1
|
Nergiz Y, Deveci E, Sak E, Evsen S, Tunik S, Nergiz Ş, Aşır F, Şeker U. Severe preeclampsia complicated by HELLP syndrome alters the structure of Hofbauer and syncytiotrophoblast cells: ultrastructural and immunohistochemical study. ASIAN BIOMED 2023; 17:238-243. [PMID: 37899759 PMCID: PMC10602634 DOI: 10.2478/abm-2023-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Background Hemolysis, elevated liver enzymes, low platelet count (HELLP) syndrome is generally considered to be a variant or complication of preeclampsia. It is a life-threatening obstetric complication. Objectives To evaluate the immunohistochemistry and ultrastructural of syncytiotrophoblastand Hoffbauer cells in placental villi of patients with HELLP syndrome. Methods Two groups of patients with a total of 50 full-term human placentas (n = 25 in each group) were assigned as the control (normotensive) and HELLP syndrome. Placental tissue samples were fixed in 10% neutral formalin and paraffin-embedding protocol was performed. We prepared 5 μm sections for histological and immunohistochemical staining. Sections were immunostained with Hoffbauer cell marker CD68. For transmission electron microscopy (TEM), placental tissue samples were fixed in 2.5% buffered glutaraldehyde and then, in 1% osmium tetroxide for routine ultrastructural examinations. Results When the HELLP group fetal placental sections were examined, intracytoplasmic edema in syncytiotrophoblast, degenerative vacuoles, and degenerative findings on cell surface membranes were observed. Moreover, villous edema was remarkable. The number of CD68-positive Hoffbauer cells per villus control group sections was 0.23 ± 0.02 and the number of CD68-positive cells per villus in HELLP group placenta sections was 0.83 ± 0.12. The increase in the number of Hoffbauer cells per villus in the HELLP group was significant (P < 0.001). Compared with the control group, there was a significant increase in the number of Hoffbauer cells and syncytiotrophoblasts in the HELLP group, and degenerative changes were also observed in the ultrastructure of these cells. Conclusions Pathology of the HELLP syndrome is in relation to CD68-positive placental macrophages.
Collapse
Affiliation(s)
- Yusuf Nergiz
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| | - Engin Deveci
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| | - Erdal Sak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| | - Sıddık Evsen
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| | - Selçuk Tunik
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| | - Şebnem Nergiz
- Department of Microbiology, Atatürk Health High School, Dicle University, Diyarbakır21280, Turkey
| | - Fırat Aşır
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| | - Uğur Şeker
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır21280, Turkey
| |
Collapse
|
2
|
Sibiak R, Ozegowska K, Wender-Ozegowska E, Gutaj P, Mozdziak P, Kempisty B. Fetomaternal Expression of Glucose Transporters (GLUTs)-Biochemical, Cellular and Clinical Aspects. Nutrients 2022; 14:2025. [PMID: 35631166 PMCID: PMC9146575 DOI: 10.3390/nu14102025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Several types of specialized glucose transporters (GLUTs) provide constant glucose transport from the maternal circulation to the developing fetus through the placental barrier from the early stages of pregnancy. GLUT1 is a prominent protein isoform that regulates placental glucose transfer via glucose-facilitated diffusion. The GLUT1 membrane protein density and permeability of the syncytial basal membrane (BM) are the main factors limiting the rate of glucose diffusion in the fetomaternal compartment in physiological conditions. Besides GLUT1, the GLUT3 and GLUT4 isoforms are widely expressed across the human placenta. Numerous medical conditions and molecules, such as hormones, adipokines, and xenobiotics, alter the GLUT's mRNA and protein expression. Diabetes upregulates the BM GLUT's density and promotes fetomaternal glucose transport, leading to excessive fetal growth. However, most studies have found no between-group differences in GLUTs' placental expression in macrosomic and normal control pregnancies. The fetomaternal GLUTs expression may also be influenced by several other conditions, such as chronic hypoxia, preeclampsia, and intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Rafal Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 60-701 Poznan, Poland
| | - Katarzyna Ozegowska
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (E.W.-O.); (P.G.)
| | - Pawel Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (E.W.-O.); (P.G.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-701 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
3
|
Hooshmandabbasi R, Kazemian A, Zerbe H, Kowalewski MP, Klisch K. Macrophages in bovine term placenta: An ultrastructural and molecular study. Reprod Domest Anim 2021; 56:1243-1253. [PMID: 34174122 PMCID: PMC8519142 DOI: 10.1111/rda.13983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Retention of foetal membranes (RFM) is a major reproductive disorder in dairy cows. An appropriate immune response is important for a physiological expulsion of the foetal membranes at parturition. Our study aims to provide a deeper insight into characteristics of foetal and maternal macrophages in bovine term placenta. We used transmission electron microscopy (TEM), immunohistochemistry and semi-quantitative RT-PCR to provide a deeper insight into characteristics of foetal and maternal macrophages in bovine term placenta. Semi-quantitative RT-PCR was used to define macrophage polarization in foetal and maternal compartments of normal term placenta. Gene expression of factors involved in M1 polarization [interferon regulatory factor-5 (IRF5), interleukin (IL)-12A, IL12B] and in M2 polarization (IL10) were studied. Ultrastructurally, foetal macrophages showed an irregular shape and large vacuoles, whereas the maternal macrophages were spindle shaped. By immunohistochemistry, macrophages were identified by a strong staining with the lysosomal marker Lysosome-associated membrane glycoprotein 1 (LAMP-1), while myofibroblast in the maternal stroma was positive for alpha-smooth muscle actin. We used the LAMP-1 marker to compare the density of foetal stromal macrophages in placentas of cows with RFM and in controls, but no statistically significant difference was observed. RT-PCR showed a higher expression of all studied genes in the maternal compartment of the placenta and generally a higher expression of M1-, compared to M2-associated genes. Our results indicated that at parturition placental macrophages predominantly show the pro-inflammatory M1 polarization. The higher expression of all the target genes in the maternal compartment may denote that maternal macrophages in bovine term placenta are more frequent than foetal macrophages.
Collapse
Affiliation(s)
| | - Ali Kazemian
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Holm Zerbe
- Clinic of Ruminants, Ludwig-Maximilians-Universität (LMU), Oberschleissheim, Germany
| | - Mariusz P Kowalewski
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Karl Klisch
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Post-Vaccination Yellow Fever Antiserum Reduces Zika Virus in Embryoid Bodies When Placental Cells are Present. Vaccines (Basel) 2020; 8:vaccines8040752. [PMID: 33322247 PMCID: PMC7768546 DOI: 10.3390/vaccines8040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that originated in Africa but emerged in Latin America in 2015. In this region, other flaviviruses such as Dengue (DENV), West Nile, and Yellow Fever virus (YFV) also circulate, allowing for possible antigenic cross-reactivity to impact viral infections and immune responses. Studies have found antibody-mediated enhancement between DENV and ZIKV, but the impact of YFV antibodies on ZIKV infection has not been fully explored. ZIKV infections cause congenital syndromes, such as microcephaly, necessitating further research into ZIKV vertical transmission through the placental barrier. Recent advancements in biomedical engineering have generated co-culture methods that allow for the in vitro recapitulation of the maternal–fetal interface. This study utilized a transwell assay, which was a co-culture model utilizing human placental syncytiotrophoblasts, fetal umbilical cells, and a differentiating embryoid body, to replicate the maternal–fetal axis. To determine if cross-reactive YFV vaccine antibodies impacted the pathogenesis of ZIKV across the maternal–fetal axis, syncytiotrophoblasts were inoculated with ZIKV or ZIKV incubated with YFV vaccine antisera, and the viral load was measured 72 h post-inoculation. Here, we report that BeWo and HUVEC cells were permissive to ZIKV and that the impact of YFV post-vaccination antibodies on ZIKV replication was cell line-dependent. Embryoid bodies were also permissive to ZIKV, and the presence of YFV antibodies collected 4–14 months post-vaccination reduced ZIKV infection when placental cells were present. However, when directly infected with ZIKV, the embryoid bodies displayed significantly increased viral loads in the presence of YFV antiserum taken 30 days post-vaccination. The data show that each of the cell lines and EBs have a unique response to ZIKV complexed with post-vaccination serum, suggesting there may be cell-specific mechanisms that impact congenital ZIKV infections. Since ZIKV infections can cause severe congenital syndromes, it is crucial to understand any potential enhancement or protection offered from cross-reactive, post-vaccination antibodies.
Collapse
|
5
|
Campuzano M, Bueno-Sánchez J, Agudelo-Jaramillo B, Quintana-Castillo JC, Chaouat GC, Maldonado-Estrada JG. Glycan expression in chorionic villi from histocultures of women with early-onset preeclampsia: Immunomodulatory effects on peripheral natural killer cells. J Reprod Immunol 2020; 142:103212. [PMID: 33032074 DOI: 10.1016/j.jri.2020.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/05/2020] [Accepted: 09/20/2020] [Indexed: 12/01/2022]
Abstract
New evidence suggests that glycan expression in placental cells of women with invasive disorders of pregnancy differs from that in normal pregnant women. Hypothesizing that modifications of glycan expression could account for the course of preeclampsia, we established placental villous histocultures and compared glycan expression in women with preeclampsia with that in normal pregnant women and also in syncytialized BeWo cells, and we tested the effect of glycan expression on the functional phenotypes of circulating natural killer (NK) cells. Histocultures of third-trimester placentae from women with preeclampsia and full-term placentae from healthy pregnant women and BeWo choriocarcinoma cells were assessed for the expression of terminal glycans by lectin-binding assays. Circulating NK cells from nonpregnant healthy donors were tested in vitro for their cytotoxic activity and intracellular cytokine content. Histocultures from women with preeclampsia expressed significantly more mannose than did those from healthy pregnant women. Both histocultures and BeWo cells expressed terminal fucose, mannose, sialic acid, and N -acetylgalactosamine, although mean fluorescence intensity (MFI) expression was lower in choriocarcinoma cells than in cells from histocultures. Cocultures of circulating NK cells with K562 target cells resulted in a dose-dependent cytotoxicity effect, but the use of BeWo cells as target reduced cytotoxic activity; this reduction was not affected by syncytialization. Histocultures of placental villous tissue of women with preeclampsia expressed high levels of terminal mannose. We proposethat placental glycans may modulate the functional activity of circulating NK cells in the context of systemic inflammatory response in preeclampsia.
Collapse
Affiliation(s)
- Marisol Campuzano
- Reproduction Group, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia
| | - Julio Bueno-Sánchez
- Reproduction Group, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia; Department of Physiology, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia.
| | - Bernardo Agudelo-Jaramillo
- Department of Obstetrics and Gynecology, School of Medicine, University of Antioquia, Calle 70 # 52-21, 050010 Medellín, Colombia
| | - Juan C Quintana-Castillo
- School of Medicine, Universidad Cooperativa De Colombia, Sede Medellín, Calle 50 A N° 41-20, 050010 Medellín, Colombia
| | - Gerard C Chaouat
- INSERM U 976, Pavillon Bazin, Hôpital Saint-Louis, 75010 Paris, France
| | - Juan G Maldonado-Estrada
- OHVRI Research Group, College of Veterinary Medicine, Faculty of Agrarian Sciences, Calle 70 # 52-20, Universidad de Antioquia, 050010 Medellín, Colombia
| |
Collapse
|
6
|
Akison LK, Nitert MD, Clifton VL, Moritz KM, Simmons DG. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence. Placenta 2017; 54:52-58. [PMID: 28117144 DOI: 10.1016/j.placenta.2017.01.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
Normal placental function is essential for optimal fetal growth. Transport of glucose from mother to fetus is critical for fetal nutrient demands and can be stored in the placenta as glycogen. However, the function of this glycogen deposition remains a matter of debate: It could be a source of fuel for the placenta itself or a storage reservoir for later use by the fetus in times of need. While the significance of placental glycogen remains elusive, mounting evidence indicates that altered glycogen metabolism and/or deposition accompanies many pregnancy complications that adversely affect fetal development. This review will summarize histological, biochemical and molecular evidence that glycogen accumulates in a) placentas from a variety of experimental rodent models of perturbed pregnancy, including maternal alcohol exposure, glucocorticoid exposure, dietary deficiencies and hypoxia and b) placentas from human pregnancies with complications including preeclampsia, gestational diabetes mellitus and intrauterine growth restriction (IUGR). These pregnancies typically result in altered fetal growth, developmental abnormalities and/or disease outcomes in offspring. Collectively, this evidence suggests that changes in placental glycogen deposition is a common feature of pregnancy complications, particularly those associated with altered fetal growth.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Clinical Research, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Vicki L Clifton
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4101, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, QLD, 4101, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4101, Australia
| |
Collapse
|
7
|
Jones CJP, Whittle SC, Aplin JD. A simple histochemical method for the identification of cytotrophoblasts in tissue sections. Placenta 2016; 42:84-6. [PMID: 27238717 DOI: 10.1016/j.placenta.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
A simple method for the demonstration of placental cytotrophoblast cells is described, utilising the affinity of the lectin from Bandeiraea simplicifolia-II (BSA-II) for intracellular amylase-sensitive glycogen and a protocol using biotinylated BSA-II followed by an avidin-peroxidase revealing system. In early pregnancy, cytotrophoblast cells in chorionic and anchoring villi are deeply stained and with ongoing differentiation the staining gradually decreases in intensity, suggesting that this lectin can be a useful marker for these cells.
Collapse
Affiliation(s)
- Carolyn J P Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Saxon C Whittle
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| |
Collapse
|