1
|
Wang Y, Pan H, Gong X, Wang Z, Qin X, Zhou S, Zhu C, Hu X, Chen S, Liu H, Jin H, Pang Q, Wu W. CDC123 promotes Hepatocellular Carcinoma malignant progression by regulating CDKAL1. Pathol Res Pract 2024; 254:154987. [PMID: 38237400 DOI: 10.1016/j.prp.2023.154987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.
Collapse
Affiliation(s)
- Yong Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HongTao Pan
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XuanKun Gong
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - ZhiCheng Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - XiLiang Qin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Shuai Zhou
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Chao Zhu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XiaoSi Hu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - ShiLei Chen
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HuiChun Liu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Hao Jin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Qing Pang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| | - WenYong Wu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
2
|
Song N, Deng L, Zeng L, He L, Liu C, Liu L, Fu R. USP9X deubiquitinates and stabilizes CDC123 to promote breast carcinogenesis through regulating cell cycle. Mol Carcinog 2023; 62:1487-1503. [PMID: 37314216 DOI: 10.1002/mc.23591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Cell division cycle 123 (CDC123) has been implicated in a variety of human diseases. However, it remains unclear whether CDC123 plays a role in tumorigenesis and how its abundance is regulated. In this study, we found that CDC123 was highly expressed in breast cancer cells, and its high expression was positively correlated with a poor prognosis. Knowndown of CDC123 impaired the proliferation of breast cancer cells. Mechanistically, we identified a deubiquitinase, ubiquitin-specific peptidase 9, X-linked (USP9X), that could physically interact with and deubiquitinate K48-linked ubiquitinated CDC123 at the K308 site. Therefore, the expression of CDC123 was positively correlated with USP9X in breast cancer cells. In addition, we found that deletion of either USP9X or CDC123 led to altered expression of cell cycle-related genes and resulted in the accumulation of cells population in the G0/G1 phase, thereby suppressing cell proliferation. Treatment with the deubiquitinase inhibitor of USP9X, WP1130 (Degrasyn, a small molecule compound that USP9X deubiquitinase inhibitor), also led to the accumulation of breast cancer cells in the G0/G1 phase, but this effect could be rescued by overexpression of CDC123. Furthermore, our study revealed that the USP9X/CDC123 axis promotes the occurrence and development of breast cancer through regulating the cell cycle, and suggests that it may be a potential target for breast cancer intervention. In conclusion, our study demonstrates that USP9X is a key regulator of CDC123, providing a novel pathway for the maintenance of CDC123 abundance in cells, and supports USP9X/CDC123 as a potential target for breast cancer intervention through regulating the cell cycle.
Collapse
Affiliation(s)
- Nan Song
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Deng
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijie Zeng
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li He
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Liu
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep 2018; 8:11488. [PMID: 30065265 PMCID: PMC6068119 DOI: 10.1038/s41598-018-29852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 01/11/2023] Open
Abstract
S100P has been shown to be a marker for carcinogenesis where its expression in solid tumours correlates with metastasis and a poor patient prognosis. This protein's role in any physiological process is, however, unknown. Here we first show that S100P is expressed both in trophoblasts in vivo as well as in some corresponding cell lines in culture. We demonstrate that S100P is predominantly expressed during the early stage of placental formation with its highest expression levels occurring during the first trimester of gestation, particularly in the invading columns and anchoring villi. Using gain or loss of function studies through overexpression or knockdown of S100P expression respectively, our work shows that S100P stimulates both cell motility and cellular invasion in different trophoblastic and first trimester EVT cell lines. Interestingly, cell invasion was seen to be more dramatically affected than cell migration. Our results suggest that S100P may be acting as an important regulator of trophoblast invasion during placentation. This finding sheds new light on a hitherto uncharacterized molecular mechanism which may, in turn, lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
|
4
|
Protein kinases orchestrate cell cycle regulators in differentiating BeWo choriocarcinoma cells. Mol Cell Biochem 2018; 452:1-15. [PMID: 30051305 DOI: 10.1007/s11010-018-3407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023]
Abstract
Choriocarcinoma, a trophoblastic neoplasia, occurs in women as an incidence of abnormal pregnancy. BeWo choriocarcinoma cells derived from the abnormal placentation are a suitable model system to study the factors associated with differentiation, invasion and other cellular events as an alternative to clinical samples. Many protein kinases orchestrate the complex events of cell cycle and in case of malignancy such regulators are found to be mutated. In the present study, BeWo cells treated with forskolin (Fo) and phorbol 12-myristate 13-acetate (PMA) were used to study the role of PKA (protein kinase A) and PKC (protein kinase C), respectively, on the expression pattern of differentiation-related genes, membrane markers, PKC isoforms and cell cycle regulators. The effect of Fo and PMA on the cell proliferation was assessed. Progressive induction of alkaline phosphatase level and formation of multinucleated differentiated cells were observed in the cells treated with Fo. Exposure of cells to Fo and PMA induced the mRNA transcripts of α-hCG, β-hCG and endoglin and down-regulates E-cadherin at mRNA and protein levels. Synergistic levels of both up- and down-regulated genes/proteins were observed when cells were treated with the combination of Fo and PMA. The mRNA levels of cyclin D1, cyclin E1, p21, Rb, p53, caspase-3 and caspase-8 decreased gradually during differentiation. Fo significantly inhibited the protein levels of PCNA, Rb, PKC-α and PMA stimulated mRNA expression of PKC-ε and PKC-δ. Further, failure in the activation of essential components of the cell cycle machinery caused G2/M phase arrest in differentiating BeWo cells.
Collapse
|
5
|
Inoue K, Hirose M, Inoue H, Hatanaka Y, Honda A, Hasegawa A, Mochida K, Ogura A. The Rodent-Specific MicroRNA Cluster within the Sfmbt2 Gene Is Imprinted and Essential for Placental Development. Cell Rep 2018; 19:949-956. [PMID: 28467908 DOI: 10.1016/j.celrep.2017.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/16/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022] Open
Abstract
MicroRNAs (miRNAs) represent small noncoding RNAs that are involved in physiological and developmental processes by posttranscriptionally inhibiting gene expression. One of the largest miRNA clusters in mice is located in intron 10 of the Sfmbt2 gene, containing 72 miRNA precursor sequences. In this study, we generated mice lacking the entire Sfmbt2 miRNA cluster to elucidate its functions during development. The Sfmbt2 miRNAs were expressed predominantly from the paternal allele in the placenta, as is the host Sfmbt2 gene. Loss of the paternal allele resulted in severely impaired development of the placenta, especially the spongiotrophoblast layer, and frequent lethality or defects of fetuses. The predicted target sequences of the miRNAs and gene expression analysis defined at least nine putative target genes, which function as tumor suppressors or apoptosis inducers. Our study has provided experimental evidence for the indispensable roles of placental miRNAs in trophoblast proliferation and thus fetal development.
Collapse
Affiliation(s)
- Kimiko Inoue
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Michiko Hirose
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiroki Inoue
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Agricultural Science, Faculty of Agriculture, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Yuki Hatanaka
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Arata Honda
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Keiji Mochida
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, BioResource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
6
|
Syndecan-1 Acts as an Important Regulator of CXCL1 Expression and Cellular Interaction of Human Endometrial Stromal and Trophoblast Cells. Mediators Inflamm 2017; 2017:8379256. [PMID: 28293067 PMCID: PMC5331292 DOI: 10.1155/2017/8379256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 01/25/2023] Open
Abstract
Successful implantation of the embryo into the human receptive endometrium is substantial for the establishment of a healthy pregnancy. This study focusses on the role of Syndecan-1 at the embryo-maternal interface, the multitasking coreceptor influencing ligand concentration, release and receptor presentation, and cellular morphology. CXC motif ligand 1, being involved in chemotaxis and angiogenesis during implantation, is of special interest as a ligand of Syndecan-1. Human endometrial stromal cells with and without Syndecan-1 knock-down were decidualized and treated with specific inhibitors to evaluate signaling pathways regulating CXC ligand 1 expression. Western blot analyses of MAPK and Wnt members were performed, followed by analysis of spheroid interactions between human endometrial cells and extravillous trophoblast cells. By mimicking embryo contact using IL-1β, we showed less ERK and c-Jun activation by depletion of Syndecan-1 and less Frizzled 4 production as part of the canonical Wnt pathway. Additionally, more beta-catenin was phosphorylated and therefore degraded after depletion of Syndecan-1. Secretion of CXC motif ligand 1 depends on MEK-1 with respect to Syndecan-1. Regarding the interaction of endometrial and trophoblast cells, the spheroid center-to-center distances were smaller after depletion of Syndecan-1. Therefore, Syndecan-1 seems to affect signaling processes relevant to signaling and intercellular interaction at the trophoblast-decidual interface.
Collapse
|
7
|
Chen X, Bai G, Scholl TO. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes. ACTA ACUST UNITED AC 2016; 3. [PMID: 27500275 PMCID: PMC4975560 DOI: 10.4172/2376-127x.1000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in particular.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Theresa O Scholl
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
8
|
Characterization of the genomic architecture and mutational spectrum of a small cell prostate carcinoma. Genes (Basel) 2014; 5:366-84. [PMID: 24823478 PMCID: PMC4094938 DOI: 10.3390/genes5020366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
We present the use of a series of laboratory, analytical and interpretation methods to investigate personalized cancer care for a case of small cell prostate carcinoma (SCPC), a rare and aggressive tumor with poor prognosis, for which the underlying genomic architecture and mutational spectrum has not been well characterized. We performed both SNP genotyping and exome sequencing of a Virchow node metastasis from a patient with SCPC. A variety of methods were used to analyze and interpret the tumor genome for copy number variation, loss of heterozygosity (LOH), somatic mosaicism and mutations in genes from known cancer pathways. The combination of genotyping and exome sequencing approaches provided more information than either technique alone. The results showed widespread evidence of copy number changes involving most chromosomes including the possible loss of both alleles of CDKN1B (p27/Kip1). LOH was observed for the regions encompassing the tumor suppressors TP53, RB1, and CHD1. Predicted damaging somatic mutations were observed in the retained TP53 and RB1 alleles. Mutations in other genes that may be functionally relevant were noted, especially the recently reported high confidence cancer drivers FOXA1 and CCAR1. The disruption of multiple cancer drivers underscores why SCPC may be such a difficult cancer to manage.
Collapse
|
9
|
Kobayashi Y, Masuda K, Banno K, Kobayashi N, Umene K, Nogami Y, Tsuji K, Ueki A, Nomura H, Sato K, Tominaga E, Shimizu T, Saya H, Aoki D. Glycan profiling of gestational choriocarcinoma using a lectin microarray. Oncol Rep 2014; 31:1121-6. [PMID: 24424471 DOI: 10.3892/or.2014.2979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/09/2013] [Indexed: 11/05/2022] Open
Abstract
Glycosylation is an important post-translational modification, in which attachment of glycans to proteins has effects on biological functions and carcinogenesis. Analysis of human chorionic gonadotropin, a glycoprotein hormone produced by placental trophoblasts and trophoblastic tumors, has contributed to the diagnosis and treatment of trophoblastic disease, resulting in reduced incidence and mortality. However, alterations of the glycan structure itself in choriocarcinoma have not been characterized. We established a new choriocarcinoma cell line, induced choriocarcinoma cell-1 (iC3-1), which mimics the clinical pathohistology in vivo, to examine the tumorigenesis and pathogenesis of choriocarcinoma. In this study, the alterations of glycan structures in the development of choriocarcinoma were examined by performance of comprehensive glycan profiling in clinical samples and in iC3-1 cells using a conventional microarray and the recently introduced lectin microarray. Microarray comparison showed significant upregulation of several characteristic glycogenes in the iC3-1 cells as compared to the parental HTR8/SVneo cells. The lectin array showed increased α-2-6-sialic acid, Galβ1-4GlcNAc, GlcNAcβ1-3GalNAc, and decreased α-1-6 core fucose, high mannose, GalNacβ1-4Gal, GALNAc (Tn antigen) and Galβ1-3Gal in choriocarcinoma tissue compared to normal villi. This is the first report of a lectin array analysis in choriocarcinoma and provides useful information for understanding of the disease.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Nana Kobayashi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kosuke Tsuji
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Arisa Ueki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kenji Sato
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Takatsune Shimizu
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|