1
|
Wang Z, Shi R, Wang R, Ma Z, Jiang S, Zhang F, Wu W. Gestational exposure to polystyrene microplastics incurred placental damage in mice: Insights into metabolic and gene expression disorders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118056. [PMID: 40107219 DOI: 10.1016/j.ecoenv.2025.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
As an emerging environmental pollutant, microplastics have attracted increasing attention to their potential health hazards. However, the current understanding about the toxicity and health implications, especially about developmental toxicity with exposure to microplastics is quite limited. In the current study, we aimed to scrutinize the deleterious effects of polystyrene microplastics (PSMPs) with different sizes (0.1 and 5 μm) on the placenta that plays crucial role in fetal development, following oral exposure during gestational stages. The results showed that two sizes of PSMPs could distribute in mouse placental tissues, and nanosized PSMPs (0.1 μm) exhibited greater capability to penetrate the placenta and deposit in the liver and brain of fetuses than microsized PSMPs (5 μm). Importantly, only 0.1 μm PSMPs induced a decrease in the junctional area, a reduction in the labyrinthine vascularization and an increase in cell apoptosis in the placenta, accompanied by fetal developmental impairments. The results of metabolome and transcriptome uncovered that 0.1 μm PSMP exposure caused changes in metabolic and gene profiles of placental tissues, across multiple pathways such as vascular supply, nutrient absorption and transportation and amino acid metabolism. Overall, our results confirmed that maternal PSMP exposure led to placental damages associated with metabolic and gene expression disorders. This study would provide new insights into the developmental impacts of microplastic consumption during gestation.
Collapse
Affiliation(s)
- Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Runyan Shi
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ruimin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenzhu Ma
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shuo Jiang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
2
|
Elser BA, Hing B, Eliasen S, Afrifa MA, Meurice N, Rimi F, Chimenti M, Schulz LC, Dailey ME, Gibson-Corley KN, Stevens HE. Maternal α-cypermethrin and permethrin exert differential effects on fetal growth, placental morphology, and fetal neurodevelopment in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643434. [PMID: 40166261 PMCID: PMC11956951 DOI: 10.1101/2025.03.16.643434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pyrethroid insecticides represent a broad class of chemicals used widely in agriculture and household applications. Human studies show mixed effects of maternal pyrethroid exposure on fetal growth and neurodevelopment. Assessment of shared pyrethroid metabolites as a biomarker for exposure obscures effects of specific chemicals within this broader class. To better characterize pyrethroid effects on fetal development, we investigated maternal exposure to permethrin, a type I pyrethroid, and α-cypermethrin, a type II pyrethroid, on fetal development in mice. Pregnant CD1 mice were exposed to permethrin (1.5, 15, or 50 mg/kg), α-cypermethrin (0.3, 3, or 10 mg/kg), or corn oil vehicle via oral gavage on gestational days (GD) 6-16. Effects on fetal growth, placental toxicity, and neurodevelopment were evaluated at GD 16. Cypermethrin, but not permethrin, significantly reduced fetal growth and altered placental layer morphology. Placental RNAseq analysis revealed downregulation of genes involved in extracellular matrix remodeling in response to α-cypermethrin. Both pyrethroids induced shifts in fetal dorsal forebrain microglia morphology from ramified to ameboid states; however, effects of α-cypermethrin were more pronounced. The α-cypermethrin transcriptome of fetal dorsal forebrain implicated altered glutamate receptor signaling, synaptogenesis, and c-AMP signaling. Coregulated gene modules in individual placenta and fetal dorsal forebrain pairs were correlated and overlapped in biological processes characterizing synapses, mitotic cell cycle, and chromatin organization, suggesting placenta-fetal brain shared mechanisms with α-cypermethrin exposure. In summary, maternal type II pyrethroid α-cypermethrin exposure but not type I pyrethroid permethrin significantly affected placental development, fetal growth, and neurodevelopment, and these effects were linked.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Samuel Eliasen
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Malik A Afrifa
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Naomi Meurice
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Farzana Rimi
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, Iowa, USA
| | - Michael Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Laura C Schulz
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Michael E Dailey
- Department of Biology, University of Iowa College of Liberal Arts and Sciences, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Bhadsavle SS, Scaturro KZ, Golding MC. Maternal 129S1/SvImJ background attenuates the placental phenotypes induced by chronic paternal alcohol exposure. Reprod Toxicol 2024; 126:108605. [PMID: 38735594 DOI: 10.1016/j.reprotox.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Paternal alcohol use is emerging as a plausible driver of alcohol-related growth and patterning defects. Studies from our lab using an inbred C57Bl/6 J mouse model suggest that these paternally-inherited phenotypes result from paternally programmed deficits in the formation and function of the placenta. The 129S1/SvImJ genetic background is typically more susceptible to fetoplacental growth defects due to strain-specific differences in placental morphology. We hypothesized that these placental differences would sensitize 129S1/SvImJ-C57Bl/6 J hybrid offspring to paternally-inherited fetoplacental growth phenotypes induced by paternal alcohol exposure. Using a limited access model, we exposed C57Bl/6 J males to alcohol and bred them to naïve 129S1/SvImJ dams. We then assayed F1 hybrid offspring for alterations in fetoplacental growth and used micro-CT imaging to contrast placental histological patterning between the preconception treatments. F1 hybrid placentae exhibit larger placental weights than pure C57Bl/6 J offspring but display a proportionally smaller junctional zone with increased glycogen content. The male F1 hybrid offspring of alcohol-exposed sires exhibit modest placental hyperplasia but, unlike pure C57Bl/6 J offspring, do not display observable changes in placental histology, glycogen content, or measurable impacts on fetal growth. Although F1 hybrid female offspring do not exhibit any measurable alterations in fetoplacental growth, RT-qPCR analysis of placental gene expression reveals increased expression of genes participating in the antioxidant response. The reduced placental junctional zone but increased glycogen stores of 129S1/SvImJ-C57Bl/6 J F1 hybrid placentae ostensibly attenuate the previously observed placental patterning defects and fetal growth restriction induced by paternal alcohol use in the C57Bl/6 J strain.
Collapse
Affiliation(s)
- Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine Z Scaturro
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Verruma CG, Santos RS, Marchesi JAP, Sales SLA, Vila RA, Rios ÁFL, Furtado CLM, Ramos ES. Dynamic methylation pattern of H19DMR and KvDMR1 in bovine oocytes and preimplantation embryos. J Assist Reprod Genet 2024; 41:333-345. [PMID: 38231285 PMCID: PMC10894807 DOI: 10.1007/s10815-023-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE This study aimed to evaluate the epigenetic reprogramming of ICR1 (KvDMR1) and ICR2 (H19DMR) and expression of genes controlled by them as well as those involved in methylation, demethylation, and pluripotency. METHODS We collected germinal vesicle (GV) and metaphase II (MII) oocytes, and preimplantation embryos at five stages [zygote, 4-8 cells, 8-16 cells, morula, and expanded blastocysts (ExB)]. DNA methylation was assessed by BiSeq, and the gene expression was evaluated using qPCR. RESULTS H19DMR showed an increased DNA methylation from GV to MII oocytes (68.04% and 98.05%, respectively), decreasing in zygotes (85.83%) until morula (61.65%), and ExB (63.63%). H19 and IGF2 showed increased expression in zygotes, which decreased in further stages. KvDMR1 was hypermethylated in both GV (71.82%) and MII (69.43%) and in zygotes (73.70%) up to morula (77.84%), with a loss of methylation at the ExB (36.64%). The zygote had higher expression of most genes, except for CDKN1C and PHLDA2, which were highly expressed in MII and GV oocytes, respectively. DNMTs showed increased expression in oocytes, followed by a reduction in the earliest stages of embryo development. TET1 was downregulated until 4-8-cell and upregulated in 8-16-cell embryos. TET2 and TET3 showed higher expression in oocytes, and a downregulation in MII oocytes and 4-8-cell embryo. CONCLUSION We highlighted the heterogeneity in the DNA methylation of H19DMR and KvDMR1 and a dynamic expression pattern of genes controlled by them. The expression of DNMTs and TETs genes was also dynamic owing to epigenetic reprogramming.
Collapse
Affiliation(s)
- Carolina G Verruma
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renan S Santos
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Jorge A P Marchesi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sarah L A Sales
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Reginaldo A Vila
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Álvaro F L Rios
- Biotechnology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Goitacazes Campus, Rio de Janeiro, Brazil
| | - Cristiana L M Furtado
- Experimental Biology Center, Graduate Program in Medical Sciences, University of Fortaleza - UNIFOR, Fortaleza, CE, 60811-905, Brazil
- Drug Research and Development Center (NPDM), Postgraduate Program in Translational Medicine, Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Ester S Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
5
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. A comparison of rat models that best mimic immune-driven preeclampsia in humans. Front Endocrinol (Lausanne) 2023; 14:1219205. [PMID: 37842294 PMCID: PMC10569118 DOI: 10.3389/fendo.2023.1219205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Preeclampsia (PE), a hypertensive pregnancy disorder, can originate from varied etiology. Placenta malperfusion has long been considered the primary cause of PE. However, we and others have showed that this disorder can also result from heightened inflammation at the maternal-fetal interface. To advance our understanding of this understudied PE subtype, it is important to establish validated rodent models to study the pathophysiology and test therapies. We evaluated three previously described approaches to induce inflammation-mediated PE-like features in pregnant rats: 1) Tumor necrosis factor-α (TNF-α) infusion via osmotic pump from gestational day (GD) 14-19 at 50ng/day/animal; 2) Polyinosinic:polycytidylic acid (Poly I:C) intraperitoneal (IP) injections from GD 10-18 (alternate days) at 10mg/kg/day/animal; and, 3) Lipopolysaccharide (LPS) IP injections from GD 13-18 at 20ug-70ug/kg/day per animal. Maternal blood pressure was measured by tail-cuff. Upon sacrifice, fetal and placenta weights were recorded. Placenta histomorphology was assessed using H&E sections. Placenta inflammation was determined by quantifying TNF-α levels and inflammatory gene expression. Placenta metabolic and mitochondrial health were determined by measuring mitochondrial respiration rates and placenta NAD+/NADH content. Of the three rodent models tested, we found that Poly I:C and LPS decreased both fetal weight and survival; and correlated with a reduction in region specific placenta growth. As the least effective model characterized, TNF-α treatment resulted in a subtle decrease in fetal/placenta weight and placenta mitochondrial respiration. Only the LPS model was able to induce maternal hypertension and exhibited pronounced placenta metabolic and mitochondrial dysfunction, common features of PE. Thus, the rat LPS model was most effective for recapitulating features observed in cases of human inflammatory PE. Future mechanistic and/or therapeutic intervention studies focuses on this distinct PE patient population may benefit from the employment of this rodent model of PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir J. Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Hebeda CB, Savioli AC, Scharf P, de Paula-Silva M, Gil CD, Farsky SHP, Sandri S. Neutrophil depletion in the pre-implantation phase impairs pregnancy index, placenta and fetus development. Front Immunol 2022; 13:969336. [PMID: 36248911 PMCID: PMC9558710 DOI: 10.3389/fimmu.2022.969336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal neutrophils cells are players in gestational tolerance and fetus delivery. Nonetheless, their actions in each phase of the pregnancy are unknown. We here investigated the role of maternal neutrophil depletion before the blastocyst implantation phase and outcomes in the pregnancy index, placenta, and fetus development. Neutrophils were pharmacologically depleted by i.p. injection of anti-Gr1 (anti-neutrophils; 200 µg) 24 hours after plug visualization in allogeneic-mated C57BL/6/BALB/c mice. Depletion of peripheral neutrophils lasted until 48 hours after anti-Gr1 injection (gestational day 1.5-3.5). On gestational day 5.5, neutrophil depletion impaired the blastocyst implantation, as 50% of pregnant mice presented reduced implantation sites. On gestational day 18.5, neutrophil depletion reduced the pregnancy rate and index, altered the placenta disposition in the uterine horns, and modified the structure of the placenta, detected by reduced junctional zone, associated with decreased numbers of giant trophoblast cells, spongiotrophoblast. Reduced number of placenta cells labeled for vascular endothelial growth factor (VEGF), platelet-endothelial cell adhesion molecule (PECAM-1), and intercellular cell adhesion molecule (ICAM-1), important markers of angiogenesis and adhesiveness, were detected in neutrophil depleted mice. Furthermore, neutrophil depletion promoted a higher frequency of monocytes, natural killers, and T regulatory cells, and lower frequency of cytotoxic T cells in the blood, and abnormal development of offspring. Associated data obtained herein highlight the pivotal role of neutrophils actions in the early stages of pregnancy, and address further investigations on the imbricating signaling evoked by neutrophils in the trophoblastic interaction with uterine epithelium.
Collapse
Affiliation(s)
- Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
- Núcleo de Pesquisa em Ciências Médicas, Fundação Universidade para o Desenvolvimento do Alto Vale do Itajaí – UNIDAVI, Rio do Sul, SC, Brazil
| | - Anna Carolina Savioli
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Marina de Paula-Silva
- Center for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
- *Correspondence: Silvana Sandri,
| |
Collapse
|
7
|
dos Passos Junior RR, de Freitas RA, Dela Justina V, San Martín S, Lima VV, Giachini FR. Protein O-GlcNAcylation as a nutrient sensor signaling placental dysfunction in hypertensive pregnancy. Front Endocrinol (Lausanne) 2022; 13:1032499. [PMID: 36531508 PMCID: PMC9754152 DOI: 10.3389/fendo.2022.1032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION During pregnancy, arterial hypertension may impair placental function, which is critical for a healthy baby's growth. Important proteins during placentation are known to be targets for O-linked β-N-acetylglucosamine modification (O-GlcNAcylation), and abnormal protein O-GlcNAcylation has been linked to pathological conditions such as hypertension. However, it is unclear how protein O-GlcNAcylation affects placental function and fetal growth throughout pregnancy during hypertension. METHODS To investigate this question, female Wistar and spontaneously hypertensive rats (SHR) were mated with male Wistar rats, and after pregnancy confirmation by vaginal smear, rats were divided into groups of 14, 17, and 20 days of pregnancy (DOPs). On the 14th, 17th, and 20th DOP, rats were euthanized, fetal parameters were measured, and placentas were collected for western blot, immunohistochemical, and morphological analyses. RESULTS SHR presented a higher blood pressure than the Wistar rats (p=0.001). Across all DOPs, SHR showed reduced fetal weight and an increase in small-for-gestational-age fetuses. While near-term placentas were heavier in SHR (p=0.006), placental efficiency decreased at 17 (p=0.01) and 20 DOPs (p<0.0001) in this group. Morphological analysis revealed reduced junctional zone area and labyrinth vasculature changes on SHR placentas in all DOPs. O-GlcNAc protein expression was lower in placentas from SHR compared with Wistar at 14, 17, and 20 DOPs. Decreased expression of O-GlcNAc transferase (p=0.01) and O-GlcNAcase (p=0.002) enzymes was found at 14 DOPs in SHR. Immunohistochemistry showed reduced placental O-GlcNAc content in both the junctional zone and labyrinth of the placentas from SHR. Periodic acid-Schiff analysis showed decreased glycogen cell content in the placentas from SHR at 14, 17, and 20 DOPs. Moreover, glucose transporter 1 expression was decreased in placentas from SHR in all DOPs. CONCLUSIONS These findings suggest that decreased protein O-GlcNAcylation caused by insufficient placental nutritional apport contributes to placental dysfunction during hypertensive pregnancy, impairing fetal growth.
Collapse
Affiliation(s)
| | | | - Vanessa Dela Justina
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Fernanda Regina Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| |
Collapse
|
8
|
Starks RR, Kaur H, Tuteja G. Mapping cis-regulatory elements in the midgestation mouse placenta. Sci Rep 2021; 11:22331. [PMID: 34785717 PMCID: PMC8595355 DOI: 10.1038/s41598-021-01664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The placenta is a temporary organ that provides the developing fetus with nutrients, oxygen, and protection in utero. Defects in its development, which may be caused by misregulated gene expression, can lead to devastating outcomes for the mother and fetus. In mouse, placental defects during midgestation commonly lead to embryonic lethality. However, the regulatory mechanisms controlling expression of genes during this period have not been thoroughly investigated. Therefore, we generated and analyzed ChIP-seq data for multiple histone modifications known to mark cis-regulatory regions. We annotated active and poised promoters and enhancers, as well as regions generally associated with repressed gene expression. We found that poised promoters were associated with neuronal development genes, while active promoters were largely associated with housekeeping genes. Active and poised enhancers were associated with placental development genes, though only active enhancers were associated with genes that have placenta-specific expression. Motif analysis within active enhancers identified a large network of transcription factors, including those that have not been previously studied in the placenta and are candidates for future studies. The data generated and genomic regions annotated provide researchers with a foundation for future studies, aimed at understanding how specific genes in the midgestation mouse placenta are regulated.
Collapse
Affiliation(s)
- Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Thomas KN, Zimmel KN, Roach AN, Basel A, Mehta NA, Bedi YS, Golding MC. Maternal background alters the penetrance of growth phenotypes and sex-specific placental adaptation of offspring sired by alcohol-exposed males. FASEB J 2021; 35:e22035. [PMID: 34748230 PMCID: PMC8713293 DOI: 10.1096/fj.202101131r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Epigenetic mechanisms of paternal inheritance are an emerging area of interest in our efforts to understand fetal alcohol spectrum disorders. In rodent models examining maternal alcohol exposures, different maternal genetic backgrounds protect or sensitize offspring to alcohol‐induced teratogenesis. However, whether maternal background can mitigate sperm‐inherited alterations in developmental programming and modify the penetrance of growth defects induced by preconception paternal alcohol exposures remains unaddressed. In our previous studies examining pure C57Bl/6J crosses, the offspring of alcohol‐exposed sires exhibited fetal growth restriction, enlarged placentas, and decreased placental efficiency. Here, we find that in contrast to our previous studies, the F1 offspring of alcohol‐exposed C57Bl/6J sires and CD‐1 dams do not exhibit fetal growth restriction, with male fetuses developing smaller placentas and increased placental efficiencies. However, in these hybrid offspring, preconception paternal alcohol exposure induces sex‐specific changes in placental morphology. Specifically, the female offspring of alcohol‐exposed sires displayed structural changes in the junctional and labyrinth zones, along with increased placental glycogen content. These changes in placental organization are accompanied by female‐specific alterations in the expression of imprinted genes Cdkn1c and H19. Although male placentae do not display overt changes in placental histology, using RNA‐sequencing, we identified programmed alterations in genes regulating oxidative phosphorylation, mitochondrial function, and Sirtuin signaling. Collectively, our data reveal that preconception paternal alcohol exposure transmits a stressor to developing offspring, that males and females exhibit distinct patterns of placental adaptation, and that maternal genetic background can modulate the effects of paternal alcohol exposure.
Collapse
Affiliation(s)
- Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Nicole A Mehta
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Hay AM, Howie HL, Gorham JD, D'Alessandro A, Spitalnik SL, Hudson KE, Zimring JC. Mouse background genetics in biomedical research: The devil's in the details. Transfusion 2021; 61:3017-3025. [PMID: 34480352 DOI: 10.1111/trf.16628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.
Collapse
Affiliation(s)
- Ariel M Hay
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather L Howie
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - James D Gorham
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angelo D'Alessandro
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - James C Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Mapping the expression of transient receptor potential channels across murine placental development. Cell Mol Life Sci 2021; 78:4993-5014. [PMID: 33884443 PMCID: PMC8233283 DOI: 10.1007/s00018-021-03837-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.
Collapse
|
12
|
Roberts GAG, Tunster SJ. Characterising the dynamics of placental glycogen stores in the mouse. Placenta 2020; 99:131-140. [PMID: 32798765 DOI: 10.1016/j.placenta.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The placenta performs a range of functions to support fetal growth. In addition to facilitating nutrient transport, the placenta also stores glucose as glycogen, which is thought to maintain fetal glucose supply during late gestation. However, evidence to support such a role is currently lacking. Similarly, our understanding of the dynamics of placental glycogen metabolism in normal mouse pregnancy is limited. METHODS We quantified the placental glycogen content of wild type C57BL/6JOlaHsd mouse placentas from mid (E12.5) to late (E18.5) gestation, alongside characterising the temporal expression pattern of genes encoding glycogenesis and glycogenolysis pathway enzymes. To assess the potential of the placenta to produce glucose, we investigated the spatiotemporal expression of glucose 6-phosphatase by qPCR and in situ hybridisation. Separate analyses were undertaken for placentas of male and female conceptuses to account for potential sexual dimorphism. RESULTS Placental glycogen stores peak at E15.5, having increased over 5-fold from E12.5, before declining by a similar extent by E18.5. Glycogen stores were 17% higher in male placentas than in females at E15.5. Expression of glycogen branching enzyme (Gbe1) was reduced ~40% towards term. Expression of the glucose 6-phosphatase isoform G6pc3 was enriched in glycogen trophoblast cells and increased towards term. DISCUSSION Reduced expression of Gbe1 suggests a decline in glycogen branching towards term. Expression of G6pc3 by glycogen trophoblasts is consistent with an ability to produce and release glucose from glycogen stores. However, the ultimate destination of the glucose generated from placental glycogen remains to be elucidated.
Collapse
Affiliation(s)
- George A G Roberts
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J Tunster
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
13
|
Yamauchi Y, Nita A, Nishiyama M, Muto Y, Shimizu H, Nakatsumi H, Nakayama KI. Skp2 contributes to cell cycle progression in trophoblast stem cells and to placental development. Genes Cells 2020; 25:427-438. [PMID: 32267063 DOI: 10.1111/gtc.12769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
All trophoblast subtypes of the placenta are derived from trophoblast stem cells (TSCs). TSCs have the capacity to self-renew, but how the proliferation of these cells is regulated in the undifferentiated state has been largely unclear. We now show that the F-box protein Skp2 regulates the proliferation of TSCs and thereby plays a pivotal role in placental development in mice on the C57BL/6 background. The placenta of Skp2-/- mouse embryos on the C57BL/6 background was smaller than that of their Skp2+/+ littermates, with the mutant embryos also manifesting intrauterine growth retardation. Although the Skp2-/- mice were born alive, most of them died before postnatal day 21, presumably as a result of placental defects. Depletion of Skp2 in TSCs cultured in the undifferentiated state resulted in a reduced rate of proliferation and arrest of the cell cycle in G1 phase, indicative of a defect in self-renewal capacity. The cell cycle arrest apparent in Skp2-deficient TSCs was reversed by additional ablation of the cyclin-dependent kinase inhibitor (CKI) p57 but not by that of the CKI p27. Our results thus suggest that Skp2-mediated degradation of p57 is an important determinant of the self-renewal capacity of TSCs during placental development, at least in mice of certain genetic backgrounds.
Collapse
Affiliation(s)
- Yuhei Yamauchi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yoshiharu Muto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
14
|
Klf14 is an imprinted transcription factor that regulates placental growth. Placenta 2019; 88:61-67. [PMID: 31675530 DOI: 10.1016/j.placenta.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Imprinted genes are preferentially expressed from one parentally inherited allele, and many are crucial to the regulation of placental function and fetal growth. Murine Krüppel-like factor 14 (Klf14) is a maternally expressed imprinted transcription factor that is a component of the Mest imprinted gene cluster on mouse chromosome 6. We sought to determine if loss of Klf14 expression alters the course of normal mouse extraembryonic development. We also used high-throughput RNA sequencing (RNAseq) to identify a set of differentially expressed genes (DEGs) in placentas with loss of Klf14. METHODS We generated a Klf14 knockout (Klf14null) mouse using recombineering and transgenic approaches. To identify DEGs in the mouse placenta we compared mRNA transcriptomes derived from 17.5dpc Klf14matKO and wild-type littermate placentas by RNAseq. Candidate DEGs were confirmed with quantitative reverse transcription PCR (qPCR) on an independent cohort of male and female gestational age matched Klf14matKO placentas. RESULTS We found that 17.5dpc placentas inheriting a maternal null allele (Klf14matKO) had a modest overgrowth phenotype and a near complete ablation of Klf14 expression. However, there was no effect on fetal growth. We identified 20 DEGs differentially expressed in Klf14matKO placentas by RNAseq, and subsequently validated five that are highly upregulated (Begain, Col26a1, Fbln5, Gdf10, and Nell1) by qPCR. The most enriched functional gene-networks included those classified as regulating cellular development and metabolism. CONCLUSION These results suggest that loss of the maternal Klf14 locus in the mouse placenta acts results in changes in gene expression patterns that modulate placental growth.
Collapse
|
15
|
De Clercq K, Persoons E, Napso T, Luyten C, Parac-Vogt TN, Sferruzzi-Perri AN, Kerckhofs G, Vriens J. High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proc Natl Acad Sci U S A 2019; 116:13927-13936. [PMID: 31249139 PMCID: PMC6683600 DOI: 10.1073/pnas.1902688116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic engineering of the mouse genome identified many genes that are essential for embryogenesis. Remarkably, the prevalence of concomitant placental defects in embryonic lethal mutants is highly underestimated and indicates the importance of detailed placental analysis when phenotyping new individual gene knockouts. Here we introduce high-resolution contrast-enhanced microfocus computed tomography (CE-CT) as a nondestructive, high-throughput technique to evaluate the 3D placental morphology. Using a contrast agent, zirconium-substituted Keggin polyoxometalate (Zr-POM), the soft tissue of the placenta (i.e., different layers and cell types and its vasculature) was imaged with a resolution of 3.5 µm voxel size. This approach allowed us to visualize and study early and late stages of placental development. Moreover, CE-CT provides a method to precisely quantify placental parameters (i.e., volumes, volume fraction, ratio of different placental layers, and volumes of specific cell populations) that are crucial for statistical comparison studies. The CE-CT assessment of the 3D morphology of the placentas was validated (i) by comparison with standard histological studies; (ii) by evaluating placentas from 2 different mouse strains, 129S6 and C57BL/6J mice; and (iii) by confirming the placental phenotype of mice lacking phosphoinositol 3-kinase (PI3K)-p110α. Finally, the Zr-POM-based CE-CT allowed for inspection of the vasculature structure in the entire placenta, as well as detecting placental defects in pathologies characterized by embryonic resorption and placental fusion. Taken together, Zr-POM-based CE-CT offers a quantitative 3D methodology to investigate placental development or pathologies.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain & Disease Research, 3000 Leuven, Belgium
| | - Eleonora Persoons
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain & Disease Research, 3000 Leuven, Belgium
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Catherine Luyten
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Department of Materials Science and Engineering, KU Leuven, 3000 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
16
|
Millership SJ, Tunster SJ, Van de Pette M, Choudhury AI, Irvine EE, Christian M, Fisher AG, John RM, Scott J, Withers DJ. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol Metab 2018; 18:97-106. [PMID: 30279096 PMCID: PMC6308027 DOI: 10.1016/j.molmet.2018.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Imprinted genes are crucial for the growth and development of fetal and juvenile mammals. Altered imprinted gene dosage causes a variety of human disorders, with growth and development during these crucial early stages strongly linked with future metabolic health in adulthood. Neuronatin (Nnat) is a paternally expressed imprinted gene found in neuroendocrine systems and white adipose tissue and is regulated by the diet and leptin. Neuronatin expression is downregulated in obese children and has been associated with stochastic obesity in C57BL/6 mice. However, our recent studies of Nnat null mice on this genetic background failed to display any body weight or feeding phenotypes but revealed a defect in glucose-stimulated insulin secretion due to the ability of neuronatin to potentiate signal peptidase cleavage of preproinsulin. Nnat deficiency in beta cells therefore caused a lack of appropriate storage and secretion of mature insulin. METHODS To further explore the potential role of Nnat in the regulation of body weight and adiposity, we studied classical imprinting-related phenotypes such as placental, fetal, and postnatal growth trajectory patterns that may impact upon subsequent adult metabolic phenotypes. RESULTS Here we find that, in contrast to the lack of any body weight or feeding phenotypes on the C57BL/6J background, deletion of Nnat in mice on 129S2/Sv background causes a postnatal growth restriction with reduced adipose tissue accumulation, followed by catch up growth after weaning. This was in the absence of any effect on fetal growth or placental development. In adult 129S2/Sv mice, Nnat deletion was associated with hyperphagia, reduced energy expenditure, and partial leptin resistance. Lack of neuronatin also potentiated obesity caused by either aging or high fat diet feeding. CONCLUSIONS The imprinted gene Nnat plays a key role in postnatal growth, adult energy homeostasis, and the pathogenesis of obesity via catch up growth effects, but this role is dependent upon genetic background.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Simon J Tunster
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | | | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - James Scott
- National Heart and Lung Institute, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
18
|
Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front Endocrinol (Lausanne) 2018; 9:570. [PMID: 30319550 PMCID: PMC6170611 DOI: 10.3389/fendo.2018.00570] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.
Collapse
Affiliation(s)
- Laura Woods
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Vicente Perez-Garcia
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Myriam Hemberger
| |
Collapse
|
19
|
Akison LK, Nitert MD, Clifton VL, Moritz KM, Simmons DG. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence. Placenta 2017; 54:52-58. [PMID: 28117144 DOI: 10.1016/j.placenta.2017.01.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
Normal placental function is essential for optimal fetal growth. Transport of glucose from mother to fetus is critical for fetal nutrient demands and can be stored in the placenta as glycogen. However, the function of this glycogen deposition remains a matter of debate: It could be a source of fuel for the placenta itself or a storage reservoir for later use by the fetus in times of need. While the significance of placental glycogen remains elusive, mounting evidence indicates that altered glycogen metabolism and/or deposition accompanies many pregnancy complications that adversely affect fetal development. This review will summarize histological, biochemical and molecular evidence that glycogen accumulates in a) placentas from a variety of experimental rodent models of perturbed pregnancy, including maternal alcohol exposure, glucocorticoid exposure, dietary deficiencies and hypoxia and b) placentas from human pregnancies with complications including preeclampsia, gestational diabetes mellitus and intrauterine growth restriction (IUGR). These pregnancies typically result in altered fetal growth, developmental abnormalities and/or disease outcomes in offspring. Collectively, this evidence suggests that changes in placental glycogen deposition is a common feature of pregnancy complications, particularly those associated with altered fetal growth.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Clinical Research, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Vicki L Clifton
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4101, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, QLD, 4101, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4101, Australia
| |
Collapse
|
20
|
Tunster SJ, McNamara GI, Creeth HDJ, John RM. Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta. Dev Biol 2016; 418:55-65. [PMID: 27542691 PMCID: PMC5040514 DOI: 10.1016/j.ydbio.2016.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022]
Abstract
Imprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of Trophoblast specific protein alpha (Tpbpa) positive cells in the ectoplacental cone and embryonic failure by E10.5. Tpbpa expression marks the progenitors of some P-TGCs, two additional trophoblast giant cell lineages (spiral artery and canal), the spongiotrophoblast and the glycogen cell lineage. Using a transgenic model, here we show that elevated expression of Ascl2 reduced the number of P-TGC cells by 40%. Elevated Ascl2 also resulted in a marked loss of the spongiotrophoblast and a substantial mislocalisation of glycogen cells into the labyrinth. In addition, Ascl2-Tg placenta contained considerably more placental glycogen than wild type. Glycogen cells are normally located within the junctional zone in close contact with spongiotrophoblast cells, before migrating through the P-TGC layer into the maternal decidua late in gestation where their stores of glycogen are released. The failure of glycogen cells to release their stores of glycogen may explain both the inappropriate accumulation of glycogen and fetal growth restriction observed late in gestation in this model. In addition, using in a genetic cross we provide evidence that Ascl2 requires the activity of a second maternally expressed imprinted gene, Pleckstrin homology-like domain, family a, member 2 (Phlda2) to limit the expansion of the spongiotrophoblast. This "belts and braces" approach demonstrates the importance of genomic imprinting in regulating the size of the placental endocrine compartment for optimal placental development and fetal growth.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - G I McNamara
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK.
| |
Collapse
|
21
|
Tunster SJ, Creeth HDJ, John RM. The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Dev Biol 2015; 409:251-260. [PMID: 26476147 PMCID: PMC4684229 DOI: 10.1016/j.ydbio.2015.10.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/02/2015] [Accepted: 10/11/2015] [Indexed: 02/06/2023]
Abstract
Imprinted genes, which are expressed from a single parental allele in response to epigenetic marks first established in the germline, function in a myriad of processes to regulate mammalian development. Recent work suggests that imprinted genes may regulate the signalling function of the placenta by modulating the size of the endocrine compartment. Here we provide in vivo evidence that this hypothesis is well founded. Elevated expression of the imprinted Pleckstrin homology-like domain, family a, member 2 (Phlda2) gene drives a reduction of the spongiotrophoblast endocrine compartment, diminished placental glycogen and asymmetric foetal growth restriction. Using both loss-of-function and gain-in-expression mouse models, here we further show that Phlda2 exclusively modulates the spongiotrophoblast compartment of the placenta without significantly altering the composition of the trophoblast giant cell endocrine lineages that share a common progenitor with this lineage. Additionally, we show that Phlda2 loss-of-function placentae contain nearly three times more placental glycogen than non-transgenic placentae. Remarkably, relative to a fully wild type scenario, wild type placentae also accumulate excessive glycogen. While loss-of-function of Phlda2 increased both placental weight and placental glycogen, the weight of both mutant and non-transgenic fetuses was lower than that found in a fully wild type scenario indicating that excessive glycogen accumulation comes at the cost of foetal growth. This work firstly highlights a novel signalling function for the spongiotrophoblast in stimulating the global accumulation of placental glycogen. Furthermore, this work suggests that Phlda2 manipulates the placenta's demands for maternal resources, a process that must be tightly regulated by epigenetic marks to ensure optimal foetal growth. Phlda2 specifically restrains development of the spongiotrophoblast. The spongiotrophoblast is a major endocrine compartment of the placenta. The spongiotrophoblast locally and globally boosts glycogen accumulation. Excessive glycogen accumulation is associated with foetal growth restriction. Phlda2 regulates placental demands from maternal resources.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK.
| |
Collapse
|
22
|
Tunster SJ, Van De Pette M, John RM. Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice. Dis Model Mech 2014; 7:1185-91. [PMID: 25085993 PMCID: PMC4174529 DOI: 10.1242/dmm.017079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleckstrin homology-like domain family A member 2 (PHLDA2) is a maternally expressed imprinted gene whose elevated expression has been linked to fetal growth restriction in a number of human studies. In mice, Phlda2 negatively regulates placental growth and limits the accumulation of placental glycogen. We previously reported that a three-copy transgene spanning the Phlda2 locus drove a fetal growth restriction phenotype late in gestation, suggesting a causative role for PHLDA2 in human growth restriction. However, in this mouse model, Phlda2 was overexpressed by fourfold, alongside overexpression of a second imprinted gene, Slc22a18. Here, we genetically isolate the role of Phlda2 in driving late fetal growth restriction in mice. We furthermore show that this Phlda2-driven growth restriction is asymmetrical, with a relative sparing of the brain, followed by rapid catch-up growth after birth, classic features of placental insufficiency. Strikingly, fetal growth restriction showed strain-specific differences, being apparent on the 129S2/SvHsd (129) genetic background and absent on the C57BL6 (BL6) background. A key difference between these two strains is the placenta. Specifically, BL6 placentae possess a more extensive endocrine compartment and substantially greater stores of placental glycogen. Taken together, these data support a direct role for elevated Phlda2 in limiting fetal growth but also suggest that growth restriction only manifests when there is limited placental reserve. These findings should be taken into account in interpreting the results from human studies.
Collapse
Affiliation(s)
- Simon J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
23
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
24
|
Fowden A, Moore T. Maternal-fetal resource allocation: Co-operation and conflict. Placenta 2012; 33 Suppl 2:e11-5. [DOI: 10.1016/j.placenta.2012.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
|
25
|
Generalized disruption of inherited genomic imprints leads to wide-ranging placental defects and dysregulated fetal growth. Dev Biol 2012; 373:72-82. [PMID: 23085235 DOI: 10.1016/j.ydbio.2012.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/21/2023]
Abstract
Monoallelic expression of imprinted genes, including ones solely expressed in the placenta, is essential for normal placental development and fetal growth. To better understand the role of placental imprinting in placental development and fetal growth, we examined conceptuses developing in the absence of maternally derived DNA (cytosine-5-)-methyltransferase 1o (DNMT1o). Absence of DNMT1o results in the partial loss of methylation at imprinted differentially methylated domain (DMD) sequences in the embryo and the placenta. Mid-gestation E9.5 DNMT1o-deficient placentas exhibited structural abnormalities of all tissue layers. At E17.5, all examined placentas had aberrant placental morphology, most notably in the spongiotrophoblast and labyrinth layers. Abnormalities included an expanded volume fraction of spongiotrophoblast tissue with extension of the spongiotrophoblast layer into the labyrinth. Many mutant placentas also demonstrated migration abnormalities of glycogen cells. Additionally, the volume fraction of the labyrinth was reduced, as was the surface area for maternal fetal gas exchange. Despite these placental morphologic abnormalities, approximately one-half of DNMT1o-deficient fetuses survived to late gestation (E17.5). Furthermore, DNMT1o-deficient placentas supported a broad range of fetal growth. The ability of some DNMT1o-deficient and morphologically abnormal placentas to support fetal growth in excess of wild type demonstrates the importance of differential methylation of DMDs and proper imprinting of discrete gene clusters to placental morphogenesis and fetal growth.
Collapse
|