1
|
Kosicka-Noworzyń K, Romaniuk-Drapała A, Sheng YH, Yohn C, Brunetti L, Kagan L. Obesity-related drug transporter expression alterations in human liver and kidneys. Pharmacol Rep 2024; 76:1429-1442. [PMID: 39412582 PMCID: PMC11582170 DOI: 10.1007/s43440-024-00665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Pathophysiological changes associated with obesity might impact various drug pharmacokinetics (PK) parameters. The liver and kidneys are the primary organs involved in drug clearance, and the function of hepatic and renal transporters is critical to efficient drug elimination (or reabsorption). Considering the impact of an increased BMI on the drug's PK is crucial in directing dosing decisions. Given the critical role of transporters in drug biodisposition, this study investigated how overweight and obesity affect the gene expression of renal and hepatic drug transporters. METHODS Human liver and kidney samples were collected post-mortem from 32 to 28 individuals, respectively, which were divided into the control group (lean subjects; 18.5 ≤ BMI < 25 kg/m2) and the study group (overweight/obese subjects; BMI ≥ 25 kg/m2). Real-time quantitative PCR was performed for the analysis of 84 drug transporters. RESULTS Our results show significant changes in the expression of genes involved in human transporters, both renal and hepatic. In liver tissue, we found that ABCC4 was up-regulated in overweight/obese subjects. In kidney tissue, up-regulation was only observed for ABCC10, while the other differentially expressed genes were down-regulated: ABCA1, ABCC3, and SLC15A1. CONCLUSIONS The observed alterations may be reflected by the differences in drug PK between lean and obese populations. However, these findings need further evaluation through the proteomic and functional study of these transporters in this patient population.
Collapse
Affiliation(s)
- Katarzyna Kosicka-Noworzyń
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Yi-Hua Sheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
2
|
Li Y, Ma L, He R, Teng F, Qin X, Liang X, Wang J. Pregnancy Metabolic Adaptation and Changes in Placental Metabolism in Preeclampsia. Geburtshilfe Frauenheilkd 2024; 84:1033-1042. [PMID: 39524034 PMCID: PMC11543110 DOI: 10.1055/a-2403-4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pregnancy is a unique physiological state in which the maternal body undergoes a series of changes in the metabolism of glucose, lipids, amino acids, and other nutrients in order to adapt to the altered state of pregnancy and provide adequate nutrients for the fetus' growth and development. The metabolism of various nutrients is regulated by one another in order to maintain homeostasis in the body. Failure to adapt to the altered physiological conditions of pregnancy can lead to a range of pregnancy issues, including fetal growth limitation and preeclampsia. A failure of metabolic adaptation during pregnancy is linked to the emergence of preeclampsia. The treatment of preeclampsia by focusing on metabolic changes may provide new therapeutic alternatives.
Collapse
Affiliation(s)
- Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ling Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fei Teng
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Jing Wang
- The First Clinical Medical College of Lanzhou University, the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| |
Collapse
|
3
|
Liu K, Chen Z, Hu W, He B, Xu D, Guo Y, Wang H. Intrauterine developmental origin, programming mechanism, and prevention strategy of fetal-originated hypercholesterolemia. Obes Rev 2024; 25:e13672. [PMID: 38069529 DOI: 10.1111/obr.13672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 02/28/2024]
Abstract
There is increasing evidence that hypercholesterolemia has an intrauterine developmental origin. However, the pathogenesis of fetal-originated is still lacking in a theoretical system, which makes its clinical early prevention and treatment difficult. It has been found that an adverse environment during pregnancy (e.g., xenobiotic exposure) may lead to changes in fetal blood cholesterol levels through changing maternal cholesterol metabolic function and/or placental cholesterol transport function and may also directly affect the liver cholesterol metabolic function of the offspring in utero and continue after birth. Adverse environmental conditions during pregnancy may also raise maternal glucocorticoid levels and promote the placental glucocorticoid barrier opening, leading to fetal overexposure to maternal glucocorticoids. Intrauterine high-glucocorticoid exposure can alter the liver cholesterol metabolism of offspring, resulting in an increased susceptibility to hypercholesterolemia after birth. Abnormal epigenetic modifications are involved in the intrauterine programming mechanism of fetal-originated hypercholesterolemia. Some interventions targeted at pregnant mothers or offspring in early life have been proposed to effectively prevent and treat the development of fetal-originated hypercholesterolemia. In this paper, the recent research progress on fetal-originated hypercholesterolemia was reviewed, with emphasis on intrauterine maternal glucocorticoid programming mechanisms, in order to provide a theoretical basis for its early clinical warning, prevention, and treatment.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
4
|
Fuenzalida B, Yañez MJ, Mueller M, Mistry HD, Leiva A, Albrecht C. Evidence for hypoxia-induced dysregulated cholesterol homeostasis in preeclampsia: Insights into the mechanisms from human placental cells and tissues. FASEB J 2024; 38:e23431. [PMID: 38265294 PMCID: PMC10953329 DOI: 10.1096/fj.202301708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE. This study investigates the influence of hypoxia on placental cholesterol homeostasis. Using primary human trophoblast cells and placentae from women with PE, various aspects of cholesterol homeostasis were examined under hypoxic and hypoxia/reoxygenation (H/R) conditions. Under hypoxia and H/R, intracellular total and non-esterified cholesterol levels were significantly increased. This coincided with an upregulation of HMG-CoA-reductase and HMG-CoA-synthase (key genes regulating cholesterol biosynthesis), and a decrease in acetyl-CoA-acetyltransferase-1 (ACAT1), which mediates cholesterol esterification. Hypoxia and H/R also increased the intracellular levels of reactive oxygen species and elevated the expression of hypoxia-inducible factor (HIF)-2α and sterol-regulatory-element-binding-protein (SREBP) transcription factors. Additionally, exposure of trophoblasts to hypoxia and H/R resulted in enhanced cholesterol efflux to maternal and fetal serum. This was accompanied by an increased expression of proteins involved in cholesterol transport such as the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette transporter G1 (ABCG1). Despite these metabolic alterations, mitogen-activated-protein-kinase (MAPK) signaling, a key regulator of cholesterol homeostasis, was largely unaffected. Our findings indicate dysregulation of cholesterol homeostasis at multiple metabolic points in both the trophoblast hypoxia model and placentae from women with PE. The increased cholesterol efflux and intracellular accumulation of non-esterified cholesterol may have critical implications for both the mother and the fetus during pregnancy, potentially contributing to an elevated cardiovascular risk later in life.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Maria Jose Yañez
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Martin Mueller
- Division of Gynecology and ObstetricsLindenhofgruppeBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Hiten D. Mistry
- Department of Women and Children's HealthSchool of Life Course and Population Health Sciences, King's College LondonLondonUK
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
- Swiss National Center of Competence in Research, NCCR TransCureUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Perić M, Horvatiček M, Tandl V, Bečeheli I, Majali-Martinez A, Desoye G, Štefulj J. Glucose, Insulin and Oxygen Modulate Expression of Serotonin-Regulating Genes in Human First-Trimester Trophoblast Cell Line ACH-3P. Biomedicines 2023; 11:1619. [PMID: 37371714 DOI: 10.3390/biomedicines11061619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin signaling plays an important role in regulating development and functions of the placenta. We hypothesized that metabolic disturbances associated with maternal obesity and/or gestational diabetes mellitus (GDM) affect placental serotonin homeostasis. Therefore, we examined the effects of high glucose (25 mM) and insulin (10 nM)-two hallmarks of maternal obesity and GDM-on mRNA expression of key regulators of serotonin homeostasis, including serotonin transporter (SERT), tryptophan hydroxylase 1 (TPH1), and monoamine oxidase A (MAOA), in the first-trimester trophoblast cell line ACH-3P, focusing on oxygen levels characteristic of early human placental development. Glucose downregulated expression of SERT and MAOA independently of oxygen level and upregulated expression of TPH1 at 6.5% oxygen but not at 2.5% oxygen. Compared to 6.5% oxygen, 2.5% oxygen upregulated SERT and downregulated TPH1 expression, with no effect on MAOA expression. Insulin upregulated SERT only at 2.5% oxygen but had no effect on TPH1 and MAOA expression. These results suggest that maternal metabolic alterations in early pregnancy may be a driving force for changes in placental serotonin homeostasis.
Collapse
Affiliation(s)
- Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Veronika Tandl
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Liu S, Guan L, Liu X, Fan P, Zhou M, Wu Y, Liu R, Tang F, Wang Y, Li D, Bai H. ATP-binding cassette transporter G1 (ABCG1) polymorphisms in pregnant women with gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol 2023; 287:20-28. [PMID: 37270990 DOI: 10.1016/j.ejogrb.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT AND OBJECTIVES Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnancy, and it often leads to adverse pregnancy outcomes and seriously harms the health of mothers and infants. ATP-binding cassette transporter G1 (ABCG1) plays critical roles in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport. This study was designed to explore the relevance of the ABCG1 polymorphisms in the atherometabolic risk in GDM. STUDY DESIGN The case-control population consists of 1504 subjects. The rs2234715 and rs57137919 single nucleotide polymorphisms (SNPs) were genotyped using PCR and DNA sequencing, and clinical and metabolic parameters were determined. RESULTS The genotype distributions of the two SNPs showed no difference between the GDM patient and control groups. However, the rs57137919 polymorphism was associated with total cholesterol (TC), and diastolic blood pressure (DBP) levels in patients with GDM. Moreover, subgroup analysis showed that this polymorphism was associated with ApoA1 and DBP levels in overweight/obese patients with GDM, while it was associated with TC, and gestational weight gain (GWG) in non-obese patients with GDM. Meanwhile, the rs2234715 polymorphism was found to be associated with neonatal birth height in non-obese patients with GDM. CONCLUSIONS The two polymorphisms in the ABCG1 have an influence on atherometabolic traits, GWG, and fetal growth in GDM, depending on the BMI of the patients.
Collapse
Affiliation(s)
- Sixu Liu
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; West China School of Nursing, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Linbo Guan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Mi Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yujie Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Rui Liu
- Division of Peptides Related with Human Disease, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fangmei Tang
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; West China School of Nursing, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yufeng Wang
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dehua Li
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; West China School of Nursing, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
7
|
Wolski H, Ożarowski M, Kurzawińska G, Bogacz A, Wolek M, Łuszczyńska M, Drews K, Mrozikiewicz AE, Mikołajczak PŁ, Kujawski R, Czerny B, Karpiński TM, Seremak-Mrozikiewicz A. Expression of ABCA1 Transporter and LXRA/LXRB Receptors in Placenta of Women with Late Onset Preeclampsia. J Clin Med 2022; 11:4809. [PMID: 36013052 PMCID: PMC9410380 DOI: 10.3390/jcm11164809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Appropriate levels of cholesterol are necessary for the mother and developing fetus, but theirexcess may cause preeclampsia. The ABCA1 transporter mediates the secretion of cholesterol and is highly regulated at the transcriptional level via the nuclear liver X receptors (LXRs). METHODS Sixteen preeclamptic and 39 normotensives healthy women with uncomplicated pregnancies were involved in the case-control study. The placental levels of ABCA1, LXRA and LXRB mRNA were quantified by real-time quantitative PCR. The concentrations of ABCA1, LXRA and LXRB proteins from the placenta were determined using an enzyme-linked immunosorbent assay Results: We found in the logistic regression model significantly lower placental expression of LXRB mRNA (crude OR = 0.26, 95% CI: 0.07-0.94, p = 0.040) and LXRA protein level (crude OR = 0.19, 95% CI: 0.05-0.69, p = 0.012) in late-onset preeclamptic women compared to healthy pregnant women. The values remained statistically significant after adjustment for possible confounders. CONCLUSIONS Our results suggest that high placenta LXRA mRNA and LXRA protein expression levels decrease the risk of late-onset preeclampsia. These nuclear receptors could play a role in the development of preeclampsia through disturbances of lipid metabolism.
Collapse
Affiliation(s)
- Hubert Wolski
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Division of Obstetrics and Gynecology, Poviat Hospital, 34-500 Zakopane, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Grażyna Kurzawińska
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Marlena Wolek
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Małgorzata Łuszczyńska
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Krzysztof Drews
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra E. Mrozikiewicz
- Department of Infertility and Reproductive Endocrinology, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Radosław Kujawski
- Department of Pharmacology, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Bogusław Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
8
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
9
|
Sethuraman V, Pu Y, Gingrich J, Jing J, Long R, Olomu IN, Veiga-Lopez A. Expression of ABC transporters during syncytialization in preeclampsia. Pregnancy Hypertens 2022; 27:181-188. [PMID: 35124425 PMCID: PMC9017055 DOI: 10.1016/j.preghy.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia complicates 2-8% of pregnancies and is associated with prematurity and intrauterine growth restriction. Cholesterol and sterol transport is a key function of the placenta and it is elicited through ATP binding cassette (ABC) transporters. ABCA1 expression changes during trophoblast cell fusion, a process required to form the placental syncytium that enables maternal-fetal nutrient transfer. ABCA1 expression is dysregulated in preeclamptic placentas. But whether ABC transporters expression during trophoblast fusion is disrupted in preeclampsia remains unknown. We investigated if cholesterol and sterol ABC transporters are altered in term and preterm preeclampsia placentas and during human cytotrophoblast syncytialization. Human placental biopsies were collected from healthy term (≥37 weeks; n = 11) and term preeclamptic (≥36 6/7 weeks; n = 8) and pre-term preeclamptic (28-35 weeks; n = 8) pregnancies. Both, protein and mRNA expression for ABCA1, ABCG1, ABCG5, and ABCG8 were evaluated. Primary cytotrophoblasts isolated from a subset of placentas were induced to syncytialize for 96 h and ABCA1, ABCG1 and ABCG8 mRNA expression evaluated at 0 h and 96 h. Protein and gene expression of ABC transporters were not altered in preeclamptic placentas. In the healthy Term group, ABCA1 expression was similar before and after syncytialization. After 96 h of syncytialization, mRNA expression of ABCA1 and ABCG1 increased significantly, while ABCG8 decreased significantly in term-preeclampsia, but not pre-term preeclampsia. While placental expression of ABCA1 and ABCG1 remained unaltered in term preeclampsia, the disruption in their dynamic expression pattern during cytotrophoblast syncytialization suggests that cholesterol transport may contribute to the pathophysiologic role of the placenta in preeclampsia.
Collapse
Affiliation(s)
- Visalakshi Sethuraman
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago
| | - Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Jiongjie Jing
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Robert Long
- Department of Obstetrics and Gynecology, Sparrow Health System, East Lansing, Michigan, USA
| | - Isoken Nicholas Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, USA; Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Aye IL, Aiken CE, Charnock-Jones DS, Smith GC. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 2022; 226:S928-S944. [PMID: 33189710 DOI: 10.1016/j.ajog.2020.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.
Collapse
|
11
|
Kleinbrink EL, Gomez-Lopez N, Ju D, Done B, Goustin AS, Tarca AL, Romero R, Lipovich L. Gestational Age Dependence of the Maternal Circulating Long Non-Coding RNA Transcriptome During Normal Pregnancy Highlights Antisense and Pseudogene Transcripts. Front Genet 2021; 12:760849. [PMID: 34880903 PMCID: PMC8645989 DOI: 10.3389/fgene.2021.760849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
In the post-genomic era, our understanding of the molecular regulators of physiologic and pathologic processes in pregnancy is expanding at the whole-genome level. Longitudinal changes in the known protein-coding transcriptome during normal pregnancy, which we recently reported (Gomez-Lopez et al., 2019), have improved our definition of the major operant networks, yet pregnancy-related functions of the non-coding RNA transcriptome remain poorly understood. A key finding of the ENCODE (Encyclopedia of DNA Elements) Consortium, the successor of the Human Genome Project, was that the human genome contains approximately 60,000 genes, the majority of which do not encode proteins. The total transcriptional output of non-protein-coding RNA genes, collectively referred to as the non-coding transcriptome, is comprised mainly of long non-coding RNA (lncRNA) transcripts (Derrien et al., 2012). Although the ncRNA transcriptome eclipses its protein-coding counterpart in abundance, it has until recently lacked a comprehensive, unbiased, genome-scale characterization over the timecourse of normal human pregnancy. Here, we annotated, characterized, and selectively validated the longitudinal changes in the non-coding transcriptome of maternal whole blood during normal pregnancy to term. We identified nine long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs) as well as lncRNAs antisense to or otherwise in the immediate vicinity of protein-coding genes, that were differentially expressed with advancing gestation in normal pregnancy: AL355711, BC039551 (expressed mainly in the placenta), JHDM1D-AS1, A2M-AS1, MANEA-AS1, NR_034004, LINC00649, LINC00861, and LINC01094. By cross-referencing our dataset against major public pseudogene catalogs, we also identified six transcribed pseudogenes that were differentially expressed over time during normal pregnancy in maternal blood: UBBP4, FOXO3B, two Makorin (MKRN) pseudogenes (MKRN9P and LOC441455), PSME2P2, and YBX3P1. We also identified three non-coding RNAs belonging to other classes that were modulated during gestation: the microRNA MIR4439, the small nucleolar RNA (snoRNA) SNORD41, and the small Cajal-body specific ncRNA SCARNA2. The expression profiles of most hits were broadly suggestive of functions in pregnancy. These time-dependent changes of the non-coding transcriptome during normal pregnancy, which may confer specific regulatory impacts on their protein-coding gene targets, will facilitate a deeper molecular understanding of pregnancy and lncRNA-mediated molecular pathways at the maternal-fetal interface and of how these pathways impact maternal and fetal health.
Collapse
Affiliation(s)
- Erica L Kleinbrink
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
| | - Anton-Scott Goustin
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Detroit Medical Center, Detroit, MI, United States
| | - Leonard Lipovich
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
12
|
Dysregulated Autophagy Leads to Oxidative Stress and Aberrant Expression of ABC Transporters in Women with Early Miscarriage. Antioxidants (Basel) 2021; 10:antiox10111742. [PMID: 34829614 PMCID: PMC8614945 DOI: 10.3390/antiox10111742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Early miscarriage (EMC) is a devastating obstetrical complication. ATP-binding cassette (ABC) transporters mediate cholesterol transfer across the placenta and enhance cell survival by effluxing substrates from target cells in the presence of stressors. Recent evidence reports an intricate interplay between autophagy and ABC transporters. We hypothesized that dysregulated autophagy and oxidative stress (OS) in the placenta leads to abnormal expression of membrane transporters contributing to poor pregnancy survival in EMC. We determined mRNA and protein expression of autophagy genes (Beclin-1/Bcl-2/LC3I/LC3II/p62) and ABC transporters (ABCA1/ABCG1/ABCG2) in placentae from EMC patients (n = 20), term controls (n = 19), first trimester (n = 6), and term controls (n = 5) controls. Oxidative/antioxidant status and biomarkers of oxidative damage were evaluated in maternal serum and placentae from EMC and healthy controls. In EMC, placental expression of LC3II/LC3I as well as of the key autophagy regulatory proteins Beclin-1 and Bcl-2 were reduced, whereas p62 was increased. Both in the serum and placentae of EMC patients, total OS was elevated reflected by increased oxidative damage markers (8-OHdG/malondialdehyde/carbonyl formation) accompanied by diminished levels of total antioxidant status, catalase, and total glutathione. Furthermore, we found reduced ABCG1 and increased ABCG2 expression. These findings suggest that a decreased autophagy status triggers Bcl-2-dependent OS leading to macromolecule damage in EMC placentae. The decreased expression of ABCG1 contributes to reduced cholesterol export to the growing fetus. Increasing ABCG2 expression could represent a protective feedback mechanism under inhibited autophagy conditions. In conclusion, dysregulated autophagy combined with increased oxidative toxicity and aberrant expression of placental ABC transporters affects materno-fetal health in EMC.
Collapse
|
13
|
Low CETP activity and unique composition of large VLDL and small HDL in women giving birth to small-for-gestational age infants. Sci Rep 2021; 11:6213. [PMID: 33737686 PMCID: PMC7973737 DOI: 10.1038/s41598-021-85777-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) regulates high density lipoproteins (HDL)-cholesterol (C) and HDL-C is essential for fetal development. We hypothesized that women giving birth to large-for-gestational-age (LGA) and small-for-gestational age (SGA) infants differed in longitudinal changes in lipoproteins, CETP activity and HDL-C and that placentas from women with higher or lower circulating HDL-C displayed differential expression of mRNAs involved in cholesterol/nutrient transport, insulin signaling, inflammation/ extracellular matrix (ECM) remodeling. Circulating lipids and CETP activity was measured during pregnancy, NMR lipidomics in late pregnancy, and associations with LGA and SGA infants investigated. RNA sequencing was performed in 28 placentas according to higher and lower maternal HDL-C levels. Lipidomics revealed high triglycerides in large VLDL and lipids/cholesterol/cholesteryl esters in small HDL in women giving birth to SGA infants. Placentas from women with higher HDL-C had decreased levels of CETP expression which was associated with mRNAs involved in cholesterol/nutrient transport, insulin signaling and inflammation/ECM remodeling. Both placental and circulating CETP levels were associated with growth of the fetus. Low circulating CETP activity at 36–38 weeks was associated with giving birth to SGA infants. Our findings suggest a link between increased maternal HDL-C levels, low CETP levels both in circulation and placenta, and SGA infants.
Collapse
|
14
|
Materno-fetal cholesterol transport during pregnancy. Biochem Soc Trans 2021; 48:775-786. [PMID: 32369555 DOI: 10.1042/bst20190129] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Cholesterol is a major nutrient required for fetal growth. It is also a precursor for the synthesis of steroid hormones and essential for the development and maturation of fetal organs. During pregnancy, the placenta controls the transport of cholesterol from the mother to the fetus and vice versa. Cholesterol originating from the maternal circulation has to cross two main membrane barriers to reach the fetal circulation: Firstly, cholesterol is acquired by the apical side of the syncytiotrophoblast (STB) from the maternal circulation as high-density lipoprotein (HDL)-, low-density lipoprotein (LDL)- or very-low-density lipoprotein (VLDL)-cholesterol and secreted at the basal side facing the villous stroma. Secondly, from the villous stroma cholesterol is taken up by the endothelium of the fetal vasculature and transported to the fetal vessels. The proteins involved in the uptake of HDL-, LDL-, VLDL- or unesterified-cholesterol are scavenger receptor type B class 1 (SR-B1), cubulin, megalin, LDL receptor (LDLR) or Niemann-Pick-C1 (NPC1) which are localized at the apical and/or basal side of the STB or at the fetal endothelium. Through interaction with apolipoproteins (e.g. apoA1) cholesterol is effluxed either to the maternal or fetal circulation via the ATP-binding-cassette (ABC)-transporter A1 and ABCG1 localized at the apical/basal side of the STB or the endothelium. In this mini-review, we summarize the transport mechanisms of cholesterol across the human placenta, the expression and localization of proteins involved in the uptake and efflux of cholesterol, and the expression pattern of cholesterol transport proteins in pregnancy pathologies such as pre-eclampsia, gestational diabetes mellitus and intrauterine growth retardation.
Collapse
|
15
|
Coats LE, Bamrick-Fernandez DR, Ariatti AM, Bakrania BA, Rawls AZ, Ojeda NB, Alexander BT. Stimulation of soluble guanylate cyclase diminishes intrauterine growth restriction in a rat model of placental ischemia. Am J Physiol Regul Integr Comp Physiol 2020; 320:R149-R161. [PMID: 33175587 DOI: 10.1152/ajpregu.00234.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Placental ischemia in preeclampsia (PE) results in hypertension and intrauterine growth restriction (IUGR). Stimulation of soluble guanylate cyclase (sGC) reduces blood pressure in the clinically relevant reduced uterine perfusion pressure (RUPP) rat model of PE, implicating involvement in RUPP-induced hypertension. However, the contribution of sGC in the development of IUGR in PE is not known. Thus, this study demonstrated the efficacy of Riociguat, an sGC stimulator, in IUGR reversion in the RUPP rat model of PE, and tested the hypothesis that improvement in fetal weight occurs in association with improvement in placental perfusion, placental morphology, and placental nutrient transport protein expression. Sham or RUPP surgery was performed at gestational day 14 (G14) with administration of vehicle (Sham or RUPP) or the sGC stimulator (Riociguat, 10 mg/kg/day sc; sGC-treated) until G20. Fetal weight was reduced (P = 0.004) at G20 in RUPP but not in sGC-treated RUPP compared with Sham, the control group. At G20, uterine artery resistance index (UARI) was increased (P = 0.010) in RUPP, indicating poor placental perfusion; proportional junctional zone surface area was elevated (P = 0.035), indicating impaired placental development. These effects were ameliorated in sGC-treated RUPP. Placental protein expression of nutrient transporter heart fatty acid-binding protein (hFABP) was increased (P = 0.008) in RUPP but not in sGC-treated RUPP, suggesting a compensatory mechanism to maintain normal neurodevelopment. Yet, UARI (P < 0.001), proportional junctional zone surface area (P = 0.013), and placental hFABP protein expression (P = 0.008) were increased in sGC-treated Sham, suggesting a potential adverse effect of Riociguat. Collectively, these results suggest sGC contributes to IUGR in PE.
Collapse
Affiliation(s)
- Laura E Coats
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Allison M Ariatti
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bhavisha A Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
16
|
Silva GB, Gierman LM, Rakner JJ, Stødle GS, Mundal SB, Thaning AJ, Sporsheim B, Elschot M, Collett K, Bjørge L, Aune MH, Thomsen LCV, Iversen AC. Cholesterol Crystals and NLRP3 Mediated Inflammation in the Uterine Wall Decidua in Normal and Preeclamptic Pregnancies. Front Immunol 2020; 11:564712. [PMID: 33117348 PMCID: PMC7578244 DOI: 10.3389/fimmu.2020.564712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a hypertensive and inflammatory pregnancy disorder associated with cholesterol accumulation and inflammation at the maternal-fetal interface. Preeclampsia can be complicated with fetal growth restriction (FGR) and shares risk factors and pathophysiological mechanisms with cardiovascular disease. Cholesterol crystal mediated NLRP3 inflammasome activation is central to cardiovascular disease and the pathway has been implicated in placental inflammation in preeclampsia. Direct maternal-fetal interaction occurs both in the uterine wall decidua and at the placental surface and these aligned sites constitute the maternal-fetal interface. This study aimed to investigate cholesterol crystal accumulation and NLRP3 inflammasome expression by maternal and fetal cells in the uterine wall decidua of normal and preeclamptic pregnancies. Pregnant women with normal (n = 43) and preeclamptic pregnancies with (n = 28) and without (n = 19) FGR were included at delivery. Cholesterol crystals were imaged in decidual tissue by both second harmonic generation microscopy and polarization filter reflected light microscopy. Quantitative expression analysis of NLRP3, IL-1β and cell markers was performed by immunohistochemistry and automated image processing. Functional NLRP3 activation was assessed in cultured decidual explants. Cholesterol crystals were identified in decidual tissue, both in the tissue stroma and near uterine vessels. The cholesterol crystals in decidua varied between pregnancies in distribution and cluster size. Decidual expression of the inflammasome components NLRP3 and IL-1β was located to fetal trophoblasts and maternal leukocytes and was strongest in areas of proximity between these cell types. Pathway functionality was confirmed by cholesterol crystal activation of IL-1β in cultured decidual explants. Preeclampsia without FGR was associated with increased trophoblast dependent NLRP3 and IL-1β expression, particularly in the decidual areas of trophoblast and leukocyte proximity. Our findings suggest that decidual accumulation of cholesterol crystals may activate the NLRP3 inflammasome and contribute to decidual inflammation and that this pathway is strengthened in areas with close maternal-fetal interaction in preeclampsia without FGR.
Collapse
Affiliation(s)
- Gabriela Brettas Silva
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim, Norway
| | - Lobke Marijn Gierman
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim, Norway
| | - Johanne Johnsen Rakner
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro Sannerud Stødle
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siv Boon Mundal
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Josefin Thaning
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Karin Collett
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marie Hjelmseth Aune
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
17
|
Ding N, Liu N, Yang L, Han X, Lin L, Long Y. ABCA1 plays an anti-inflammatory role by affecting TLR4 at the feto-maternal interface. Life Sci 2020; 259:118390. [PMID: 32896556 DOI: 10.1016/j.lfs.2020.118390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
AIMS This study aimed to evaluate the function and pathway of ATP-binding cassette transporter member A1 (ABCA1)-induced anti-inflammatory response in cells at the feto-maternal interface. MAIN METHODS The primary amniotic mesenchymal cells (AMCs), chorion cells and decidual cells were isolated from placental membranes of women with uncomplicated pregnancies at full-term (not in labor) using enzymatic digestion. Flow cytometry was used to measure the purity of isolated cells. Immunofluorescence assay was performed to detect the location of ABCA1 and toll-like receptor 4 (TLR4). Reverse transcription PCR and western blotting analyses were used to examine ABCA1, TLR4 and inflammatory factor expression in primary cells. ELISA was used to detect cytokine secretions from the primary cells. KEY FINDINGS ABCA1 and TLR4 were mainly located in the cell nucleus and cytoplasm of feto-maternal interface cells. ABCA1 expression remained the highest in chorion cells, medium in decidual cells, and weakest in AMCs. Upregulated expression of ABCA1 decreased expression of TLR4 and the levels of pro-inflammatory factors, but increased cytoprotective factors in all cell types. In contrast, downregulated expression of ABCA1 increased the expression of TLR4 and pro-inflammatory factors, but decreased the levels of cytoprotective factors. Downregulated ABCA1 expression followed by decreased TLR4 expression using a small interference RNA (siRNA) induced reduction of interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) in all cell types. SIGNIFICANCE ABCA1 at feto-maternal interface acts as an anti-inflammatory role by reducing the expression of TLR4 in uncomplicated pregnancies. ABCA1 might be a potential therapeutic target for preventing gestational diseases.
Collapse
Affiliation(s)
- Ning Ding
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Na Liu
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Lei Yang
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Xiaoyan Han
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Li Lin
- Department of Gynecology and Obstetrics, Peking University International Hospital, Beijing 102206, China
| | - Yan Long
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China.
| |
Collapse
|
18
|
Feng Y, Qu X, Chen Y, Feng Q, Zhang Y, Hu J, Li X. MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR. Reprod Biol Endocrinol 2020; 18:61. [PMID: 32505219 PMCID: PMC7275540 DOI: 10.1186/s12958-020-00618-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common medical complication associated with pregnancy, which may impose risks on both mother and fetus. Micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) are implied as vital regulators in GDM. A recent paper revealed dysregulation of miR-33a-5p in placental tissues of GDM patients. However, the biological function of miR-33a-5p in GDM remains elusive. This study focused on exploring the function and underlying mechanisms of miR-33a-5p in GDM. METHODS 12 GDM pregnancies and 12 healthy pregnancies were enrolled in the study. INS-1 cell line was applied in in vitro experiments. The expression levels of miR-33a-5p, lnc-DANCR (Differentiation Antagonizing Non-Protein Coding RNA), and ABCA1 (ATP-binding cassette transporter 1) mRNA were determined by RT-qPCR assay. Glucose and insulin levels were measured by ELISA assay. Luciferase reporter assay and western blot assay were applied to validate the target of miR-33a-5p. RESULTS miR-33a-5p was upregulated in the blood samples from GDM, and was positively correlated with blood glucose (p < 0.0001). Overexpression or inhibition of miR-33a-5p significantly inhibited or promoted cell growth and insulin production of INS-1 cells (p < 0.01). Furthermore, ABCA1 is a direct target of miR-33a-5p, and lnc-DANCR functions as a sponge for miR-33a-5p to antagonize the function of miR-33a-5p in INS-1 cells. CONCLUSION Our study demonstrated that lnc-DANCR-miR-33a-5p-ABCA1 signaling cascade plays a crucial role in the regulation of the cellular function of INS-1 cells.
Collapse
Affiliation(s)
- Yan Feng
- grid.440323.2Department of Clinical Nutrition, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Xin Qu
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Yu Chen
- Department of Gynecology, Penglai People’s Hospital, No. 89, Xianhou Road, Penglai, 265600 Shandong China
| | - Qi Feng
- grid.460007.50000 0004 1791 6584Department of General Surgery, CPLA No. 71897, No. 1 Bayi Road, Xi’an, 710000 Shaanxi China
| | - Yinghong Zhang
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Jianwei Hu
- Department of Group Health, Maternal and Child Health Institution, Kunshan, 215301 Jiangsu China
| | - Xiaoyan Li
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| |
Collapse
|
19
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
20
|
Vondra S, Kunihs V, Eberhart T, Eigner K, Bauer R, Haslinger P, Haider S, Windsperger K, Klambauer G, Schütz B, Mikula M, Zhu X, Urban AE, Hannibal RL, Baker J, Knöfler M, Stangl H, Pollheimer J, Röhrl C. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J Lipid Res 2019; 60:1922-1934. [PMID: 31530576 PMCID: PMC6824492 DOI: 10.1194/jlr.p093427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Tanja Eberhart
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Eigner
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Raimund Bauer
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Windsperger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Günter Klambauer
- Institute of Machine Learning,Johannes Kepler University Linz, Linz, Austria
| | - Birgit Schütz
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Xiaowei Zhu
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | - Alexander E. Urban
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | | | - Julie Baker
- Genetics,Stanford University School of Medicine, Stanford, CA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| | - Clemens Röhrl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,University of Applied Sciences Upper Austria, Wels, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| |
Collapse
|
21
|
Placental secretion of apolipoprotein A1 and E: the anti-atherogenic impact of the placenta. Sci Rep 2019; 9:6225. [PMID: 30996342 PMCID: PMC6470155 DOI: 10.1038/s41598-019-42522-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
High levels of atherogenic lipids in pregnancy are associated with health complications for the mother, the fetus and the newborn. As endocrine secretory tissue, the human placenta releases apolipoproteins (apos), particularly apoA1 and apoE. However, the magnitude and the directionality of the apo secretions remain unknown. We aimed to 1) determine the amount and orientation (apical-maternal versus basal-fetal) of placentally secreted apoA1 and apoE using human perfused placenta and primary trophoblast cell (PTC) culture, 2) compare apoA1 and apoE secretions of PTC with that of hepatocytes and 3) associate the obtained results with human blood levels by determining apoA1 and apoE concentrations in maternal and fetal serum samples. In perfused placenta and serum samples, apoA1 and apoE concentrations were significantly higher at the maternal compared to the fetal side. For apoE a similar trend was found in PTC. For apoA1, the secretion to the apical side declined over time while release to the basal side was stable resulting in significantly different apoA1 concentrations between both sides. Unexpectedly, PTC secreted significantly higher amounts of apoA1 and apoE compared to hepatocytes. Our data indicate that the placenta may play an important role in maternal and fetal cholesterol homeostasis via secretion of anti-atherogenic apos.
Collapse
|
22
|
Zhao Q, Yang D, Gao L, Zhao M, He X, Zhu M, Tian C, Liu G, Li L, Hu C. Downregulation of peroxisome proliferator-activated receptor gamma in the placenta correlates to hyperglycemia in offspring at young adulthood after exposure to gestational diabetes mellitus. J Diabetes Investig 2019; 10:499-512. [PMID: 30187673 PMCID: PMC6400209 DOI: 10.1111/jdi.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS/INTRODUCTION Children who are exposed to gestational diabetes mellitus (GDM) in utero are at high risk of developing related illnesses, such as type 2 diabetes mellitus in young adulthood, but the underlying mechanism and related predictive biomarkers are not known. MATERIALS AND METHODS The present study identified the related biomarkers of hyperglycemia in young adults from the relationship between fetal blood glucose and placental lipid transporters at messenger ribonucleic acid (mRNA) and protein expression levels. We recruited patients from a prospective cohort, and determined the mRNA and protein levels of placental fatty acid transporters. Diet-induced mouse models of GDM were established, and the mRNA and protein levels of the same transporters in placentas were validated. RESULTS Only the mRNA levels of peroxisome proliferator-activated receptor gamma correlated with the levels of neonatal blood glucose in GDM patients using linear regression and Spearman's correlation analyses (r = 0.774, P = 0.001). The mRNA levels of peroxisome proliferator-activated receptor gamma, matrix metalloproteinase-2 and fatty acid transport protein-6 correlated with blood glucose levels in mouse offspring (r = 0.82, P = 0.001, r = 0.737, P = 0.006 and r = -0.891, P = 0.001, respectively) at young adulthood using the same analyses. Notably, we observed significantly higher blood glucose levels in GDM offspring at 12 weeks-of-age compared with the control and rosiglitazone-supplemented groups (P < 0.05). CONCLUSIONS The downregulation of peroxisome proliferator-activated receptor gamma in the placenta might predict hyperglycemia in offspring at young adulthood.
Collapse
Affiliation(s)
- Qihong Zhao
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Dong Yang
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Lei Gao
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Mingqiu Zhao
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Xiujie He
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Meng Zhu
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Chaoqing Tian
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Gang Liu
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Li Li
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| | - Chuanlai Hu
- Department of Nutrition and Food HygieneSchool of Public HealthAnhui Medical UniversityAnhuiHefeiChina
| |
Collapse
|
23
|
Walker N, Filis P, O'Shaughnessy PJ, Bellingham M, Fowler PA. Nutrient transporter expression in both the placenta and fetal liver are affected by maternal smoking. Placenta 2019; 78:10-17. [PMID: 30955705 PMCID: PMC6461130 DOI: 10.1016/j.placenta.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
Abstract
Introduction The placenta controls nutrient transfer between mother and fetus via membrane transporters. Appropriate transplacental passage of nutrients is essential for fetal growth and development. We investigated whether transporter transcript levels in human placenta-liver pairs from first and early second trimester pregnancies exhibit gestational age- or fetal sex-specific profiles and whether these are dysregulated by maternal smoking. Methods In a step-change for the field, paired placenta and fetal livers from 54 electively terminated, normally-progressing pregnancies (7–20 weeks of gestation, Scottish Advanced Fetal Research Study, REC 15/NS/0123) were sexed and cigarette smoking-exposure confirmed. Thirty-six nutrient transporter transcripts were quantified using RT-qPCR. Results While fetal, liver and placenta weights were not altered by maternal smoking, levels of transporter transcripts changed with fetal age and sex in the placenta and fetal liver and their trajectories were altered if the mother smoked. Placental levels of glucose uptake transporters SLC2A1 and SLC2A3 increased in smoking-exposed fetuses while smoking was associated with altered levels of amino acid and fatty acid transporter genes in both tissues. SLC7A8, which exchanges non-essential amino acids in the fetus for essential amino acids from the placenta, was reduced in smoking-exposed placentas while transcript levels of four hepatic fatty acid uptake transporters were also reduced by smoking. Discussion This data shows that fetal sex and age and maternal smoking are associated with altered transporter transcript levels. This could influence nutrient transport across the placenta and subsequent uptake by the fetal liver, altering trophic delivery to the growing fetus. Nutrient transporters show differential expression in first/second trimesters. Maternal smoking alters transporter expression of three essential nutrient groups. Fatty acid transporter expression is reduced in smoke-exposed fetal livers.
Collapse
Affiliation(s)
- Natasha Walker
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Panagiotis Filis
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Peter J O'Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
24
|
Chen S, Wang J, Wang M, Lu J, Cai Y, Li B. In vitro fertilization alters phospholipid profiles in mouse placenta. J Assist Reprod Genet 2019; 36:557-567. [PMID: 30610659 DOI: 10.1007/s10815-018-1387-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Studies on humans and rodents have clearly shown that in vitro fertilization (IVF) is associated with abnormal placenta formation and function. Currently, dysregulated placental lipid metabolism is one of the emerging pathogenetic pathways implicated in adverse pregnancy outcomes. The purpose of this study was to identify the effects of IVF on lipid metabolism in the mouse placenta. METHODS Two groups of mouse placentas, composed of control and IVF, were collected at embryonic day 18.5. Placental lipid profiles were measured using liquid chromatography coupled with mass spectrometry. The relative levels of individual lipid were examined and compared. The proteins and enzymes that regulate the phospholipid biosynthesis were also compared by western blot. RESULTS A significant increase in levels of phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylglycerols, lysophosphatidylcholines, and mitochondrial cardiolipin were found in the IVF placenta. In addition, proteins and enzymes that regulate the phospholipid biosynthesis were also altered in IVF placentas. CONCLUSIONS After lipidomic analysis, we present the first detailed overview of the effect of IVF on lipid metabolism, especially phospholipid profiles in the placenta in a mouse model. The widespread lipidomic shifts identified in this study might explicate some of the placental dysfunction observed after IVF, thereby illustrating that phospholipids serve as early warning biomarkers of health risks in IVF offspring.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Cai
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
25
|
Zinkhan EK, Yu B, McKnight R. Uteroplacental Insufficiency Impairs Cholesterol Elimination in Adult Female Growth-Restricted Rat Offspring Fed a High-Fat Diet. Reprod Sci 2018; 26:1173-1180. [PMID: 30453824 DOI: 10.1177/1933719118811649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Uteroplacental insufficiency (UPI) causes intrauterine growth restriction (IUGR) and increases the risk of hypercholesterolemia and cardiovascular disease, which are leading causes of morbidity and mortality worldwide. Little is known about the mechanism through which UPI increases cholesterol. Hepatic Cholesterol 7 alpha-hydroxylase (Cyp7a1) is the rate-limiting and most highly regulated step of cholesterol catabolism to bile acids. Cholesterol 7 alpha-hydroxylase is regulated by transcription factor liver X receptor α (Lxrα) and by microRNA-122. We previously showed that microRNA-122 inhibition of Cyp7a1 translation decreased cholesterol catabolism to bile acids in female IUGR rats at the time of weaning. We hypothesized that UPI would increase cholesterol and microRNA-122 and decrease Cyp7a1 protein and hepatic bile acids in young adult female IUGR rats. To test our hypothesis, we used a rat model of IUGR induced by bilateral uterine artery ligation. Both control and IUGR offspring were exposed to a maternal high-fat diet from before conception through lactation, and all offspring were weaned to a high-fat diet on postnatal day 21. At postnatal day 60, IUGR female rats had increased total and low-density lipoprotein serum cholesterol and hepatic cholesterol, decreased Lxrα and Cyp7a1 protein, and decreased hepatic bile acids. Hepatic microRNA-122 was not changed by UPI. Our findings suggest that UPI decreased cholesterol catabolism to bile acids in young adult female rats through a mechanism independent of microRNA-122.
Collapse
Affiliation(s)
- Erin K Zinkhan
- 1 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Baifeng Yu
- 1 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert McKnight
- 1 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Liao S, Wu H, Chen R. Apolipoprotein A1 mimetic peptide ATI-5261 reverses arterial stiffness at late pregnancy and early postpartum in a COMT -/- mouse model of preeclampsia. Clin Hypertens 2018; 24:11. [PMID: 30237900 PMCID: PMC6138905 DOI: 10.1186/s40885-018-0097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Background Preeclampsia (PE) is a serious maternal complication during pregnancy. Associated arterial stiffness in PE patients leads to increased risks of cardiovascular diseases later in life. Cholesterol efflux capacity, especially ATP binding cassette transporter A1 (ABCA1) dependent capacity, has been proposed to be a likely mediator of arterial stiffness. In the present study, we aimed to evaluate the effect of an apolipoprotein A1 mimetic peptide ATI-5261 on arterial stiffness in a mouse model of PE. Methods Pregnant COMT-/- mice were randomized to receive vehicle or ATI-5261 (30 mg/kg per day) via subcutaneous injection from gestational days (GD) 10.5 to GD 18.5 or to 10 days postpartum. Pregnant C57BL/6 J mice received vehicle during paralleled periods were served as normal controls. Results COMT-/- mice displayed maternal hypertension and proteinuria during pregnancy. Carotid-femoral pulse wave velocity (PWV) was increased at GD 18.5 and 10 days postpartum. ATI-5261 treatment in COMT-/- mice significantly reduced PWV and partially normalized impaired ex vivo vascular function at late pregnancy and early postpartum. ATI-5261 treatment also increased serum ABCA1 concentrations and cholesterol efflux capacity, as well as ABCA1 expressions in the placenta. Pup weights, crown to rump lengths and abdominal circumferences were reduced in COMT-/- mice. Treatment with ATI-5261 did not alter these fetal measurements but significantly reduced placental weights and increased fetal to placental ratios in COMT-/- mice. Conclusion ATI-5261 reversed arterial stiffness at late pregnancy and early postpartum in a COMT-/- mouse model of PE and may be a potential therapy for arterial stiffness associated with PE.
Collapse
Affiliation(s)
- Shutan Liao
- 1Rural Clinical School, University of New South Wales, Sydney, NSW Australia.,2The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Wu
- 3Chashan Teaching Centre, Department of Physiology, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Ruiying Chen
- 3Chashan Teaching Centre, Department of Physiology, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| |
Collapse
|
27
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Zhou J, Zhu C, Luo H, Shen L, Gong J, Wu Y, Magdalou J, Chen L, Guo Y, Wang H. Two intrauterine programming mechanisms of adult hypercholesterolemia induced by prenatal nicotine exposure in male offspring rats. FASEB J 2018; 33:1110-1123. [PMID: 30113880 DOI: 10.1096/fj.201800172r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiologic studies showed that low birth weight is associated with high cholesterol and an increased risk of cardiovascular diseases in adulthood. This study aimed to elucidate the intrauterine programming mechanisms of adult hypercholesterolemia. The results showed that prenatal nicotine exposure (PNE) caused intrauterine growth retardation and hypercholesterolemia in male adult offspring rats. Hepatic cholesterol synthesis and output were deceased in utero but increased in adults; hepatic reverse cholesterol transport (RCT) persistently deceased before and after birth. Meanwhile, PNE elevated serum corticosterone level and decreased hepatic IGF1 pathway activity in male fetuses, whereas converse changes were observed in male adults. The chronic stress model and cortisol-treated HepG2 cells verified that excessive glucocorticoid (GC)-induced GC-IGF1 axis programming enhanced hepatic cholesterol synthesis and output. In addition, PNE decreased the expression of specific protein 1 and P300 enrichment and H3K27 acetylation at the promoter region of genes responsible for RCT both in fetal and adult, male livers and reduced expression of those genes, similar alterations were also confirmed in cortisol-treated HepG2 cells, suggesting that excessive GC-related programming induced continuous RCT reduction by epigenetic modification. Taken together, the "2-programming" approach discussed above may ultimately contribute to the development of hypercholesterolemia in male adult offspring.-Zhou, J., Zhu, C., Luo, H., Shen, L., Gong, J., Wu, Y., Magdalou, J., Chen, L., Guo, Y., Wang, H. Two intrauterine programming mechanisms of adult hypercholesterolemia induced by prenatal nicotine exposure in male offspring rats.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chunyan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lang Shen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yimeng Wu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jacques Magdalou
- Unité Mixte de Recherche (UMR) 7561, Centre National de la Recherche Scientifique (CNRS), Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
29
|
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19:ijms19082334. [PMID: 30096856 PMCID: PMC6121295 DOI: 10.3390/ijms19082334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.
Collapse
Affiliation(s)
- Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Stefan Müller
- Department of BioMedical Research, University of Bern, CH-3012 Bern, Switzerland.
| | - Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
30
|
Gene expression profiles of HTR8-S/Vneo cells after changes in ABCA1 expression. Funct Integr Genomics 2018; 18:725-735. [PMID: 29931611 DOI: 10.1007/s10142-018-0621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
ABCA1 is expressed in placental trophoblasts, such that when the expression level of ABCA1 changes, the function of trophoblasts dramatically changes. However, the mechanism by which ABCA1 affects the function of trophoblast cells remains unclear. Here, we used biochemical and transcriptomic to uncover the potential mechanism of the effect of ABCA1 on trophoblast function. HTR8/SVneo cells were either treated with the agonist T0901317 or transfected with siRNA to regulate ABCA1 expression levels. A human gene expression microarray was used to analyze the expression spectrum of ABCA1. Microarray results were confirmed by Western blotting and RT-PCR. Immunofluorescence allowed detection of the cellular localization of ABCA1, CCL8, CXCL10, CXCL11, and S1PR1 in HTR8/SVneo cells. Co-immunoprecipitation was used to test interactions among these proteins. Concomitant with an increase in ABCA1 expression, S1PR1 expression increased, whereas expression of CCL8, CXCL10, and CXCL11 decreased significantly; opposite effects were observed with a decrease in ABCA1 expression. Thus, changes in ABCA1 expression may lead to changes in downstream gene expression. Whereas the interaction between ABCA1 and S1PR1 was direct, interactions among ABCA1 and CCL8, CXCL10, and CXCL11 were indirect. We propose that, in conjunction with S1PR1, ABCA1 regulates expression levels of CCL8, CXCL10, and CXCL11; this may lead to changes in the immune function of trophoblastic cells. Thus, we suspect that the effect of ABCA1 on trophoblast function may involve many biological processes, molecular function changes, and the activation of multiple signaling pathways.
Collapse
|
31
|
Zinkhan EK, Yu B, Schlegel A. Prenatal Exposure to a Maternal High Fat Diet Increases Hepatic Cholesterol Accumulation in Intrauterine Growth Restricted Rats in Part Through MicroRNA-122 Inhibition of Cyp7a1. Front Physiol 2018; 9:645. [PMID: 29896121 PMCID: PMC5987111 DOI: 10.3389/fphys.2018.00645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
Intrauterine growth restriction (IUGR) and consumption of a high saturated fat diet (HFD) increase the risk of hypercholesterolemia, a leading cause of morbidity and mortality. The mechanism through which the cumulative impact of IUGR and in utero exposure to a maternal HFD increase cholesterol levels remains unknown. Cholesterol 7α hydroxylase (Cyp7a1) initiates catabolism of cholesterol to bile acids for elimination from the body, and is regulated by microRNA-122 (miR-122). We hypothesized that IUGR rats exposed to a maternal HFD would have increased cholesterol and decreased Cyp7a1 protein levels in juvenile rats, findings which would be normalized by administration of a miR-122 inhibitor. To test our hypothesis we used a rat model of surgically induced IUGR and fed the dams a regular diet or a HFD from prior to conception through lactation. At the time of weaning, IUGR female rats exposed to a maternal HFD had increased hepatic cholesterol, decreased hepatic Cyp7a1 protein and hepatic bile acids, and increased hepatic miR-122 compared to non-IUGR rats exposed to the same HFD. In vivo inhibition of miR-122 increased hepatic Cyp7a1 protein and decreased hepatic cholesterol. Our findings suggest that IUGR combined with a maternal HFD decreased cholesterol catabolism to bile acids, in part, via miR-122 inhibition of Cyp7a1.
Collapse
Affiliation(s)
- Erin K Zinkhan
- Department of Pediatrics, Division of Neonatology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Baifeng Yu
- Department of Pediatrics, Division of Neonatology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program (U2M2), University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
32
|
Xu D, Luo HW, Hu W, Hu SW, Yuan C, Wang GH, Zhang L, Yu H, Magdalou J, Chen LB, Wang H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring. FASEB J 2018; 32:5563-5576. [PMID: 29718709 DOI: 10.1096/fj.201701557r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hanwen W Luo
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Shuwei W Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Chao Yuan
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Guihua H Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jacques Magdalou
- Unité Mixte de Recherche (UMR) 7365, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Liaobin B Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
33
|
Stødle GS, Silva GB, Tangerås LH, Gierman LM, Nervik I, Dahlberg UE, Sun C, Aune MH, Thomsen LCV, Bjørge L, Iversen AC. Placental inflammation in pre-eclampsia by Nod-like receptor protein (NLRP)3 inflammasome activation in trophoblasts. Clin Exp Immunol 2018; 193:84-94. [PMID: 29683202 DOI: 10.1111/cei.13130] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Pre-eclampsia is associated with increased levels of cholesterol and uric acid and an inflamed placenta expressing danger-sensing pattern recognition receptors (PRRs). Crystalline cholesterol and uric acid activate the PRR Nod-like receptor protein (NLRP)3 inflammasome to release interleukin (IL)-1β and result in vigorous inflammation. We aimed to characterize crystal-induced NLRP3 activation in placental inflammation and examine its role in pre-eclampsia. We confirmed that serum total cholesterol and uric acid were elevated in pre-eclamptic compared to healthy pregnancies and correlated positively to high sensitivity C-reactive protein (hsCRP) and the pre-eclampsia marker soluble fms-like tyrosine kinase-1 (sFlt-1). The NLRP3 inflammasome pathway components (NLRP3, caspase-1, IL-1β) and priming factors [complement component 5a (C5a) and terminal complement complex (TCC)] were co-expressed by the syncytiotrophoblast layer which covers the placental surface and interacts with maternal blood. The expression of IL-1β and TCC was increased significantly and C5a-positive regions in the syncytiotrophoblast layer appeared more frequent in pre-eclamptic compared to normal pregnancies. In-vitro activation of placental explants and trophoblasts confirmed NLRP3 inflammasome pathway functionality by complement-primed crystal-induced release of IL-1β. This study confirms crystal-induced NLRP3 inflammasome activation located at the syncytiotrophoblast layer as a mechanism of placental inflammation and suggests contribution of enhanced NLRP3 activation to the harmful placental inflammation in pre-eclampsia.
Collapse
Affiliation(s)
- G S Stødle
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St Olav's Hospital, Trondheim, Norway
| | - G B Silva
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St Olav's Hospital, Trondheim, Norway
| | - L H Tangerås
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St Olav's Hospital, Trondheim, Norway
| | - L M Gierman
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - I Nervik
- Cellular and Molecular Imaging Core Facility (CMIC), Faculty of Medicine and Health Science, NTNU, Trondheim, Norway
| | - U E Dahlberg
- Department of Gynecology and Obstetrics, St Olav's Hospital, Trondheim, Norway
| | - C Sun
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - M H Aune
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - L C V Thomsen
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - L Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - A-C Iversen
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
34
|
Huang X, Anderle P, Hostettler L, Baumann MU, Surbek DV, Ontsouka EC, Albrecht C. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genomics 2018; 19:173. [PMID: 29499643 PMCID: PMC5833046 DOI: 10.1186/s12864-018-4518-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. Results In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. Conclusions Combining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE. Electronic supplementary material The online version of this article (10.1186/s12864-018-4518-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Huang
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Pascale Anderle
- Swiss Institute of Bioinformatics and HSeT Foundation, Lausanne, Switzerland.,Sitem-insel AG, Bern, Switzerland
| | - Lu Hostettler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Marc U Baumann
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Daniel V Surbek
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Edgar C Ontsouka
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Christiane Albrecht
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland. .,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
35
|
Winterhager E, Gellhaus A. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans. Front Physiol 2017; 8:951. [PMID: 29230179 PMCID: PMC5711821 DOI: 10.3389/fphys.2017.00951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023] Open
Abstract
Although the causes of intrauterine growth restriction (IUGR) have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy concepts for IUGR will require the use of animal models for gathering robust data about mechanisms leading to IUGR and for testing the effectiveness and safety of the intervention among pregnant women.
Collapse
Affiliation(s)
- Elke Winterhager
- Electron Microscopy Unit, Imaging Center Essen, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
36
|
Zwier MV, Baardman ME, van Dijk TH, Jurdzinski A, Wisse LJ, Bloks VW, Berger RMF, DeRuiter MC, Groen AK, Plösch T. Maternal-fetal cholesterol transport in the second half of mouse pregnancy does not involve LDL receptor-related protein 2. Acta Physiol (Oxf) 2017; 220:471-485. [PMID: 28024118 DOI: 10.1111/apha.12845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/25/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
AIM LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. METHODS Lrp2+/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1-13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. RESULTS The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. CONCLUSION Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta.
Collapse
Affiliation(s)
- M. V. Zwier
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. E. Baardman
- Department of Genetics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T. H. van Dijk
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Laboratory Medicine; University of Groningen, University Medical Center Groningen; Groningen the Netherlands
| | - A. Jurdzinski
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - L. J. Wisse
- Department of Anatomy and Embryology; Leiden University Medical Center; Leiden the Netherlands
| | - V. W. Bloks
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - R. M. F. Berger
- Center for Congenital Heart Diseases; Beatrix Children's Hospital; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. DeRuiter
- Department of Anatomy and Embryology; Leiden University Medical Center; Leiden the Netherlands
| | - A. K. Groen
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T. Plösch
- Department of Obstetrics and Gynaecology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| |
Collapse
|
37
|
Abstract
We tested the hypothesis that gestational diabetes mellitus (GDM) alters the DNA methylation pattern of the fetal serotonin transporter gene (SLC6A4), and examined the functional relevance of DNA methylation for regulation of the SLC6A4 expression in the human placenta. The study included 50 mother-infant pairs. Eighteen mothers were diagnosed with GDM and 32 had normal glucose tolerance (NGT). All neonates were of normal birth weight and born at term by planned Cesarean section. DNA and RNA were isolated from samples of tissue collected from the fetal side of the placenta immediately after delivery. DNA methylation was quantified at 7 CpG sites within the SLC6A4 distal promoter region using PCR amplification of bisulfite treated DNA and subsequent DNA sequencing. SLC6A4 mRNA levels were measured by reverse transcription—quantitative PCR (RT-qPCR). Functional SLC6A4 polymorphisms (5HTTLPR, STin2, rs25531) were genotyped using standard PCR-based procedures. Average DNA methylation across the 7 analyzed loci was decreased in the GDM as compared to the NGT group (by 27.1%, p = 0.037) and negatively correlated, before and after adjustment for potential confounder/s, with maternal plasma glucose levels at the 24th to 28th week of gestation (p<0.05). Placental SLC6A4 mRNA levels were inversely correlated with average DNA methylation (p = 0.010) while no statistically significant association was found with the SLC6A4 genotypes (p>0.05). The results suggest that DNA methylation of the fetal SLC6A4 gene is sensitive to the maternal metabolic state in pregnancy. They also indicate a predominant role of epigenetic over genetic mechanisms in the regulation of SLC6A4 expression in the human placenta. Longitudinal studies in larger cohorts are needed to verify these results and determine to which degree placental SLC6A4 changes may contribute to long-term outcomes of infants exposed to GDM.
Collapse
|
38
|
Kamper M, Mittermayer F, Cabuk R, Gelles K, Ellinger I, Hermann M. Estrogen-enhanced apical and basolateral secretion of apolipoprotein B-100 by polarized trophoblast-derived BeWo cells. Biochimie 2017; 138:116-123. [PMID: 28487135 DOI: 10.1016/j.biochi.2017.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
Cholesterol is an important nutrient for fetal development and transplacental transport occurs at all stages of human pregnancy. Furthermore, cholesterol is required for membrane building as well as steroid hormone synthesis. Therefore, all placental cell types require cholesterol for proper function. In human term placenta, the syncytiotrophoblast (STB) faces the maternal circulation. Uptake of maternal-derived cholesterol at the apical membrane of the STB is well understood, but the route by which cholesterol exits at the basal side for subsequent transfer across the fetal endothelial cells (FEC) or to other placental cell types remains not well characterized. Our aim was to provide evidence for basal secretion of apolipoprotein B-100 (apoB) containing lipoproteins. Furthermore, we investigated the placental localization of apolipoprotein receptors (LRP2, LDLR and LRP1) to identify cell targets of lipoprotein particles secreted in a polarized fashion by the STB. In trophoblast-derived BeWo cells grown on permeable filter supports, we demonstrate by immunoprecipitation apical as well as basolateral apoB secretion, which was significantly upregulated by estrogen-treatment for 24 or 48 h. Furthermore, we showed by immunofluorescence microscopy apoB and microsomal triglyceride transfer protein subunits localization in the STB and placental stromal cells in situ. All investigated receptors were detected by RT-qPCR and western blot in BeWo cells, but only expression of LRP2 was estrogen-inducible. In situ, the multi-ligand receptor LRP2 was expressed exclusively in the cytotrophoblast (CTB), the STB precursor cell type. LDLR and LRP1 localized to trophoblasts as well as stromal cells in situ. In summary, basal apoB secretion by BeWo cells supports the concept of basal lipoprotein particle secretion by placental STB. These lipoprotein particles may serve as cholesterol source for STB precursor cells, the CTBs, as well as all stromal cells of the chorionic villi including FECs, which were herein demonstrated to express apoB receptors, LRP2 and LDLR, respectively.
Collapse
Affiliation(s)
- Miriam Kamper
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Florian Mittermayer
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Rosalinda Cabuk
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Marcela Hermann
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Mistry HD, Kurlak LO, Mansour YT, Zurkinden L, Mohaupt MG, Escher G. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia. J Lipid Res 2017; 58:1186-1195. [PMID: 28396342 DOI: 10.1194/jlr.m071985] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/07/2017] [Indexed: 01/17/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples (P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia (P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia (P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis.
Collapse
Affiliation(s)
- Hiten D Mistry
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland .,Division of Child Health, Obstetrics, and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Lesia O Kurlak
- Division of Child Health, Obstetrics, and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Yosef T Mansour
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Line Zurkinden
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland
| | - Markus G Mohaupt
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland
| | - Geneviève Escher
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Zhang L, Shen L, Xu D, Wang L, Guo Y, Liu Z, Liu Y, Liu L, Magdalou J, Chen L, Wang H. Increased susceptibility of prenatal food restricted offspring to high-fat diet-induced nonalcoholic fatty liver disease is intrauterine programmed. Reprod Toxicol 2016; 65:236-247. [DOI: 10.1016/j.reprotox.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/07/2023]
|
41
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
42
|
Huang X, Lüthi M, Ontsouka EC, Kallol S, Baumann MU, Surbek DV, Albrecht C. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Mol Hum Reprod 2016; 22:442-56. [PMID: 26931579 DOI: 10.1093/molehr/gaw018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/24/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.
Collapse
Affiliation(s)
- Xiao Huang
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Michael Lüthi
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Edgar C Ontsouka
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Marc U Baumann
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland Department of Obstetrics and Gynecology, University Hospital, University of Bern, Bern, Switzerland
| | - Daniel V Surbek
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland Department of Obstetrics and Gynecology, University Hospital, University of Bern, Bern, Switzerland
| | - Christiane Albrecht
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| |
Collapse
|
43
|
Eisele N, Albrecht C, Mistry HD, Dick B, Baumann M, Surbek D, Currie G, Delles C, Mohaupt MG, Escher G, Gennari-Moser C. Placental expression of the angiogenic placental growth factor is stimulated by both aldosterone and simulated starvation. Placenta 2016; 40:18-24. [PMID: 27016778 DOI: 10.1016/j.placenta.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/28/2022]
Abstract
Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome.
Collapse
Affiliation(s)
- Nicole Eisele
- Department of Nephrology, Hypertension and Clinical Pharmacology, University of Bern, 3010 Berne, Switzerland; Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | - Christiane Albrecht
- Institute for Biochemistry and Molecular Medicine, University of Bern, 3010 Berne, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, 3010 Berne, Switzerland
| | - Hiten D Mistry
- Department of Nephrology, Hypertension and Clinical Pharmacology, University of Bern, 3010 Berne, Switzerland; Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | - Bernhard Dick
- Department of Nephrology, Hypertension and Clinical Pharmacology, University of Bern, 3010 Berne, Switzerland; Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | - Marc Baumann
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, 3010 Berne, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, 3010 Berne, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, 3010 Berne, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, 3010 Berne, Switzerland
| | - Gemma Currie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Markus G Mohaupt
- Department of Nephrology, Hypertension and Clinical Pharmacology, University of Bern, 3010 Berne, Switzerland; Department of Clinical Research, University of Bern, 3010 Berne, Switzerland.
| | - Geneviève Escher
- Department of Nephrology, Hypertension and Clinical Pharmacology, University of Bern, 3010 Berne, Switzerland; Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | - Carine Gennari-Moser
- Department of Nephrology, Hypertension and Clinical Pharmacology, University of Bern, 3010 Berne, Switzerland; Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| |
Collapse
|
44
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
45
|
Liu L, Zhang M, Min X, Cai L. Low Serum Levels of ABCA1, an ATP-Binding Cassette Transporter, Are Predictive of Preeclampsia. TOHOKU J EXP MED 2015; 236:89-95. [DOI: 10.1620/tjem.236.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lixing Liu
- Department of Anatomy, Basic medical department of Putian College
| | - Min Zhang
- Department of Physiological, Basic medical department of Putian College
| | - Xianhui Min
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Fuzhou General Hospital
| | - Lixi Cai
- Department of Biochemical, Basic medical department of Putian College
| |
Collapse
|
46
|
Soluble endoglin production is upregulated by oxysterols but not quenched by pravastatin in primary placental and endothelial cells. Placenta 2014; 35:724-31. [DOI: 10.1016/j.placenta.2014.06.374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/06/2014] [Accepted: 06/29/2014] [Indexed: 12/14/2022]
|