, University Clinical Center of Vojvodina, Novi Sad, Serbia
- Faculty of Medicine of Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Čapo
- Faculty of Medicine of Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Podgorac
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Martać
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Kesić
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Rakić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Nutritional and Physiological Regulation of Water Transport in the Conceptus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:109-125. [PMID: 34807439 DOI: 10.1007/978-3-030-85686-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Water transport during pregnancy is essential for maintaining normal growth and development of conceptuses (embryo/fetus and associated membranes). Aquaporins (AQPs) are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. At least 11 isoforms of AQPs (AQPs 1-9, 11, and 12) are differentially expressed in the mammalian placenta (amnion, allantois, and chorion), and organs (kidney, lung, brain, heart, and skin) of embryos/fetuses during prenatal development. Available evidence suggests that the presence of AQPs in the conceptus mediates water movement across the placenta to support the placentation, the homeostasis of amniotic and allantoic fluid volumes, as well as embryonic and fetal survival, growth and development. Abundances of AQPs in the conceptus can be modulated by nutritional status and physiological factors affecting the pregnant female. Here, we summarize the effects of maternal dietary factors (such as intakes of protein, arginine, lipids, all-trans retinoic acid, copper, zinc, and mercury) on the expression of AQPs in the conceptus. We also discuss the physiological changes in hormones (e.g., progesterone and estrogen), oxygen supply, nitric oxide, pH, and osmotic pressure associated with the regulation of fluid exchange between mother and fetus. These findings may help to improve the survival, growth, and development of embryo/fetus in livestock species and other mammals (including humans).
Collapse
|
7
|
Stenhouse C, Seo H, Wu G, Johnson GA, Bazer FW. Insights into the Regulation of Implantation and Placentation in Humans, Rodents, Sheep, and Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:25-48. [PMID: 34807435 DOI: 10.1007/978-3-030-85686-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Precise cell-specific spatio-temporal molecular signaling cascades regulate the establishment and maintenance of pregnancy. Importantly, the mechanisms regulating uterine receptivity, conceptus apposition and adhesion to the uterine luminal epithelia/superficial glandular epithelia and, in some species, invasion into the endometrial stroma and decidualization of stromal cells, are critical prerequisite events for placentation which is essential for the appropriate regulation of feto-placental growth for the remainder of pregnancy. Dysregulation of these signaling cascades during this critical stage of pregnancy can lead to pregnancy loss, impaired growth and development of the conceptus, and alterations in the transplacental exchange of gasses and nutrients. While many of these processes are conserved across species, significant variations in the molecular mechanisms governing maternal recognition of pregnancy, conceptus implantation, and placentation exist. This review addresses the complexity of key mechanisms that are critical for the establishment and maintenance of a successful pregnancy in humans, rodents, sheep, and pigs. Improving understanding of the molecular mechanisms governing these processes is critical to enhancing the fertility and reproductive health of humans and livestock species.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Sezer S, Kaya S, Behram M, Dağ İ. Increased maternal serum aquaporin 9 levels in pregnancies complicated with gestational diabetes mellitus. J Matern Fetal Neonatal Med 2021; 35:18-23. [PMID: 34470136 DOI: 10.1080/14767058.2021.1970131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION This study aimed to examine maternal serum aquaporin 9 levels in pregnant women with gestational diabetes mellitus and to compare them with non-diabetic pregnant women. METHODS Forty-one pregnant women between 37 and 39 weeks of gestation complicated with gestational diabetes mellitus and 39 non-diabetic pregnant women at similar gestational weeks without additional obstetric complications were included in this cross-sectional study. Maternal serum aquaporin 9 levels and leptin levels of the cases were measured. RESULTS Maternal serum leptin and aquaporin 9 levels in pregnant women with GDM were found to be significantly higher than in the control group (p < .001). In the study group, first-minute Apgar scores were significantly lower and birth weight significantly higher (p = .001 and .005, respectively). A weak but significant positive correlation between aquaporin 9 levels and maternal body mass index (r = 0.279, p = .012), birth weight (r = 0.433, p < .001), and hemoglobin A1c (r = 0.354, p = .001) levels was detected. A significant positive correlation was detected between maternal serum aquaporin 9 levels and leptin levels (r = 0.331, p = .003). CONCLUSION The increased aquaporin 9 levels detected in cases with gestational diabetes mellitus might be a marker of the poor maternal metabolic environment specific to diabetes and might contribute to the pathophysiology of gestational diabetes.
Collapse
Affiliation(s)
- Salim Sezer
- Department of Maternal-Fetal Medicine, İstanbul Esenyurt University, İstanbul, Turkey
| | - Serdar Kaya
- Department of Maternal-Fetal Medicine, Health Sciences University, Bağcılar Education and Research Hospital, İstanbul, Turkey
| | - Mustafa Behram
- Department of Maternal-Fetal Medicine, Health Sciences University, Kanuni Sultan Süleyman Education and Research Hospital, İstanbul, Turkey
| | - İsmail Dağ
- Department of Clinical Biochemistry, Eyüp State Hospital, İstanbul, Turkey
| |
Collapse
|
9
|
Amniotic Aaquaporins (AQP) in Normal and Pathological Pregnancies: Interest in Polyhydramnios. Reprod Sci 2021; 28:2929-2938. [PMID: 34254277 DOI: 10.1007/s43032-021-00677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Polyhydramnios is a common feature diagnosed by ultrasound in the second half of pregnancy. Biochemical analysis of amniotic fluid can be useful when suspecting Bartter syndrome or digestive atresia but in most of cases, no etiology of polyhydramnios is found because of the complex regulation of amniotic fluid. Aquaporins (AQP) are transmembrane channel proteins contributing to water transfers. Some of them are expressed in fetal membranes and placenta. Their expression has been shown to be disrupted in some pathological conditions such as maternal diabetes, often associated with polyhydramnios. AQP-1, 3 and 8 levels in amniotic fluid were retrospectively measured in patients suffering from polyhydramnios (n=21) from 23 weeks of gestation (WG). They were compared to the levels observed in control subjects (n=96) and their relationship with maternal factors and neonatal issues was analyzed. AQP-1, 3, 8 levels were physiologically fluctuating, AQP-1 levels always being the lowest and AQP-3 the highest, with a significant decrease at the end of pregnancy. AQPs/AFP ratios increased about 8 folds during pregnancy, their kinetic profiles reflecting physiological dynamic evolution of amniotic fluid volume. In polyhydramnios, AQP-3 level tended to be decreased whereas AQP-8 level was decreased from mid-gestation whatever the etiology of polyhydramnios. No significant relationship was found between AQPs levels and either the fetal prematurity degree or macrosomia. No specific pattern was observed in idiopathic polyhydramnios, limiting the interest of AQPs dosage in amniotic fluid in the management of those complicated pregnancies.
Collapse
|
10
|
Zhu C, Li X, Bazer FW, Johnson GA, Burghardt RC, Jiang Z, Wu G. Dietary L-arginine supplementation during days 14-25 of gestation enhances aquaporin expression in the placentae and endometria of gestating gilts. Amino Acids 2021; 53:1287-1295. [PMID: 34241695 DOI: 10.1007/s00726-021-03038-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
This study tested the hypothesis that dietary L-arginine (Arg) supplementation to pregnant gilts enhanced the expression of water channel proteins [aquaporins (AQPs)] in their placentae and endometria. Gilts were fed twice daily 1 kg of a corn and soybean meal-based diet supplemented with 0.0%, 0.4%, or 0.8% Arg between Days 14 and 25 of gestation. On Days 25 and 60 of gestation, gilts were hysterectomized to obtain placentae and endometria. On Day 25 of gestation, supplementation with 0.4% Arg increased (P < 0.05) the abundance of placental AQP9 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) placental AQP1 and AQP9 proteins, compared with controls. On Day 60 of gestation, supplementation with 0.4% Arg increased (P < 0.05) endometrial AQP1 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) endometrial AQP5 and AQP9 proteins. Supplementation with 0.8% Arg increased the endometrial expression of AQP1, AQP5, and AQP9 proteins located in the luminal epithelium and glandular epithelium of endometria, and placental transport of 3H2O. Collectively, these results indicate that dietary Arg supplementation stimulates the expression of selective AQPs in porcine placenta and endometria, thereby enhancing water transport from mother to fetus and expanding the chorioallantoic membranes during the period of placentation.
Collapse
Affiliation(s)
- Cui Zhu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Kramer AC, Erikson DW, McLendon BA, Seo H, Hayashi K, Spencer TE, Bazer FW, Burghardt RC, Johnson GA. SPP1 expression in the mouse uterus and placenta: Implications for implantation. Biol Reprod 2021; 105:892-904. [PMID: 34165144 DOI: 10.1093/biolre/ioab125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Secreted phosphoprotein 1 [SPP1, also known as osteopontin (OPN)] binds integrins to mediate cell-cell and cell-extracellular matrix communication to promote cell adhesion, migration, and differentiation. Considerable evidence links SPP1 to pregnancy in several species. Current evidence suggests that SPP1 is involved in implantation and placentation in mice, but in vivo localization of SPP1 and in vivo mechanistic studies to substantiate these roles are incomplete and contradictory. We localized Spp1 mRNA and protein in the endometrium and placenta of mice throughout gestation, and utilized delayed implantation of mouse blastocysts to link SPP1 expression to the implantation chamber. Spp1 mRNA and protein localized to the endometrial luminal (LE), but not glandular epithelia (GE) in interimplantation regions of the uterus throughout gestation. Spp1 mRNA and protein also localized to uterine naturel killer (uNK) cells of the decidua. Within the implantation chamber, Spp1 mRNA localized only to intermittent LE cells, and to the inner cell mass. SPP1 protein localized to intermittent trophoblast cells, and to the parietal endoderm. These results suggest that SPP1: 1) is secreted by the LE at interimplantation sites for closure of the uterine lumen to form the implantation chamber; 2) is secreted by LE adjacent to the attaching trophoblast cells for attachment and invasion of the blastocyst; and 3) is not a component of histotroph secreted from the GE, but is secreted from uNK cells in the decidua to increase angiogenesis within the decidua to augment hemotrophic support of embryonic/fetal development of the conceptus.
Collapse
Affiliation(s)
- Avery C Kramer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Kanako Hayashi
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Thomas E Spencer
- Department of Animal Science, University of Missouri, Columbia, MO, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| |
Collapse
|
12
|
Kordowitzki P, Kranc W, Bryl R, Kempisty B, Skowronska A, Skowronski MT. The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells 2020; 9:cells9122570. [PMID: 33271827 PMCID: PMC7760214 DOI: 10.3390/cells9122570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific parts in the female reproductive system, which will be presented in detail in the first section of this review. Moreover, they are relevant in different pathologies in the female reproductive system. The contribution of aquaporins in selected reproductive disorders and aging will be summarized in the second section of this review, followed by a section dedicated to aquaporin-related proteins. Since the relevance of aquaporins for the male reproductive system has been reviewed several times in the recent past, this review aims to provide an update on the distribution and impact of aquaporins only in the female reproductive system. Therefore, this paper seeks to determine the physiological and patho-physiological relevance of aquaporins on female reproduction, and female reproductive aging.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-082 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Correspondence: ; Tel.: +48-56-611-2231
| |
Collapse
|
13
|
Luo H, Liu Y, Song Y, Hua Y, Zhu X. Aquaporin 1 affects pregnancy outcome and regulates aquaporin 8 and 9 expressions in the placenta. Cell Tissue Res 2020; 381:543-554. [PMID: 32542408 PMCID: PMC7431401 DOI: 10.1007/s00441-020-03221-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
To explore the effects of aquaporin (AQP) 1 on pregnancy outcome and the association between expression of AQP1 and other AQPs in the placenta and foetal membranes, the rate of copulatory plugs and pregnancy, amniotic fluid (AF) volume, osmolality and composition were determined in AQP1-knockout (AQP1-/-) mice at different gestational days (GD). The expression and location of AQP1 and other AQPs in the placenta and foetal membranes of AQP1-/- mice, AQP1-siRNA transfected WISH cells and oligohydramnios patients were also detected. Compared to control mice, AQP1-/- mice exhibited reduced copulation plug and successful pregnancy rates, but these effects were accompanied by a larger AF volume and lower AF osmolality at late gestation. AQP9 expression was significantly decreased in the placenta and foetal membranes of AQP1-/- mice, while AQP8 level was elevated in the foetal membranes of AQP1-/- mice. Moreover, AQP9 expression was suppressed in WISH cells after AQP1 downregulation. Furthermore, AQP9 expression was associated with AQP1 level in the placenta and foetal membranes in oligohydramnios. AQP1 may play a critical role in regulating pregnancy outcome and maternal-foetal fluid homeostasis. Changes in AQP1 expression may lead to compensatory alterations in AQP8 and AQP9 expression in the placenta.
Collapse
Affiliation(s)
- Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
14
|
Zhang C, Li Y, Wang J, Liu C, Chen Y. Association between levels of aquaporin 3 in the placenta and adiponectin in the umbilical cord blood with gestational diabetes mellitus and pregnancy outcome. Mol Med Rep 2020; 22:1498-1506. [PMID: 32627013 PMCID: PMC7339817 DOI: 10.3892/mmr.2020.11225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Pregnant women with gestational diabetes mellitus (GDM) may have adverse pregnancy outcomes, even if their blood glucose level is well-controlled. Aquaporin 3 (AQP3) and adiponectin (APN) serve important roles in fetal growth and development. However, the associations of AQP3 and APN with GDM and pregnancy outcome are not known. Therefore, the present study was performed to evaluate the expression of AQP3 in the placenta and APN in the umbilical artery blood, and the association of the two factors with GDM and pregnancy outcome. The patient cohort was divided into two groups: Pregnant women with GDM; and pregnant women with normal glucose tolerance (NGT). The expression levels of AQP3 in the placenta and APN in the umbilical artery blood were detected. Logistic regression was used to analyze the associations of AQP3 and APN with GDM and pregnancy outcome. The expression levels of AQP3 and AQP3 mRNA in the placenta of the GDM group were decreased compared with that of the NGT group, and the difference was statistically significant (P<0.05). The expression of APN in the umbilical artery blood of the GDM group was also decreased compared with that of the NGT group, and the difference was also statistically significant (P<0.05). Multivariate logistic regression analyses indicated that the AQP3 and APN levels were negatively correlated not only with the risk of developing GDM [AQP3 odds ratio (OR)=5.00 (P<0.01); APN OR=2.98 (P=0.01)], but also with abnormal pregnancy outcome [(AQP3 OR=4.64 (P<0.01); APN OR=5.41 (P<0.01)]. The levels of AQP3 in the placenta and APN in the umbilical cord blood were associated with GDM, and the risk of GDM was increased in pregnant women with decreased AQP3 and APN levels. The AQP3 and APN levels also had an effect on pregnancy outcome. The risk of abnormal pregnancy outcomes, including cesarean section, macrosomia, fetal distress and neonatal asphyxia, was increased in pregnant women with decreased AQP3 and APN levels.
Collapse
Affiliation(s)
- Chunqi Zhang
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yanxia Li
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jia Wang
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Chunmei Liu
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yan Chen
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
15
|
Abstract
Aquaporins (AQPs) are water channels proteins that facilitate water flux across cell membranes in response to osmotic gradients. Despite of the differences in the mammalian placentas, the conserved combination of AQPs expressed in placental and fetal membranes throughout gestation suggests that these proteins may be important in the regulation of fetal water homeostasis. Thus, AQPs may regulate the amniotic fluid volume and participate in the trans-placental transfer of water. Apart from their classical roles, recent studies have revealed that placental AQPs may also cooperate in cellular processes such as the migration and the apoptosis of the trophoblasts. Aquaglyceroporins can also participate in the energy metabolism and in the urea elimination across the placenta. Many factors including oxygen, hormones, acid-basis homeostasis, maternal dietary status, interaction with other transport proteins and osmotic stress are proposed to regulate their expression and function during gestation and alterations result in pathological pregnancies.
Collapse
Affiliation(s)
- Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-CONICET-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Ferré-Dolcet L, Yeste M, Vendrell M, Rigau T, Rodríguez-Gil JE, Del Alamo MMR. Uterine and placental specific localization of AQP2 and AQP8 is related with changes of serum progesterone levels in pregnant queens. Theriogenology 2019; 142:149-157. [PMID: 31593882 DOI: 10.1016/j.theriogenology.2019.09.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Aquaporins play vital roles in reproductive physiology. This study evaluates the expression and localization dynamics of AQP1, AQP2, AQP3 and AQP8 in the endometrium and placental transference zone during pregnancy in queens by means of immunohistochemistry and Western blot. Animals were distributed into six groups: non-pregnant queens with low levels of serum progesterone (P4), non-pregnant animals with high P4 levels, and queens at 30, 40, 50 and 60 days of pregnancy. All AQPs were present in glandular and luminal epithelia and myometrium. AQP1 was also present in the endometrial endothelia. AQP2, AQP3 and AQP8 were found in trophoblast. In endometrial samples with P4 above 2 ng/mL, AQP2 and AQP8 were distributed across plasma membrane and cytoplasm, whereas progesterone levels under 1 ng/mL kept both AQPs confined to the plasma membrane. Western blot showed no significant changes in AQPs expression among the stages. In conclusion, our results indicate that the distribution of AQP2 and AQP8 in the queen reproductive tract is related to P4 levels.
Collapse
Affiliation(s)
- Lluís Ferré-Dolcet
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), E-08193, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Institute of Food and Agricultural Technology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Meritxell Vendrell
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), E-08193, Spain
| | - Teresa Rigau
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), E-08193, Spain
| | - Joan Enric Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), E-08193, Spain
| | - Maria Montserrat Rivera Del Alamo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), E-08193, Spain.
| |
Collapse
|
17
|
Szpilbarg N, Martínez NA, Di Paola M, Reppetti J, Medina Y, Seyahian A, Castro Parodi M, Damiano AE. New Insights Into the Role of Placental Aquaporins and the Pathogenesis of Preeclampsia. Front Physiol 2018; 9:1507. [PMID: 30425647 PMCID: PMC6218616 DOI: 10.3389/fphys.2018.01507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Accumulated evidence suggests that an abnormal placentation and an altered expression of a variety of trophoblast transporters are associated to preeclampsia. In this regard, an abnormal expression of AQP3 and AQP9 was reported in these placentas. Recent data suggests that placental AQPs are not only water channel proteins and that may participate in relevant processes required for a normal placental development, such as cell migration and apoptosis. Recently we reported that a normal expression of AQP3 is required for the migration of extravillous trophoblast (EVT) cells. Thus, alterations in this protein might lead to an insufficient transformation of the maternal spiral arteries resulting in fluctuations of oxygen tension, a potent stimulus for oxidative damage and trophoblast apoptosis. In this context, the increase of oxygen and nitrogen reactive species could nitrate AQP9, producing the accumulation of a non-functional protein affecting the survival of the villous trophoblast (VT). This may trigger the exacerbated release of apoptotic VT fragments into maternal circulation producing the systemic endothelial dysfunction underlying the maternal syndrome. Therefore, our hypothesis is that the alteration in the expression of placental AQPs observed at the end of gestation may take place during the trophoblast stem cell differentiation, disturbing both EVT and VT cells development, or during the VT differentiation and turnover. In both situations, VT is affected and at last the maternal vascular system is activated leading to the clinical manifestations of preeclampsia.
Collapse
Affiliation(s)
- Natalia Szpilbarg
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora A Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Di Paola
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Reppetti
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yollyseth Medina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Abril Seyahian
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Castro Parodi
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Szpilbarg N, Damiano AE. Expression of aquaporin-3 (AQP3) in placentas from pregnancies complicated by preeclampsia. Placenta 2017; 59:57-60. [DOI: 10.1016/j.placenta.2017.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/13/2017] [Accepted: 09/24/2017] [Indexed: 12/11/2022]
|
19
|
Hua Y, Ding S, Cheng H, Luo H, Zhu X. Tanshinone IIA increases aquaporins expression in human amniotic epithelial WISH cells by stimulating GSK-3β phosphorylation. Clin Chim Acta 2017; 473:204-212. [DOI: 10.1016/j.cca.2016.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
20
|
Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, Thilakavathy K, Nordin N. Highly potent stem cells from full-term amniotic fluid: A realistic perspective. Reprod Biol 2017; 17:9-18. [PMID: 28262444 DOI: 10.1016/j.repbio.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/31/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.
Collapse
Affiliation(s)
- Adila A Hamid
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Department of Physiology, Faculty of Medicine, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| | - Muhammad Khair Joharry
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Hoo Mun-Fun
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Siti Nurusaadah Hamzah
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Universiti Putra Malaysia, Malaysia.
| | - Mohd Nazri Yazid
- Department of Obstetrics and Gynaecology, Universiti Putra Malaysia, Malaysia.
| | - Karuppiah Thilakavathy
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Norshariza Nordin
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| |
Collapse
|
21
|
Tanahashi H, Tian QB, Hara Y, Sakagami H, Endo S, Suzuki T. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance. Sci Rep 2016; 6:20241. [PMID: 26847765 PMCID: PMC4742865 DOI: 10.1038/srep20241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Qing-Bao Tian
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
22
|
Bouvier D, Rouzaire M, Marceau G, Prat C, Pereira B, Lemarié R, Deruelle P, Fajardy I, Gallot D, Blanchon L, Vambergue A, Sapin V. Aquaporins and Fetal Membranes From Diabetic Parturient Women: Expression Abnormalities and Regulation by Insulin. J Clin Endocrinol Metab 2015. [PMID: 26207951 DOI: 10.1210/jc.2015-2057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT During pregnancy, aquaporins (AQPs) expressed in fetal membranes are essential for controlling the homeostasis of the amniotic volume, but their regulation by insulin was never explored in diabetic women. OBJECTIVE The aim of our study was to investigate the involvement of AQPs 1, 3, 8, and 9 expressed in fetal membranes in diabetic parturient women and the control of their expression by insulin. DESIGN AND PARTICIPANTS From 129 fetal membranes in four populations (controls, type 1, type 2 [T2D], and gestational diabetes [GD]), we established an expression AQP profile. In a second step, the amnion was used to study the control of the expression and functions of AQPs 3 and 9 by insulin. MAIN OUTCOMES AND MEASURES The expression of transcripts and proteins of AQPs was studied by quantitative RT-PCR and ELISA. We analyzed the regulation by insulin of the expression of AQPs 3 and 9 in the amnion. A tritiated glycerol test enabled us to measure the impact of insulin on the functional characteristics. Using an inhibitor of phosphatidylinositol 3-kinase, we analyzed the insulin intracellular signaling pathway. RESULTS The expression of AQP3 protein was significantly weaker in groups T2D and GD. In nondiabetic fetal membranes, we showed for the amnion (but not for the chorion) a significant repression by insulin of the transcriptional expression of AQPs 3 and 9, which was blocked by a phosphatidylinositol 3-kinase inhibitor. CONCLUSION In fetal membranes, the repression of AQP3 protein expression and functions observed in vivo is allowed by the hyperinsulinism described in pregnant women with T2D or GD.
Collapse
Affiliation(s)
- Damien Bouvier
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Marion Rouzaire
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Geoffroy Marceau
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Cécile Prat
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Bruno Pereira
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Romain Lemarié
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Philippe Deruelle
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Isabelle Fajardy
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Denis Gallot
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Loïc Blanchon
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Anne Vambergue
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| | - Vincent Sapin
- Retinoids, Reproduction Developmental Diseases (D.B., M.R., G.M., C.P., D.G., L.B., V.S.), School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department (D.B., G.M., R.L. V.S.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Biostatistics Unit Department (B.P.), CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of Medicine Henri-Warembourg (P.D., I.F.), Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France; and Integrative Genomics and Modelization of Metabolic Diseases (A.V.), EGID, School of Medicine Henri-Warembourg, Université Lille 2, PRES Lille Nord de France, F-59000 Lille, France
| |
Collapse
|
23
|
Prat C, Bouvier D, Comptour A, Marceau G, Belville C, Clairefond G, Blanc P, Gallot D, Blanchon L, Sapin V. All-trans-retinoic acid regulates aquaporin-3 expression and related cellular membrane permeability in the human amniotic environment. Placenta 2015; 36:881-7. [DOI: 10.1016/j.placenta.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
24
|
Sha XY, Liu HS, Ma TH. Osmotic water permeability diversification in primary trophoblast cultures from aquaporin 1-deficient pregnant mice. J Obstet Gynaecol Res 2015; 41:1399-405. [DOI: 10.1111/jog.12737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/23/2015] [Accepted: 03/18/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Xiao-Yan Sha
- Department of Obstetrics, Guangzhou Women and Children's Medical Centre; Guangzhou Medical University; Guangzhou China
| | - Hui-Shu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Centre; Guangzhou Medical University; Guangzhou China
| | - Tong-Hui Ma
- Central Research Laboratory; Jilin University Bethune Second Hospital; Changchun China
| |
Collapse
|
25
|
Bednar AD, Beardall MK, Brace RA, Cheung CY. Differential expression and regional distribution of aquaporins in amnion of normal and gestational diabetic pregnancies. Physiol Rep 2015; 3:e12320. [PMID: 25742957 PMCID: PMC4393155 DOI: 10.14814/phy2.12320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/28/2022] Open
Abstract
The region of the amnion overlying the placenta plays an active role in fluid exchange between amniotic fluid and fetal blood perfusing the surface of the placenta, whereas little transfer occurs across the reflected amnion that contacts the membranous chorion. Because aquaporins (AQPs) facilitate rapid movement of water across cells, we hypothesized that AQP gene expression in placental amnion is higher than in reflected amnion. Furthermore, because gestational diabetes mellitus (GDM) is often associated with polyhydramnios, we hypothesized that amnion AQP gene expression is reduced when amniotic fluid volume is elevated. Human placental and reflected amnion were obtained at cesarean delivery and subjected to relative quantitation of AQP mRNA by real-time RT-qPCR and proteins by western immunoblot. Amnion mRNA levels of five AQPs differed by up to 400-fold (P < 0.001), with AQP1 and AQP3 most abundant, AQP8 least and AQP9 and AQP11 intermediately expressed. Aquaporin proteins showed a similar profile. Aquaporin mRNA abundance was higher (P < 0.001) in placental than reflected amnion, whereas protein levels were lower (P < 0.01). In GDM pregnancies, neither AQP mRNA nor protein levels were different from normal. There was no correlation between AQP mRNA or protein levels with the amniotic fluid index in normal or GDM subjects. We conclude that there is a strong differential expression profile among individual AQPs and between regions of the amnion. These findings suggest differences in contribution of individual AQPs to water transport in the two regions of the amnion. Furthermore, AQP expression in the amnion is not altered in patients with GDM.
Collapse
Affiliation(s)
- Amy D Bednar
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Michael K Beardall
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Robert A Brace
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health and Science University, Portland, Oregon Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Cecilia Y Cheung
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health and Science University, Portland, Oregon Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Brace RA, Cheung CY. Regulation of Amniotic Fluid Volume: Evolving Concepts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:49-68. [DOI: 10.1007/978-1-4939-1031-1_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Van Dyke JU, Brandley MC, Thompson MB. The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. Reproduction 2014; 147:R15-26. [DOI: 10.1530/rep-13-0309] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. Therefore, studies of the evolution of viviparity in squamates should inform hypotheses of the evolution of viviparity in all amniotes, including mammals.
Collapse
|
28
|
de Almeida A, Oliveira BL, Correia JD, Soveral G, Casini A. Emerging protein targets for metal-based pharmaceutical agents: An update. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Zheng Z, Liu H, Beall M, Ma T, Hao R, Ross MG. Role of aquaporin 1 in fetal fluid homeostasis. J Matern Fetal Neonatal Med 2013; 27:505-10. [DOI: 10.3109/14767058.2013.820697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Functions of water channels in male and female reproductive systems. Mol Aspects Med 2012; 33:676-90. [DOI: 10.1016/j.mam.2012.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
31
|
Jiang SS, Zhu XJ, Ding SD, Wang JJ, Jiang LL, Jiang WX, Zhu XQ. Expression and Localization of Aquaporins 8 and 9 in Term Placenta With Oligohydramnios. Reprod Sci 2012; 19:1276-84. [DOI: 10.1177/1933719112450328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shan-Shan Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Xue-Jie Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Sheng-Di Ding
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jing-Jing Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Ling-Ling Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Wen-Xiao Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Xue-Qiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| |
Collapse
|
32
|
Escobar J, Gormaz M, Arduini A, Gosens K, Martinez A, Perales A, Escrig R, Tormos E, Roselló M, Orellana C, Vento M. Expression of aquaporins early in human pregnancy. Early Hum Dev 2012; 88:589-94. [PMID: 22336497 DOI: 10.1016/j.earlhumdev.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aquaporins (AQPs) constitute a family of channel proteins implicated in transmembrane water transport. Thirteen different AQPs (AQP0-12) have been described but their precise biologic function still remains unclear. AQPs 1, 3, 4, 8, and 9 expression has been described in human chorion, amnion and placenta; however, AQP4 is the only that has been identified in the first trimester of human pregnancy. OBJECTIVE To assess multiplicity of AQPs expression from 10th to 14th week gestation. POPULATION AND METHODS Chorionic villi samples (CVS) collected in pregnant women for prenatal diagnosis were analysed by real time-PCR to assess cDNA expression of AQPs 1, 2, 3, 4, 5, 6, 7, 8, 9, and 11, and compared with AQPs expression in placentas from normal term pregnancies. RESULTS 26 CVS corresponding to 26 pregnant women (age: 32.7±4.5 years; gestational age: 12.4±0.9 weeks) and 10 placental samples corresponding to normal term pregnancies were analysed. In CVS karyotype was normal in 16 cases, trisomy in 6 cases, mosaicism in 1 and unknown in 1. We found high mRNA expression for AQPs 1, 3, 9 and 11, low for AQPs 4, 5, and 8, and non-detectable for AQPs 2, 6, and 7 in chorionic villi. CONCLUSIONS This is the first study systematically assessing the expression of a multiplicity of AQPs in chorionic villi samples between 10th and 14th weeks of gestation. High expression of AQP11 has been identified for the first time in early stages of human pregnancy. Chromosomal abnormalities did not alter AQPs' expression.
Collapse
Affiliation(s)
- Javier Escobar
- Neonatal Research Unit, Research Institute Hospital La Fe, Bulevar Sur s/n, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Expression of aquaporin water channels in canine fetal adnexa in respect to the regulation of amniotic fluid production and absorption. Placenta 2012; 33:502-10. [PMID: 22425592 DOI: 10.1016/j.placenta.2012.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 01/24/2023]
Abstract
Amniotic fluid (AF) is created by the flow of fluid from the fetal lung and bladder and reabsorbed in part by fetal swallowing and partly by the transfer across the amnion to the fetal circulation. Placental water flux is an important factor in determining AF volume and fetal hydration. In addition the fetal membranes might be involved in the regulation of fluid composition. To understand the mechanisms responsible for maintaining a correct balance of AF volume we evaluated the expression of aquaporins (AQPs) in canine fetal adnexa. AQPs are a family of integral membrane proteins permitting passive but physiologically rapid transcellular water movement. The presence of AQP1, 3, 5, 8 and -9 was immunohistochemically assessed in canine fetal adnexa, collected in early, middle and late-gestation during ovario-hysterectomies performed with fully informed owners' consent. Changes in AF volume and biochemical composition were also evaluated throughout pregnancy. Our results show distinct aquaporin expression patterns in maternal and extraembryonic tissues in relation to pregnancy period. AQP1 was localized in placental endothelia, allantochorion, amnion, allantois and yolk sac. AQP3 was present in the placental labyrinth, amnion, allantois and yolk sac. AQP8 was especially evident on the epithelia lining the glandular chambers, the amniotic and allantois sacs. AQP9, a channel highly permeable to water and urea, was observed in epithelia of amnion, allantois and yolk sac. In summary, AQP1, 3, 5, 8 and -9 have distinct expression patterns in canine fetal membranes and placenta in relation to pregnancy period, suggesting an involvement in mediating the AF changes during gestation.
Collapse
|
34
|
Prat C, Blanchon L, Borel V, Gallot D, Herbet A, Bouvier D, Marceau G, Sapin V. Ontogeny of Aquaporins in Human Fetal Membranes1. Biol Reprod 2012; 86:48. [DOI: 10.1095/biolreprod.111.095448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
35
|
Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology 2011; 63:256-62. [DOI: 10.1016/j.cryobiol.2011.09.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 11/20/2022]
|
36
|
Abstract
AIM Aquaporin 8 (AQP8) is expressed within the female reproductive system but its physiological function reminds to be elucidated. This study investigates the role of AQP8 during pregnancy using AQP8-knockout (AQP8-KO) mice. METHODS Homozygous AQP8-KO mice were mated, and the conception rate was recorded. AQP8-KO pregnant mice or their offspring were divided into 5 subgroups according to fetal gestational day (7, 13, 16, 18 GD) and newborn. Wild type C57 pregnant mice served as the control group. The number of pregnant mice, total embryos and atrophic embryos, as well as fetal weight, placental weight and placental area were recorded for each subgroup. The amount of amniotic fluid in each sac at 13, 16, and 18 GD was calculated. Statistical significance was determined by analysis of variance of factorial design and chi-square tests. RESULTS Conception rates did not differ significantly between AQP8-KO and wild type mice. AQP8-KO pregnant mice had a significantly higher number of embryos compared to wild type controls. Fetal/neonatal weight was also significantly greater in the AQP8-KO group compared to age-matched wild type controls. The amount of amniotic fluid was greater in AQP8-KO pregnant mice than wild type controls, although the FM/AFA (fetal weight/amniotic fluid amount) did not differ. While AQP8-KO placental weight was significantly larger than wild type controls, there was no evidence of placental pathology in either group. CONCLUSION The results suggest that AQP8 deficiency plays an important role in pregnancy outcome.
Collapse
|
37
|
Abstract
Maternal-fetal fluid balance is critical during pregnancy, and amniotic fluid is essential for fetal growth and development. The placenta plays a key role in a successful pregnancy as the interface between the mother and her fetus. Aquaporins (AQPs) form specific water channels that allow the rapid transcellular movement of water in response to osmotic/hydrostatic pressure gradients. AQPs expression in the placenta and fetal membranes may play important roles in the maternal-fetal fluid balance.
Collapse
|
38
|
Kobayashi K, Miwa H, Yasui M. Progesterone maintains amniotic tight junctions during midpregnancy in mice. Mol Cell Endocrinol 2011; 337:36-42. [PMID: 21291956 DOI: 10.1016/j.mce.2011.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 01/01/2023]
Abstract
The amniotic epithelium is in direct contact with the amniotic fluid and restricts fluid flux via the paracellular pathway by means of tight junctions (TJs). Several factors affect TJs to modulate the paracellular flux. Progesterone contributes to the antenatal formation and disappearance of TJs in uterine and mammary epithelial tissues. In this study, we investigated whether progesterone positively or negatively influences amniotic TJs. The administration of RU-486, a progesterone receptor (PR) antagonist, into pregnant mice adversely affects the localization and expression of claudin-3 and claudin-4 in the amniotic epithelium. RU-486 administration also increased the permeability of the amniotic membrane. In organ-cultured amniotic membranes, progesterone induced increases in claudin-3 and claudin-4 expression in a dose-dependent manner but did not influence their localization. PRs were also present in the amniotic epithelium during midpregnancy but they disappeared during late pregnancy. These results indicate that the progesterone/PR pathway maintains TJs in the amniotic epithelium during midpregnancy.
Collapse
Affiliation(s)
- Ken Kobayashi
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | |
Collapse
|
39
|
Kobayashi K, Yasui M. Cellular and subcellular localization of aquaporins 1, 3, 8, and 9 in amniotic membranes during pregnancy in mice. Cell Tissue Res 2010; 342:307-16. [DOI: 10.1007/s00441-010-1065-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022]
|
40
|
Zhu X, Jiang S, Hu Y, Zheng X, Zou S, Wang Y, Zhu X. The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev 2010; 86:657-663. [PMID: 20732771 DOI: 10.1016/j.earlhumdev.2010.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 07/04/2010] [Accepted: 07/11/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Aquaporins are a family of membrane-bound water channel proteins that regulate the flow of water across a variety of biological membranes. The expression of aquaporin 8 and aquaporin 9 has been demonstrated in human chorioamniotic membrane and placenta. But their roles in the pathophysiology of polyhydramnios are unclear. AIMS To study the expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios and to explore the association between aquaporin expressions and polyhydramnios. SUBJECTS The placentas were collected from 51 patients who underwent elective Cesarean sections at term, of which 21 cases had idiopathic polyhydramnios and the other 30 had normal amniotic fluid volume. OUTCOME MEASURES Real-time polymerase chain reaction and immunohistochemistry techniques were used to determine the expression and localization of aquaporin 8 and aquaporin 9 in the amnion, chorion and placenta. RESULTS Expression of aquaporin 8 and aquaporin 9 was detected in the amnion, chorion and placenta and located in amnion epithelia, chorion cytotrophoblasts and placental trophoblast. Compared to normal amniotic fluid volume group, the expression of aquaporin 8 in amnion, and aquaporin 9 in amnion and chorion, were significantly increased in idiopathic polyhydramnios group; however, their expression in the placenta was significantly decreased. CONCLUSIONS When polyhydramnios occurs, expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta is an adaptive change, which may be involved in the regulation of amniotic fluid volume. However, the modulation factors of the aquaporin 8 and aquaporin 9 expressions need further study.
Collapse
Affiliation(s)
- Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou 325027, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Mittal P, Romero R, Mazaki-Tovi S, Tromp G, Tarca AL, Kim YM, Chaiworapongsa T, Kusanovic JP, Erez O, Than NG, Hassan SS. Fetal membranes as an interface between inflammation and metabolism: Increased Aquaporin 9 expression in the presence of spontaneous labor at term and chorioamnionitis. J Matern Fetal Neonatal Med 2009; 22:1167-75. [DOI: 10.3109/14767050903019692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Dynamic Changes in Amniotic Tight Junctions during Pregnancy. Placenta 2009; 30:840-7. [DOI: 10.1016/j.placenta.2009.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 12/24/2022]
|
43
|
Zhu X, Jiang S, Zhu X, Zou S, Wang Y, Hu Y. Expression of Aquaporin 1 and Aquaporin 3 in Fetal Membranes and Placenta in Human Term Pregnancies with Oligohydramnios. Placenta 2009; 30:670-676. [DOI: 10.1016/j.placenta.2009.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 05/20/2009] [Accepted: 05/23/2009] [Indexed: 11/30/2022]
|
44
|
Tewari N, Kalkunte S, Murray DW, Sharma S. The water channel aquaporin 1 is a novel molecular target of polychlorinated biphenyls for in utero anomalies. J Biol Chem 2009; 284:15224-32. [PMID: 19332547 DOI: 10.1074/jbc.m808892200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite serious health risks in humans and wild life, the underlying mechanisms that explain the gene-environment effects of chemical toxicants are largely unknown. Polychlorinated biphenyls (PCBs) are one of the most ubiquitous environmental toxicants worldwide, with reported epidemiological evidence for reproductive and neurocognitive anomalies in humans. Here, we show that Aroclor 1254, a mixture of structurally distinct PCBs, causes preterm birth in interleukin (IL)-10(-/-) mice at a dose that does not show any adverse effects in wild type mice, highlighting the significance of IL-10 as an anti-toxicant cytokine. Aroclor 1254-treated IL-10(-/-) mice demonstrated increased amniotic fluid, intrauterine growth restriction, and reduced litter size with postnatal neuromotor defects. Further, our results identify aquaporin 1 (AQP1), a potent effector of fluid volume regulation and angiogenic activity, as a novel placental target of PCBs. In vivo or in vitro exposure to Aroclor 1254 coupled with IL-10 deficiency significantly reduced the protein content of AQP1. Reduced uterine AQP1 levels were associated with defective spiral artery transformation. Importantly, recombinant IL-10 reversed PCB-induced in vivo and in vitro effects. These data demonstrate for the first time that the IL-10-AQP1 axis is a novel regulator of PCB-induced in utero effects.
Collapse
Affiliation(s)
- Neetu Tewari
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | |
Collapse
|
45
|
Pacora P, Romero R, Chaiworapongsa T, Kusanovic JP, Erez O, Vaisbuch E, Mazaki-Tovi1 S, Gotsch F, Kim CJ, Than NG, Yeo L, Mittal1 P, Hassan SS. Amniotic fluid angiopoietin-2 in term and preterm parturition, and intra-amniotic infection/inflammation. J Perinat Med 2009; 37:503-11. [PMID: 19435449 PMCID: PMC3505686 DOI: 10.1515/jpm.2009.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Recent observations have revealed an interaction between inflammation and angiogenesis, which may be mediated by angiopoietins and chemokines. Given the importance of inflammation in parturition, we sought to determine whether angiopoietin-2 (Ang-2) is present in amniotic fluid (AF) and if its concentration changes with gestational age, labor, and in intra-amniotic infection/inflammation (IAI) in patients with spontaneous preterm labor and intact membranes. STUDY DESIGN This cross-sectional study included 486 patients in the following groups: 1) women in the mid-trimester of pregnancy (14-18 weeks) who underwent amniocentesis for genetic indications and delivered a normal neonate at term (n=52); 2) normal pregnant women at term with (n=48) and without (n=45) spontaneous labor; 3) patients with an episode of spontaneous preterm labor (PTL) and intact membranes who were classified into: a) PTL without IAI who delivered at term (n=152); b) PTL without IAI who delivered preterm (<37 weeks gestation; n=107); and c) PTL with IAI (n=82). Ang-2 concentration in AF was determined by enzyme-linked immunoassay. Non-parametric statistics were used for analysis. RESULTS 1) Ang-2 was detected in all AF samples; 2) the median AF Ang-2 concentration at term was significantly lower than that in the mid-trimester (1877.4 pg/mL vs. 3525.2 pg/mL; P<0.001); 3) among patients with PTL, the median AF Ang-2 concentration was significantly higher in patients with IAI than in those without IAI (4031.3 pg/mL vs. 2599.4 pg/mL; P<0.001) and those with PTL without IAI who delivered at term (4031.3 pg/mL vs. 2707.3 pg/mL; P<0.001); and 4) no significant differences were observed in the median AF Ang-2 concentration between patients with spontaneous labor at term and those at term not in labor (1722.9 pg/mL vs. 1877.4 pg/mL; P=0.6). CONCLUSIONS 1) Ang-2, a protein involved in the process of vascular remodeling, is a physiologic constituent of the amniotic fluid and its concentration decreased with advancing gestation; 2) the median Ang-2 concentration in amniotic fluid is higher in patients with IAI than in those without; and 3) spontaneous parturition at term is not associated with changes in the AF concentration of Ang-2. These findings support the view of a link between angiopoietins and inflammation.
Collapse
Affiliation(s)
- Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shali Mazaki-Tovi1
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pooja Mittal1
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
46
|
Liu H, Zheng Z, Wintour E. Aquaporins and Fetal Fluid Balance. Placenta 2008; 29:840-7. [DOI: 10.1016/j.placenta.2008.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 07/20/2008] [Accepted: 07/24/2008] [Indexed: 01/01/2023]
|
47
|
Belkacemi L, Beall MH, Magee TR, Pourtemour M, Ross MG. AQP1 gene expression is upregulated by arginine vasopressin and cyclic AMP agonists in trophoblast cells. Life Sci 2008; 82:1272-80. [PMID: 18538351 DOI: 10.1016/j.lfs.2008.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/05/2008] [Accepted: 04/22/2008] [Indexed: 12/22/2022]
Abstract
Aquaporins (AQPs) are water channels that regulate water flow in many tissues. As AQP1 is a candidate to regulate placental fluid exchange, we sought to investigate the effect of arginine vasopressin (AVP) and cAMP agonists on AQP1 gene expression in first trimester-derived extravillous cytotrophoblasts (HTR-8/Svneo) and two highly proliferative carcinoma trophoblast-like cell lines but with a number of functional features of the syncytiotrophoblast namely; JAR and JEG-3 cells. Our data demonstrated that AVP (0.1 nM) significantly increased the expression of AQP1 mRNA at 10 h in HTR-8/SVneo and JEG-3 cells (P<0.05). Both SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP, and forskolin, an adenylate cyclase stimulator significantly increased AQP1 mRNA expression in all cell lines after 2 h in a dose-dependent manner (P<0.05) with a parallel increase in protein expression. In the time course study, 5 microM of either SP-cAMP or forskolin significantly stimulated AQP1 mRNA expression after 2 h in HTR-8/SVneo cells and after 10 h in JAR and JEG-3 cells. AQP1 protein expression was highest after 20 h in both HTR-8/SVneo and JEG-3 cells (P<0.05). AVP-stimulated cAMP elevation was blocked in the presence of 9-(tetrahydro-2'-furyl) adenine (SQ22536) (100 microM), a cell-permeable adenylate cyclase inhibitor (P<0.05). These results indicate that in trophoblasts-like cells AQP1 gene expression is upregulated by both AVP and cAMP agonists. Furthermore, our data demonstrate that a cAMP-dependent pathway is responsible for the AVP effect on AQP1. Thus, modulation of AQP1 expression by maternal hormones may regulate invasion and fetal-placental-amnion water homeostasis during gestation.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David-Geffen School of Medicine, University of California, Los Angeles, CA 90502, USA.
| | | | | | | | | |
Collapse
|
48
|
Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA. A Current View of the Mammalian Aquaglyceroporins. Annu Rev Physiol 2008; 70:301-27. [DOI: 10.1146/annurev.physiol.70.113006.100452] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Rojek
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jeppe Praetorius
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jørgen Frøkiaer
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Robert A. Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| |
Collapse
|
49
|
Abstract
Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however, in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Water flux across biologic membranes may be driven by osmotic or hydrostatic forces; existing data suggest that intramembranous flow in humans is driven by the osmotic difference between the amniotic fluid and the fetal serum. The driving force for placental flow is more controversial, and both forces may be in effect. The mechanism(s) responsible for regulating water flow to and from the amniotic fluid is unknown. In other parts of the body, notably the kidney, water flux is regulated by the expression of aquaporin water channels on the cell membrane. We hypothesize that aquaporins have a role in regulating water flux across both the amnion and the placenta, and present evidence in support of this theory. Current knowledge of gestational water flow is sufficient to allow prediction of fetal outcome when water flow is abnormal, as in twin-twin transfusion syndrome. Further insight into these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.
Collapse
Affiliation(s)
- M H Beall
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, 1000 W. Carson Street, Box 3, Torrance, CA 90502, USA.
| | | | | | | |
Collapse
|