1
|
Calis P, Vojtech L, Hladik F, Gravett MG. A review of ex vivo placental perfusion models: an underutilized but promising method to study maternal-fetal interactions. J Matern Fetal Neonatal Med 2022; 35:8823-8835. [PMID: 34818981 PMCID: PMC9126998 DOI: 10.1080/14767058.2021.2005565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Studying the placenta can provide information about the mechanistic pathways of pregnancy disease. However, analyzing placental tissues and manipulating placental function in real-time during pregnancy is not feasible. The ex vivo placental perfusion model allows observing important aspects of the physiology and pathology of the placenta, while maintaining its viability and functional integrity, and without causing harm to mother or fetus. In this review, we describe and compare setups for this technically complex model and summarize outcomes from various published studies. We hope that our review will encourage wider use of ex vivo placental perfusion, which in turn would generate more knowledge to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Pinar Calis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael G. Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Costa J, Mackay R, de Aguiar Greca SC, Corti A, Silva E, Karteris E, Ahluwalia A. The Role of the 3Rs for Understanding and Modeling the Human Placenta. J Clin Med 2021; 10:jcm10153444. [PMID: 34362227 PMCID: PMC8347836 DOI: 10.3390/jcm10153444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Modeling the physiology of the human placenta is still a challenge, despite the great number of scientific advancements made in the field. Animal models cannot fully replicate the structure and function of the human placenta and pose ethical and financial hurdles. In addition, increasingly stricter animal welfare legislation worldwide is incentivizing the use of 3R (reduction, refinement, replacement) practices. What efforts have been made to develop alternative models for the placenta so far? How effective are they? How can we improve them to make them more predictive of human pathophysiology? To address these questions, this review aims at presenting and discussing the current models used to study phenomena at the placenta level: in vivo, ex vivo, in vitro and in silico. We describe the main achievements and opportunities for improvement of each type of model and critically assess their individual and collective impact on the pursuit of predictive studies of the placenta in line with the 3Rs and European legislation.
Collapse
Affiliation(s)
- Joana Costa
- Centro di Ricerca E.Piaggio, University of Pisa, 56126 Pisa, Italy; (J.C.); (A.C.)
| | - Ruth Mackay
- Centre for Genome Engineering and Maintenance, Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| | | | - Alessandro Corti
- Centro di Ricerca E.Piaggio, University of Pisa, 56126 Pisa, Italy; (J.C.); (A.C.)
- Department of Translational Medicine, University of Pisa, 56126 Pisa, Italy
| | - Elisabete Silva
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.-C.d.A.G.); (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.-C.d.A.G.); (E.S.); (E.K.)
| | - Arti Ahluwalia
- Centro di Ricerca E.Piaggio, University of Pisa, 56126 Pisa, Italy; (J.C.); (A.C.)
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
- Interuniversity Centro for the Promotion of 3Rs Principles in Teaching and Research (Centro3R), Italy
- Correspondence:
| |
Collapse
|
3
|
Nguyen T, Khaksari K, Khare SM, Park S, Anderson AA, Bieda J, Jung E, Hsu CD, Romero R, Gandjbakhche AH. Non-invasive transabdominal measurement of placental oxygenation: a step toward continuous monitoring. BIOMEDICAL OPTICS EXPRESS 2021; 12:4119-4130. [PMID: 34457403 PMCID: PMC8367252 DOI: 10.1364/boe.424969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess transabdominal placental oxygenation levels non-invasively. A wearable device was designed and tested in 12 pregnant women with an anterior placenta, 5 of whom had maternal pregnancy complications. Preliminary results revealed that the placental oxygenation level is closely related to pregnancy complications and placental pathology. Women with maternal pregnancy complications were found to have a lower placental oxygenation level (69.4% ± 6.7%) than those with uncomplicated pregnancy (75.0% ± 5.8%). This device is a step in the development of a point-of-care method designed to continuously monitor placental oxygenation and to assess maternal and fetal health.
Collapse
Affiliation(s)
- Thien Nguyen
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Siddharth M. Khare
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Soongho Park
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Afrouz A. Anderson
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Janine Bieda
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Eunjung Jung
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Roberto Romero
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20814 and Detroit, Michigan 48201, USA
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Winter M, Jankovic-Karasoulos T, Roberts CT, Bianco-Miotto T, Thierry B. Bioengineered Microphysiological Placental Models: Towards Improving Understanding of Pregnancy Health and Disease. Trends Biotechnol 2021; 39:1221-1235. [PMID: 33965246 DOI: 10.1016/j.tibtech.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Driven by a lack of appropriate human placenta models, recent years have seen the introduction of bioengineered in vitro models to better understand placental health and disease. Thus far, the focus has been on the maternal-foetal barrier. However, there are many other physiologically and pathologically significant aspects of the placenta that would benefit from state-of-the-art bioengineered models, in particular, integrating advanced culture systems with contemporary biological concepts such as organoids. This critical review defines and discusses the key parameters required for the development of physiologically relevant in vitro models of the placenta. Specifically, it highlights the importance of cell type, mechanical forces, and culture microenvironment towards the use of physiologically relevant models to improve the understanding of human placental function and dysfunction.
Collapse
Affiliation(s)
- Marnie Winter
- ARC Centre of Excellence in Convergent BioNano Science and Technology and Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia.
| | - Tanja Jankovic-Karasoulos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Claire T Roberts
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia, 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia; Waite Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Benjamin Thierry
- ARC Centre of Excellence in Convergent BioNano Science and Technology and Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
5
|
Lewis RM, Cleal JK, Sengers BG. Placental perfusion and mathematical modelling. Placenta 2020; 93:43-48. [PMID: 32250738 DOI: 10.1016/j.placenta.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 01/31/2023]
Abstract
The isolated perfused placental cotyledon technique has led to numerous advances in placental biology. Combining placental perfusion with mathematical modelling provides an additional level of insight into placental function. Mathematical modelling of perfusion data provides a quantitative framework to test the understanding of the underlying biology and to explore how different processes work together within the placenta as part of an integrated system. The perfusion technique provides a high degree of control over the experimental conditions as well as regular measurements of functional parameters such as pressure, solute concentrations and pH over time. This level of control is ideal for modelling as it allows placental function to be studied across a wide range of different conditions which permits robust testing of mathematical models. By placing quantitative values on different processes (e.g. transport, metabolism, blood flow), their relative contribution to the system can be estimated and those most likely to become rate-limiting identified. Using a combined placental perfusion and modelling approach, placental metabolism was shown to be a more important determinant of amino acid and fatty acid transfer. In contrast, metabolism was a less important determinant of placental cortisol transfer than initially thought. Identifying the rate-limiting factors in the system allows future work to be focused on the factors that are most likely to underlie placental dysfunction. A combined experimental and modelling approach using placental perfusions promotes an integrated view of placental physiology that can more effectively identify the processes leading to placental pathologies.
Collapse
Affiliation(s)
- Rohan M Lewis
- University of Southampton, Faulty of Medicine, UK; University of Southampton, Institute for Life Sciences, UK.
| | - Jane K Cleal
- University of Southampton, Faulty of Medicine, UK; University of Southampton, Institute for Life Sciences, UK
| | - Bram G Sengers
- University of Southampton, Institute for Life Sciences, UK; University of Southampton, Faculty of Engineering and Physical Sciences, UK
| |
Collapse
|
6
|
Erlich A, Nye GA, Brownbill P, Jensen OE, Chernyavsky IL. Quantifying the impact of tissue metabolism on solute transport in feto-placental microvascular networks. Interface Focus 2019; 9:20190021. [PMID: 31485311 PMCID: PMC6710657 DOI: 10.1098/rsfs.2019.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions. We present a simple algebraic approximation for solute uptake rate as a function of flow conditions, metabolic rate and villous geometry. For oxygen, accounting for nonlinear kinetics using physiological parameter values, our model predicts that villous metabolism does not significantly impact oxygen transfer to fetal blood, although the partitioning of fluxes between the villous tissue and the capillary network depends strongly on the flow regime.
Collapse
Affiliation(s)
- Alexander Erlich
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Gareth A. Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Chester Medical School, University of Chester, Chester CH1 4AR, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Oliver E. Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Nye GA, Ingram E, Johnstone ED, Jensen OE, Schneider H, Lewis RM, Chernyavsky IL, Brownbill P. Human placental oxygenation in late gestation: experimental and theoretical approaches. J Physiol 2018; 596:5523-5534. [PMID: 29377190 PMCID: PMC6265570 DOI: 10.1113/jp275633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
The placenta is crucial for life. It is an ephemeral but complex organ acting as the barrier interface between maternal and fetal circulations, providing exchange of gases, nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our understanding of the detailed placental structure and function, particularly in relation to oxygen handling and transfer in healthy and pathological states in utero. Measurements to understand oxygen transfer in vivo in the human are limited, with no general agreement on the most appropriate methods. An invasive method for measuring partial pressure of oxygen in the intervillous space through needle electrode insertion at the time of Caesarean sections has been reported. This allows for direct measurements in vivo whilst maintaining near normal placental conditions; however, there are practical and ethical implications in using this method for determination of placental oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within the placenta. Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of enhancing and improving current imaging methodology for placental villous structure and increase the precision of oxygen measurement within placental compartments. These techniques, in combination with mathematical modelling, have stimulated novel cross-disciplinary approaches that could advance our understanding of placental oxygenation and its metabolism in normal and pathological pregnancies, improving clinical treatment options and ultimately outcomes for the patient.
Collapse
Affiliation(s)
- Gareth A Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Emma Ingram
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Edward D Johnstone
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Igor L Chernyavsky
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
8
|
Brownbill P, Chernyavsky I, Bottalico B, Desoye G, Hansson S, Kenna G, Knudsen LE, Markert UR, Powles-Glover N, Schneider H, Leach L. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy. Reprod Toxicol 2016; 64:191-202. [PMID: 27327413 DOI: 10.1016/j.reprotox.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
Abstract
The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice.
Collapse
Affiliation(s)
- Paul Brownbill
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Igor Chernyavsky
- School of Mathematics, University of Manchester, Manchester, UK.
| | - Barbara Bottalico
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | - Stefan Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | | | - Lisbeth E Knudsen
- Department of Public Health, Faculty Of Health Sciences, University of Copenhagen, Denmark.
| | - Udo R Markert
- Placenta-Labor Laboratory, Department of Obstetrics, Friedrich Schiller University, D-07740, Jena, Germany.
| | - Nicola Powles-Glover
- Reproductive, Development and Paediatric Centre of Excellence, AstraZeneca, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK.
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland.
| | - Lopa Leach
- Molecular Cell Biology & Development, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
| |
Collapse
|
9
|
Lofthouse EM, Perazzolo S, Brooks S, Crocker IP, Glazier JD, Johnstone ED, Panitchob N, Sibley CP, Widdows KL, Sengers BG, Lewis RM. Phenylalanine transfer across the isolated perfused human placenta: an experimental and modeling investigation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R828-36. [PMID: 26676251 PMCID: PMC5000773 DOI: 10.1152/ajpregu.00405.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022]
Abstract
Membrane transporters are considered essential for placental amino acid transfer, but the contribution of other factors, such as blood flow and metabolism, is poorly defined. In this study we combine experimental and modeling approaches to understand the determinants of [(14)C]phenylalanine transfer across the isolated perfused human placenta. Transfer of [(14)C]phenylalanine across the isolated perfused human placenta was determined at different maternal and fetal flow rates. Maternal flow rate was set at 10, 14, and 18 ml/min for 1 h each. At each maternal flow rate, fetal flow rates were set at 3, 6, and 9 ml/min for 20 min each. Appearance of [(14)C]phenylalanine was measured in the maternal and fetal venous exudates. Computational modeling of phenylalanine transfer was undertaken to allow comparison of the experimental data with predicted phenylalanine uptake and transfer under different initial assumptions. Placental uptake (mol/min) of [(14)C]phenylalanine increased with maternal, but not fetal, flow. Delivery (mol/min) of [(14)C]phenylalanine to the fetal circulation was not associated with fetal or maternal flow. The absence of a relationship between placental phenylalanine uptake and net flux of phenylalanine to the fetal circulation suggests that factors other than flow or transporter-mediated uptake are important determinants of phenylalanine transfer. These observations could be explained by tight regulation of free amino acid levels within the placenta or properties of the facilitated transporters mediating phenylalanine transport. We suggest that amino acid metabolism, primarily incorporation into protein, is controlling free amino acid levels and, thus, placental transfer.
Collapse
Affiliation(s)
- E M Lofthouse
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - S Perazzolo
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - S Brooks
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - I P Crocker
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - J D Glazier
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - E D Johnstone
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - N Panitchob
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - C P Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - K L Widdows
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - B G Sengers
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - R M Lewis
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|