1
|
Li C, Li Q. Circular RNA circ_0111277 Serves as ceRNA, Targeting the miR-424-5p/NFAT5 Axis to Regulate the Proliferation, Migration, and Invasion of Trophoblast Cells in Preeclampsia. Reprod Sci 2021; 29:923-935. [PMID: 34462874 DOI: 10.1007/s43032-021-00715-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/07/2021] [Indexed: 01/23/2023]
Abstract
Preeclampsia is the main reason for maternal and fetal deaths during the second half of pregnancy. Trophoblast cells play a pivotal role in preeclampsia progression. Circular RNA (circRNA) circ_0111277 has been reported to be related to the development of trophoblast cells. This study is designed to explore the role and mechanism of circ_0111277 on trophoblast cell behavior in preeclampsia. Circ_0111277, microRNA-424-5p (miR-424-5p), and nuclear factor of activated T-cell 5 (NFAT5) levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, migration, invasion, and angiogenesis were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, tube formation assay, and wound healing assay. Protein levels of matrix metallopeptidase 2 (MMP2), vascular endothelial growth factor-A (VEGF-A), NFAT5, phospho-phosphatidylinositol 3 kinase (p-PI3K), PI3K, phospho-protein kinase B (p-AKT), and AKT were examined by western blot assay. The binding relationship between miR-424-5p and circ_0111277 or NFAT5 was predicted by circBank or starBase and then verified by a dual-luciferase reporter assay. Circ_0111277 and NFAT5 expression were increased in placenta tissues of preeclampsia patients, and miR-424-5p was decreased. Moreover, circ_0111277 knockdown could boost cell viability, migration, invasion, and angiogenesis in trophoblast cells. The mechanical analysis discovered that circ_0111277 acted as a sponge of miR-424-5p to regulate NFAT5 expression. Besides, circ_0111277 silencing promoted the PI3K/AKT signaling pathway in trophoblast cells. Circ_0111277 downregulation could facilitate cell growth and metastasis in trophoblast cells partly by regulating the miR-424-5p/NFAT5 axis, providing an underlying circRNA-targeted therapy for preeclampsia.
Collapse
Affiliation(s)
- Chunhua Li
- Department of Obstetrics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No.1158 Park East Road, Qingpu District, Shanghai, 201700, China
| | - Qing Li
- Department of Obstetrics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No.1158 Park East Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
2
|
Chen BL, Li Y, Xu S, Nie Y, Zhang J. NFAT5 Regulated by STUB1, Facilitates Malignant Cell Survival and p38 MAPK Activation by Upregulating AQP5 in Chronic Lymphocytic Leukemia. Biochem Genet 2021; 59:870-883. [PMID: 33544297 DOI: 10.1007/s10528-021-10040-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a clonal proliferative disease of mature B lymphocytes. To further improve the prognosis of patients, it is necessary to further elucidate the pathogenesis of CLL and find more effective therapeutic targets. Nuclear Factor of Activated T cells 5 (NFAT5) is the major activated transcription factor (TF) upon osmotic pressure increase in mammalian cells, and it also regulates many target genes to affect various cellular functions. The effects of NFAT5 on tumor growth and metastasis have also been widely revealed. However, the effects of NFAT5 on the progression of CLL are still unclear. In this study, we found abnormally high expression of NFAT5 in human CLL patients. Additionally, NFAT5 depletion suppressed proliferation and stimulated apoptosis of CLL cells. Our data further confirmed NFAT5 regulated AQP5 expression and the phosphorylation of p38 MAPK. We also found that AQP5 overexpression reversed the inhibitory effect of NFAT5 depletion on cell proliferation in CLL cells. Furthermore, we revealed STUB1 directly bound to NFAT5 and promoted its degradation. Taken together, our results indicate the involvement of NFAT5 in CLL progression and suggest that NFAT5 could serve as a promising therapeutic target for CLL treatment.
Collapse
Affiliation(s)
- Bei Li Chen
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuchuan Li
- Department of Gynaecology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Shujuan Xu
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuwei Nie
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Jiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
5
|
Britten JL, Malik M, Lewis TD, Catherino WH. Ulipristal Acetate Mediates Decreased Proteoglycan Expression Through Regulation of Nuclear Factor of Activated T-Cells (NFAT5). Reprod Sci 2018; 26:184-197. [PMID: 30567472 DOI: 10.1177/1933719118816836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear factor of activated T-cells (NFAT5) is a tissue specific, osmoadaptive transcription factor essential for the control of hydration homeostasis in mammalian cells. Nuclear factor of activated T-cells regulates osmolyte transporters aldo-keto reductase family 1 member B1 (AKR1B1) and solute carrier family 5 member 3 (SLC5A3) to maintain fluid equilibrium in cells. The osmotic potential of the extracellular matrix of leiomyomas is attributed to the role of proteoglycans. In leiomyoma cells, NFAT5 is overexpressed compared to myometrial cells. The selective progesterone receptor modulator, ulipristal acetate, has been reported to decrease the size of leiomyomas in clinical trials. When treated with ulipristal acetate, both patient leiomyoma tissue and leiomyoma cells grown in 3-dimensional cultures show a decrease in the expression of NFAT5 protein, solute transporters AKR1B1 and SLC5A3, and results in an associated decline in the expression of proteoglycans, versican, aggrecan, and brevican. In summary, ulipristal acetate induces changes in leiomyoma cell osmoregulation which result in a decrease in proteoglycan expression.
Collapse
Affiliation(s)
- Joy L Britten
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Minnie Malik
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Terrence D Lewis
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,2 Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - William H Catherino
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,2 Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Yang XL, Wang X, Peng BW. NFAT5 Has a Job in the Brain. Dev Neurosci 2018; 40:289-300. [PMID: 30391952 DOI: 10.1159/000493789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) has recently been classified as a new member of the Rel family. In addition, there are 5 more well-defined members (NF-κB and NFAT1-4) in the Rel family, which participate in regulating the expression of immune and inflammatory response-related genes. NFAT5 was initially identified in renal medullary cells where it regulated the expression of osmoprotective-related genes during the osmotic response. Many studies have demonstrated that NFAT5 is highly expressed in the nuclei of neurons in fetal and adult brains. Additionally, its expression is approximately 10-fold higher in fetal brains. With the development of detection technologies (laser scanning confocal microscopy, transgene technology, etc.), recent studies suggest that NFAT5 is also expressed in glial cells and plays a more diverse functional role. This article aims to summarize the current knowledge regarding the expression of NFAT5, its regulation of activation, and varied biological functions in the brain.
Collapse
Affiliation(s)
- Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China,
| |
Collapse
|
7
|
Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 2018; 3:99403. [PMID: 30282823 DOI: 10.1172/jci.insight.99403] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Copeptin, a marker of arginine vasopressin (AVP) secretion, is elevated throughout human pregnancies complicated by preeclampsia (PE), and AVP infusion throughout gestation is sufficient to induce the major phenotypes of PE in mice. Thus, we hypothesized a role for AVP in the pathogenesis of PE. AVP infusion into pregnant C57BL/6J mice resulted in hypertension, renal glomerular endotheliosis, intrauterine growth restriction, decreased placental growth factor (PGF), altered placental morphology, placental oxidative stress, and placental gene expression consistent with human PE. Interestingly, these changes occurred despite a lack of placental hypoxia or elevations in placental fms-like tyrosine kinase-1 (FLT1). Coinfusion of AVP receptor antagonists and time-restricted infusion of AVP uncovered a mid-gestational role for the AVPR1A receptor in the observed renal pathologies, versus mid- and late-gestational roles for the AVPR2 receptor in the blood pressure and fetal phenotypes. These findings demonstrate that AVP is sufficient to initiate phenotypes of PE in the absence of placental hypoxia, and indicate that AVP may mechanistically (independently, and possibly synergistically with hypoxia) contribute to the development of clinical signs of PE in specific subtypes of human PE. Additionally, they identify divergent and gestational time-specific signaling mechanisms that mediate the development of PE phenotypes in response to AVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Donna A Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Matthew J Potthoff
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Gary L Pierce
- Department of Health & Human Physiology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center
| | - Katherine N Gibson-Corley
- Department of Pathology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,Fraternal Order of Eagles' Diabetes Research Center, and
| | - Curt D Sigmund
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Mark K Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Justin L Grobe
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
8
|
Portelli M, Baron B. Clinical Presentation of Preeclampsia and the Diagnostic Value of Proteins and Their Methylation Products as Biomarkers in Pregnant Women with Preeclampsia and Their Newborns. J Pregnancy 2018; 2018:2632637. [PMID: 30050697 PMCID: PMC6046127 DOI: 10.1155/2018/2632637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) is a disorder which affects 1-10% of pregnant women worldwide. It is characterised by hypertension and proteinuria in the later stages of gestation and can lead to maternal and perinatal morbidity and mortality. Other than the delivery of the foetus and the removal of the placenta, to date there are no therapeutic approaches to treat or prevent PE. It is thus only possible to reduce PE-related mortality through early detection, careful monitoring, and treatment of the symptoms. For these reasons the search for noninvasive, blood-borne, or urinary biochemical markers that could be used for the screening, presymptomatic diagnosis, and prediction of the development of PE is of great urgency. So far, a number of biomarkers have been proposed for predicting PE, based on pathophysiological observations, but these have mostly proven to be unreliable and inconsistent between different studies. The clinical presentation of PE and data gathered for the biochemical markers placental growth factor (PlGF), soluble Feline McDonough Sarcoma- (fms-) like tyrosine kinase-1 (sFlt-1), asymmetric dimethylarginine (ADMA), and methyl-lysine is being reviewed with the aim of providing both a clinical and biochemical understanding of how these biomarkers might assist in the diagnosis of PE or indicate its severity.
Collapse
Affiliation(s)
- Maria Portelli
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida MSD2080, Malta
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
9
|
Jain CV, Jessmon P, Barrak CT, Bolnick AD, Kilburn BA, Hertz M, Armant DR. Trophoblast survival signaling during human placentation requires HSP70 activation of MMP2-mediated HBEGF shedding. Cell Death Differ 2017; 24:1772-1783. [PMID: 28731464 DOI: 10.1038/cdd.2017.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/30/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Survival of trophoblast cells in the low oxygen environment of human placentation requires metalloproteinase-mediated shedding of HBEGF and downstream signaling. A matrix metalloproteinase (MMP) antibody array and quantitative RT-PCR revealed upregulation of MMP2 post-transcriptionally in human first trimester HTR-8/SVneo trophoblast cells and placental villous explants exposed to 2% O2. Specific MMP inhibitors established the requirement for MMP2 in HBEGF shedding and upregulation. Because α-amanitin inhibited the upregulation of HBEGF, differentially expressed genes were identified by next-generation sequencing of RNA from trophoblast cells cultured at 2% O2 for 0, 1, 2 and 4 h. Nine genes, all containing HIF-response elements, were upregulated at 1 h, but only HSPA6 (HSP70B') remained elevated at 2-4 h. The HSP70 chaperone inhibitor VER 155008 blocked upregulation of both MMP2 and HBEGF at 2% O2, and increased apoptosis. However, both HBEGF upregulation and apoptosis were rescued by exogenous MMP2. Proximity ligation assays demonstrated interactions between HSP70 and MMP2, and between MMP2 and HBEGF, supporting the concept that MMP2-mediated shedding of HBEGF, initiated by HSP70, contributes to trophoblast survival at the low O2 concentrations encountered during the first trimester, and is essential for successful pregnancy outcomes. Trophoblast survival during human placentation, when oxygenation is minimal, required HSP70 activity, which mediated MMP2 accumulation and the transactivation of anti-apoptotic ERBB signaling by HBEGF shedding.
Collapse
Affiliation(s)
- Chandni V Jain
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip Jessmon
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Charbel T Barrak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alan D Bolnick
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael Hertz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
10
|
The Role of Hsp70 in the Regulation of Autophagy in Gametogenesis, Pregnancy, and Parturition. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:117-127. [PMID: 28389753 DOI: 10.1007/978-3-319-51409-3_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Induction of the 70 kDa heat shock protein (hsp70) and autophagy are two major mechanisms that promote cell homeostasis during the rapid cell growth and differentiation characteristic of reproduction. Hsp70 insures proper assembly, conformation, and intracellular transport of nascent proteins. Autophagy removes from the cytoplasm proteins, other macromolecules, and organelles that are no longer functional or needed and recycles their components for synthesis of new products under nutritionally limiting conditions. Hsp70 inhibits autophagy and so a proper balance between these two processes is essential for optimal germ cell production and survival and pregnancy progression. A marked inhibition in autophagy and a concomitant increase in hsp70 at term is a trigger for parturition. Excessive external or endogenous stress that induces a high level of hsp70 production can lead to a non-physiological inhibition of autophagy, resulting in altered spermatogenesis, premature ovarian failure, and complications of pregnancy including preeclampsia, intrauterine growth restriction, and preterm birth.
Collapse
|
11
|
Küper C, Beck FX, Neuhofer W. Generation of a conditional knockout allele for the NFAT5 gene in mice. Front Physiol 2015; 5:507. [PMID: 25601839 PMCID: PMC4283511 DOI: 10.3389/fphys.2014.00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 12/02/2022] Open
Abstract
The osmosensitive transcription factor nuclear factor of activated T-cells 5 (NFAT5), also known as tonicity enhancer element binding protein (TonEBP) plays a crucial role in protection of renal medullary cells against hyperosmotic stress, urinary concentration, the adaptive immune response, and other physiological systems. Since it is also important for development, conventional homozygous-null mutations result in perinatal death, which hinders the analysis of NFAT5 function in specific tissues in vivo. Here we describe the generation of mice with a conditional-null allele, in which loxP sites are inserted around exon 4. Mice harboring the floxed allele (NFAT5flx) were mated to a strain expressing a tamoxifen-inducible derivative of the Cre-recombinase (Cre+) under the control of the ubiqitinC promoter. The resultant homozygous conditional knockout mice (Cre+ NFAT5flx/flx) are viable, fertile, and show normal expression of NFAT5 and NFAT5 target genes, indicating that the conditional alleles retain their wild-type function. Induction of Cre-mediated recombination by administration of tamoxifen in 8-week-old mice resulted in a decrease in NFAT5 expression of about 70–90% in all tested tissues (renal cortex, renal outer medulla, renal inner medulla, heart, lung, spleen, skeletal muscle). Accordingly, the expression of the NFAT5 target genes aldose reductase and heat shock protein 70 in the renal medulla was also significantly decreased. Mice harboring this conditional knockout allele should be useful in future studies for gaining a better understanding of tissue and cell-type specific functions of NFAT5 in adult animals under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Christoph Küper
- Department of Physiology, University of Munich Munich, Germany
| | | | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|