1
|
Pishghadam M, Haizler-Cohen L, Ngwa JS, Yao W, Kapse K, Iqbal SN, Limperopoulos C, Andescavage NN. Placental quantitative susceptibility mapping and T2* characteristics for predicting birth weight in healthy and high-risk pregnancies. Eur Radiol Exp 2025; 9:18. [PMID: 39966316 PMCID: PMC11836258 DOI: 10.1186/s41747-025-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The human placenta is critical in supporting fetal development, and placental dysfunction may compromise maternal-fetal health. Early detection of placental dysfunction remains challenging due to the lack of reliable biomarkers. This study compares placental quantitative susceptibility mapping and T2* values between healthy and high-risk pregnancies and investigates their association with maternal and fetal parameters and their ability to predict birth weight (BW). METHODS A total of 105 pregnant individuals were included: 68 healthy controls and 37 high-risk due to fetal growth restriction (FGR), chronic or gestational hypertension, and pre-eclampsia. Placental magnetic resonance imaging data were collected using a three-dimensional multi-echo radiofrequency-spoiled gradient-echo, and mean susceptibility and T2* values were calculated. To analyze associations and estimate BW, we employed linear regression and regression forest models. RESULTS No significant differences were found in susceptibility between high-risk pregnancies and controls (p = 0.928). T2* values were significantly lower in high-risk pregnancies (p = 0.013), particularly in pre-eclampsia and FGR, emerging as a predictor of BW. The regression forest model showed placental T2* as a promising mode for BW estimation. CONCLUSION Our findings underscore the potential of mean placental T2* as a more sensitive marker for detecting placental dysfunction in high-risk pregnancies than mean placental susceptibility. Moreover, the high-risk status emerged as a significant predictor of BW. These results call for further research with larger and more diverse populations to validate these findings and enhance prediction models for improved pregnancy management. RELEVANCE STATEMENT This study highlights the potential of placental T2* magnetic resonance imaging measurements as reliable indicators for detecting placental dysfunction in high-risk pregnancies, aiding in improved prenatal care and birth weight prediction. KEY POINTS Placental dysfunction in high-risk pregnancies is evaluated using MRI T2* values. Lower T2* values significantly correlate with pre-eclampsia and fetal growth restriction. T2* MRI may predict birth weight, enhancing prenatal care outcomes.
Collapse
Affiliation(s)
- Morteza Pishghadam
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Lylach Haizler-Cohen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Julius S Ngwa
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Wu Yao
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Sara N Iqbal
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- Department of Radiology, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
| | - Nickie N Andescavage
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.
- Division of Neonatology, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Bartin R, Melbourne A, Bobet L, Gauchard G, Menneglier A, Grevent D, Bussieres L, Siauve N, Salomon LJ. Static and dynamic responses to hyperoxia of normal placenta across gestation with T2*-weighted MRI sequences. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:236-244. [PMID: 38348601 DOI: 10.1002/uog.27609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 08/03/2024]
Abstract
OBJECTIVES T2*-weighted magnetic resonance imaging (MRI) sequences have been identified as non-invasive tools with which to study placental oxygenation in vivo. This study aimed to use these to investigate both static and dynamic responses to hyperoxia of the normal placenta across gestation. METHODS We conducted a single-center prospective study including 52 uncomplicated pregnancies. Two T2*-weighted sequences (T2* relaxometry) were performed, one before and one after maternal hyperoxia. The distribution of placental T2* values was modeled by fitting a gamma probability density function (T2* ~ Γ α β ), describing the structure of the histogram using the mean T2* value, the shape parameter (α) and the rate (β). A dynamic acquisition (blood-oxygen-level-dependent (BOLD) MRI) was also performed before and during maternal oxygen supply, until placental oxygen saturation had been achieved. The signal change over time was modeled using a sigmoid function, to determine the intensity of enhancement (ΔBOLD (% with respect to baseline)), a temporal variation coefficient (λ (min-1), controlling the slope of the curve) and the maximum steepness (Vmax (% of placental enhancement/min)). RESULTS The histogram analysis of the T2* values in normoxia showed a whole-placenta variation, with a decreasing linear trend in the mean T2* value (Pearson's correlation coefficient (R) = -0.83 (95% CI, -0.9 to -0.71), P < 0.001), along with an increasingly peaked and narrower distribution of T2* values with advancing gestation. After maternal hyperoxia, the mean T2* ratios (mean T2*hyperoxia/mean T2*baseline) were positively correlated with gestational age, while the other histogram parameters remained stable, suggesting a translation of the histogram towards higher values with a similar appearance after maternal hyperoxia. ΔBOLD showed a non-linear increase across gestation. Conversely, λ showed an inverted trend across gestation, with a weaker correlation (R = -0.33 (95% CI, -0.58 to -0.02), P = 0.04, R2 = 0.1). As a combination of ΔBOLD and λ, the changes in Vmax throughout gestation were influenced mainly by the changes in ΔBOLD and showed a positive non-linear correlation with gestational age. CONCLUSIONS Our results suggest that the decrease in the T2* placental signal as gestation progresses does not reflect placental dysfunction. The BOLD dynamic signal change is representative of a free-diffusion model of oxygenation and highlights the increasing differences in oxygen saturation between mother and fetus as gestation progresses (ΔBOLD) and in the placental permeability to oxygen (λ). © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Bartin
- Department of Fetal Medicine, Surgery and Imaging, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
| | - A Melbourne
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- School of Biomedical Engineering & Imaging Sciences, Kings College London, London, UK
| | - L Bobet
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
| | - G Gauchard
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
| | - A Menneglier
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
| | - D Grevent
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
- Department of Pediatric Radiology, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - L Bussieres
- Department of Fetal Medicine, Surgery and Imaging, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
| | - N Siauve
- Department of Radiology, Hôpital Louis Mourier, AP-HP, Colombes, France
| | - L J Salomon
- Department of Fetal Medicine, Surgery and Imaging, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
- Plateforme LUMIERE, Hôpital Universitaire Necker-Enfants Malades, URP 7328 and PACT, affiliated to Imagine Institut, Université de Paris, Faculté de Médecine, Paris, France
| |
Collapse
|
3
|
Vestergaard T, Julsgaard M, Helmig RB, Faunø E, Vendelboe T, Kelsen J, Laurberg TB, Sørensen A, Pedersen BG. Reduced T2*-weighted placental MRI predicts foetal growth restriction in women with chronic rheumatic disease-a Danish explorative study. Clin Rheumatol 2024; 43:1989-1997. [PMID: 38671260 PMCID: PMC11111562 DOI: 10.1007/s10067-024-06889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES Women with chronic rheumatic disease (CRD) are at greater risk of foetal growth restriction than their healthy peers. T2*-weighted magnetic resonance imaging of placenta (T2*P-MRI) is superior to conventional ultrasonography in predicting birth weight and works as a proxy metabolic mirror of the placental function. We aimed to compare T2*P-MRI in pregnant women with CRD and healthy controls. In addition, we aimed to investigate the correlation between T2*P-MRI and birth weight. METHODS Using a General Electric (GE) 1.5 Tesla, we consecutively performed T2*-weighted placental MRI in 10 women with CRD and 18 healthy controls at gestational week (GW)24 and GW32. We prospectively collected clinical parameters during pregnancy including birth outcome and placental weight. RESULTS Women with CRD had significantly lower T2*P-MRI values at GW24 than healthy controls (median T2*(IQR) 92.1 ms (81.6; 122.4) versus 118.6 ms (105.1; 129.1), p = 0.03). T2*P-MRI values at GW24 showed a significant correlation with birth weight, as the T2*P-MRI value was reduced in all four pregnancies complicated by SGA at birth. Three out of four pregnancies complicated by SGA at birth remained undetected by routine antenatal ultrasound. CONCLUSION This study demonstrates reduced T2*P-MRI values and a high proportion of SGA at birth in CRD pregnancies compared to controls, suggesting an increased risk of placental dysfunction in CRD pregnancies. T2*P-MRI may have the potential to focus clinical vigilance by identifying pregnancies at risk of SGA as early as GW24. Key Points • Placenta-related causes of foetal growth restriction in women with rheumatic disease remain to be investigated. • T2*P-MRI values at gestational week 24 predicted foetuses small for gestational age at birth. • T2*P-MRI may indicate pregnant women with chronic rheumatic disease (CRD) in need of treatment optimization.
Collapse
Affiliation(s)
- Thea Vestergaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark.
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Mette Julsgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Aalborg, Copenhagen, Denmark
| | - Rikke Bek Helmig
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie Faunø
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
| | - Tau Vendelboe
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Anne Sørensen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
4
|
Jacquier M, Chalouhi G, Marquant F, Bussieres L, Grevent D, Picone O, Mandelbrot L, Mahallati H, Briand N, Elie C, Siauve N, Salomon LJ. Placental T2* and BOLD effect in response to hyperoxia in normal and growth-restricted pregnancies: multicenter cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:472-480. [PMID: 37743665 DOI: 10.1002/uog.27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES Blood-oxygen-level-dependent (BOLD) magnetic resonance imaging (MRI) facilitates the non-invasive in-vivo evaluation of placental oxygenation. The aims of this study were to identify and quantify a relative BOLD effect in response to hyperoxia in the human placenta and to compare it between pregnancies with and those without fetal growth restriction (FGR). METHODS This was a prospective multicenter study (NCT02238301) of 19 pregnancies with FGR (estimated fetal weight (EFW) on ultrasound < 5th centile) and 75 non-FGR pregnancies (controls) recruited at two centers in Paris, France. Using a 1.5-Tesla MRI system, the same multi-echo gradient-recalled echo (GRE) sequences were performed at both centers to obtain placental T2* values at baseline and in hyperoxic conditions. The relative BOLD effect was calculated according to the equation 100 × (hyperoxic T2* - baseline T2*)/baseline T2*. Baseline T2* values and relative BOLD effect were compared according to EFW (FGR vs non-FGR), presence/absence of Doppler anomalies and birth weight (small-for-gestational age (SGA) vs non-SGA). RESULTS We observed a relative BOLD effect in response to hyperoxia in the human placenta (median, 33.8% (interquartile range (IQR), 22.5-48.0%)). The relative BOLD effect did not differ significantly between pregnancies with and those without FGR (median, 34.4% (IQR, 24.1-48.5%) vs 33.7% (22.7-47.4%); P = 0.95). Baseline T2* Z-score adjusted for gestational age at MRI was significantly lower in FGR pregnancies compared with non-FGR pregnancies (median, -1.27 (IQR, -4.87 to -0.10) vs 0.33 (IQR, -0.81 to 1.02); P = 0.001). Baseline T2* Z-score was also significantly lower in those pregnancies that subsequently delivered a SGA neonate (n = 23) compared with those that delivered a non-SGA neonate (n = 62) (median, -0.75 (IQR, -3.48 to 0.29) vs 0.35 (IQR, -0.79 to 1.05); P = 0.01). CONCLUSIONS Our study confirms a BOLD effect in the human placenta and that baseline T2* values are significantly lower in pregnancies with FGR. Further studies are needed to evaluate whether such parameters may detect placental insufficiency before it has a clinical impact on fetal growth. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Jacquier
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
| | - G Chalouhi
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
- Centre SFFERe (Spécialistes Fœtus, Femme Enceinte et Reproduction), Boulogne-Billancourt, France
| | - F Marquant
- Clinical Unit Research/Clinic Investigation Center, Paris Descartes University, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - L Bussieres
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
| | - D Grevent
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
- Radiology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - O Picone
- Obstetrics and Gynecology Department, Hôpital Louis-Mourier, AP-HP, Colombes, France
- Inserm IAME-U1137, Paris, France
- FHU PREMA, Paris, France
| | - L Mandelbrot
- Obstetrics and Gynecology Department, Hôpital Louis-Mourier, AP-HP, Colombes, France
- Inserm IAME-U1137, Paris, France
- FHU PREMA, Paris, France
| | - H Mahallati
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - N Briand
- Clinical Unit Research/Clinic Investigation Center, Paris Descartes University, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - C Elie
- Clinical Unit Research/Clinic Investigation Center, Paris Descartes University, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - N Siauve
- Radiology Department, Hôpital Louis-Mourier, AP-HP, Colombes, France
- INSERM-U970, Paris Cardiovascular Research Center (PARCC), Sorbonne Paris Cité, Paris, France
| | - L J Salomon
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
| |
Collapse
|
5
|
Ercolani G, Capuani S, Maiuro A, Celli V, Grimm R, Di Mascio D, Porpora MG, Catalano C, Brunelli R, Giancotti A, Manganaro L. Diffusion-sensitized magnetic resonance imaging highlights placental microstructural damage in patients with previous SARS-CoV-2 pregnancy infection. Placenta 2024; 145:38-44. [PMID: 38052124 DOI: 10.1016/j.placenta.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a major global health problem since December 2019. This work aimed to investigate whether pregnant women's mild and moderate SARS-CoV-2 infection was associated with microstructural and vascular changes in the placenta observable in vivo by Intravoxel Incoherent Motion (IVIM) at different gestational ages (GA). METHODS This was a retrospective, nested case-control of pregnant women during the SARS-CoV-2 pandemic (COVID-19 group, n = 14) compared to pre-pandemic healthy controls (n = 19). MRI IVIM protocol at 1.5T was constituted of diffusion-weighted (DW) images with TR/TE = 3100/76 ms and 10 b-values (0,10,30,50,75,100,200,400,700,1000s/mm2). Differences between IVIM parameters D (diffusion), and f (fractional perfusion) quantified in the two groups were evaluated using the ANOVA test with Bonferroni correction and linear correlation between IVIM metrics and GA, COVID-19 duration, the delay time between a positive SARS-CoV-2 test and MRI examination (delay-time exam+) was studied by Pearson-test. RESULTS D was significantly higher in the COVID-19 placentas compared to that of the age-matched healthy group (p < 0.04 in fetal and p < 0.007 in maternal site). No significant difference between f values was found in the two groups suggesting no-specific microstructural damage with no perfusion alteration (potentially quantified by f) in mild/moderate SARS-Cov-2 placentas. A significant negative correlation was found between D and GA in the COVID-19 placentas whereas no significant correlation was found in the control placentas reflecting a possible accelerated senescence process due to COVID-19. DISCUSSION We report impaired microstructural placental development during pregnancy and the absence of perfusion-IVIM parameter changes that may indicate no perfusion changing through microvessels and microvilli in the placentas of pregnancies with mild/moderate SARS-Cov-2 after reaching negativity.
Collapse
Affiliation(s)
- Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Italy
| | | | - Alessandra Maiuro
- CNR ISC Roma Sapienza, Physics Department Rome, Italy; Sapienza University of Rome, Physics Department, Rome, Italy
| | - Veronica Celli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Italy
| | | | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Italy
| | - Roberto Brunelli
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Italy.
| |
Collapse
|
6
|
Kulseng CPS, Sommerfelt S, Flo K, Gjesdal KI, Peterson HF, Hillestad V, Eskild A. Placental size at gestational week 27 and 37: The associations with pulsatility index in the uterine and the fetal-placental arteries. Placenta 2024; 145:45-50. [PMID: 38064937 DOI: 10.1016/j.placenta.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Fetal growth restriction is known to be related to decreased fetal and placental blood flow. It is not known, however, whether placental size is related to fetal and placental blood flow. We studied the correlations of intrauterine placental volume and placental-fetal-ratio with pulsatility index (PI) in the uterine arteries, fetal middle cerebral artery, and umbilical artery. METHODS We followed a convenience sample of 104 singleton pregnancies, and we measured placental and fetal volumes using magnetic resonance imaging (MRI) at gestational week 27 and 37 (n = 89). Pulsatility index (PI) was measured using Doppler ultrasound. We calculated cerebroplacental ratio as fetal middle cerebral artery PI/umbilical artery PI and placental-fetal-ratio as placental volume (cm3)/fetal volume (cm3). RESULTS At gestational week 27, placental volume was negatively correlated with uterine artery PI (r = -0.237, p = 0.015, Pearson's correlation coefficient), and positively correlated with fetal middle cerebral artery PI (r = 0.247, p = 0.012) and cerebroplacental ratio (r = 0.208, p = 0.035). Corresponding correlations for placental-fetal-ratio were -0.273 (p = 0.005), 0.233 (p = 0.018) and 0.183 (p = 0.064). Umbilical artery PI was not correlated with placental volume. At gestational week 37, we found weaker and no significant correlations between placental volume and the pulsatility indices. CONCLUSIONS Our results suggest that placental size is correlated with placental and fetal blood flow at gestational week 27.
Collapse
Affiliation(s)
- Carl Petter Skaar Kulseng
- Department of Obstetrics and Gynecology, Akershus University Hospital, 1478, Nordbyhagen, Norway; Sunnmøre MR-Klinikk, Langelandsvegen 15, 6010, Ålesund, Norway.
| | - Silje Sommerfelt
- Department of Obstetrics and Gynecology, Akershus University Hospital, 1478, Nordbyhagen, Norway
| | - Kari Flo
- Department of Obstetrics and Gynecology, Akershus University Hospital, 1478, Nordbyhagen, Norway
| | - Kjell-Inge Gjesdal
- Sunnmøre MR-Klinikk, Langelandsvegen 15, 6010, Ålesund, Norway; Department of Diagnostic Imaging, Akershus University Hospital, 1478, Nordbyhagen, Norway
| | - Helene Fjeldvik Peterson
- Department of Obstetrics and Gynecology, Akershus University Hospital, 1478, Nordbyhagen, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318, Oslo, Norway
| | - Vigdis Hillestad
- Department of Diagnostic Imaging, Akershus University Hospital, 1478, Nordbyhagen, Norway
| | - Anne Eskild
- Department of Obstetrics and Gynecology, Akershus University Hospital, 1478, Nordbyhagen, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318, Oslo, Norway
| |
Collapse
|
7
|
Al Darwish FM, Meijerink L, Coolen BF, Strijkers GJ, Bekker M, Lely T, Terstappen F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells 2023; 12:2080. [PMID: 37626890 PMCID: PMC10452979 DOI: 10.3390/cells12162080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Placental hypoxia poses significant risks to both the developing fetus and the mother during pregnancy, underscoring the importance of early detection and monitoring. Effectively identifying placental hypoxia and evaluating the deterioration in placental function requires reliable biomarkers. Molecular biomarkers in placental tissue can only be determined post-delivery and while maternal blood biomarkers can be measured over time, they can merely serve as proxies for placental function. Therefore, there is an increasing demand for non-invasive imaging techniques capable of directly assessing the placental condition over time. Recent advancements in imaging technologies, including photoacoustic and magnetic resonance imaging, offer promising tools for detecting and monitoring placental hypoxia. Integrating molecular and imaging biomarkers may revolutionize the detection and monitoring of placental hypoxia, improving pregnancy outcomes and reducing long-term health complications. This review describes current research on molecular and imaging biomarkers of placental hypoxia both in human and animal studies and aims to explore the benefits of an integrated approach throughout gestation.
Collapse
Affiliation(s)
- Fatimah M. Al Darwish
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Lotte Meijerink
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Mireille Bekker
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Titia Lely
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| |
Collapse
|
8
|
Hutter J, Al-Wakeel A, Kyriakopoulou V, Matthew J, Story L, Rutherford M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta 2023; 139:25-33. [PMID: 37295055 DOI: 10.1016/j.placenta.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The development of placenta and fetal brain are intricately linked. Placental insufficiency is related to poor neonatal outcomes with impacts on neurodevelopment. This study sought to investigate whether simultaneous fast assessment of placental and fetal brain oxygenation using MRI T2* relaxometry can play a complementary role to US and Doppler US. METHODS This study is a retrospective case-control study with uncomplicated pregnancies (n = 99) and cases with placental insufficiency (PI) (n = 49). Participants underwent placental and fetal brain MRI and contemporaneous ultrasound imaging, resulting in quantitative assessment including a combined MRI score called Cerebro-placental-T2*-Ratio (CPTR). This was assessed in comparison with US-derived Cerebro-Placental-Ratio (CPR), placental histopathology, assessed using the Amsterdam criteria [1], and delivery details. RESULTS Pplacental and fetal brain T2* decreased with increasing gestational age in both low and high risk pregnancies and were corrected for gestational-age alsosignificantly decreased in PI. Both CPR and CPTR score were significantly correlated with gestational age at delivery for the entire cohort. CPTR was, however, also correlated independently with gestational age at delivery in the PI cohort. It furthermore showed a correlation to birth-weight-centile in healthy controls. DISCUSSION This study indicates that MR analysis of the placenta and brain may play a complementary role in the investigation of fetal development. The additional correlation to birth-weight-centile in controls may suggest a role in the determination of placental health even in healthy controls. To our knowledge, this is the first study assessing quantitatively both placental and fetal brain development over gestation in a large cohort of low and high risk pregnancies. Future larger prospective studies will include additional cohorts.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK.
| | - Ayman Al-Wakeel
- GKT School of Medical Education, King's College London, London, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Lisa Story
- Centre for the Developing Brain, King's College London, UK; Institute for Women's and Children's Health, King's College London, UK; Fetal Medicine Unit, St Thomas' Hospital, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| |
Collapse
|
9
|
Clark A, Flouri D, Mufti N, James J, Clements E, Aughwane R, Aertsen M, David A, Melbourne A. Developments in functional imaging of the placenta. Br J Radiol 2023; 96:20211010. [PMID: 35234516 PMCID: PMC10321248 DOI: 10.1259/bjr.20211010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
The placenta is both the literal and metaphorical black box of pregnancy. Measurement of the function of the placenta has the potential to enhance our understanding of this enigmatic organ and serve to support obstetric decision making. Advanced imaging techniques are key to support these measurements. This review summarises emerging imaging technology being used to measure the function of the placenta and new developments in the computational analysis of these data. We address three important examples where functional imaging is supporting our understanding of these conditions: fetal growth restriction, placenta accreta, and twin-twin transfusion syndrome.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Eleanor Clements
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Rosalind Aughwane
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Michael Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna David
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | | |
Collapse
|
10
|
Dyhr JJ, Linderoth IR, Hansen DN, Frøkjaer JB, Peters DA, Sinding M, Sørensen A. Confined placental mosaicism: placental size and function evaluated on magnetic resonance imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:130-136. [PMID: 36730148 DOI: 10.1002/uog.26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Evidence regarding placental function in pregnancies complicated by confined placental mosaicism (CPM) is conflicting. We aimed to compare placental function between CPM and non-CPM pregnancies prenatally and at birth. A secondary objective was to evaluate the relationship between placental function and chromosomal subtype of CPM. METHODS This was a retrospective study of pregnancies with CPM and control pregnancies delivered at a tertiary hospital in Denmark between 2014 and 2017. Placental volume and placental transverse relaxation time (T2*) were estimated on magnetic resonance imaging (MRI), fetal weight and uterine artery pulsatility index (UtA-PI) were estimated on ultrasound and fetoplacental ratio was assessed on MRI and at birth. These estimates of placental function were adjusted for gestational age and compared between groups using the Wilcoxon rank-sum test. Within the group of CPM pregnancies, measures of placental function were compared between those at high risk (chromosome numbers 2, 3, 7, 13 and 16) and those at low risk (chromosome numbers 5, 18 and 45X). RESULTS A total of 90 pregnancies were included, of which 12 had CPM and 78 were controls. MRI and ultrasound examinations were performed at a median gestational age of 32.6 weeks (interquartile range, 24.7-35.3 weeks). On MRI assessment, CPM placentae were characterized by a lower placental T2* Z-score (P = 0.004), a lower fetoplacental ratio (P = 0.03) and a higher UtA-PI Z-score (P = 0.03), compared with non-CPM placentae. At birth, the fetoplacental ratio was significantly lower (P = 0.02) and placental weight Z-score was higher (P = 0.01) in CPM pregnancies compared with non-CPM pregnancies. High-risk CPM pregnancies showed a reduced placental T2* Z-score (P = 0.003), lower birth-weight Z-score (P = 0.041), earlier gestational age at delivery (P = 0.019) and higher UtA-PI Z-score (P = 0.028) compared with low-risk CPM pregnancies. Low-risk CPM pregnancies did not differ in any of these parameters from non-CPM pregnancies. CONCLUSIONS CPM pregnancies are characterized by an enlarged and dysfunctional placenta. Placental function was highly related to the chromosomal type of CPM; placental dysfunction was seen predominantly in high-risk CPM pregnancies in which chromosomes 2, 3, 7, 13 or 16 were involved. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- J J Dyhr
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - I R Linderoth
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - D N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - J B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - M Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
He J, Chen Z, Chen C, Liu P. Differences in placental oxygenation and perfusion status between fetal growth-restricted and small-for-gestational-age pregnancies: a functional magnetic resonance imaging study. Eur Radiol 2023; 33:1729-1736. [PMID: 36269372 DOI: 10.1007/s00330-022-09185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Functional magnetic resonance imaging (MRI) can assess oxygenation and perfusion status in the placenta. We aimed to explore the differences in functional parameters between pregnancies complicated by fetal growth restriction (FGR) and small-for-gestational-age (SGA). METHODS This was a prospective study. A pregnancy complicated by SGA was defined by prenatal ultrasonic estimated fetal weight (EFW) and a final birthweight < the 10th percentile. A pregnancy complicated by FGR was defined as a more severe subtype (ultrasonic EFW < the 3rd percentile or abnormal Doppler results). All pregnant women underwent T2* and intravoxel incoherent motion (IVIM) scans using a 3.0-T MRI scanner. Functional parameters in the control, SGA, and FGR groups, namely, the T2* Z score, apparent diffusion coefficient (ADC), diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f), were calculated and compared. RESULTS In total, 30 pregnancies complicated by SGA, 24 pregnancies complicated by FGR, and 28 control pregnancies were included in the final analysis. Oxygenation status, as assessed by the T2* Z score, was significantly lower in pregnancies complicated by FGR than in pregnancies complicated by SGA (p < 0.001). However, diffusion and perfusion parameters, including the ADC, D, D*, and f, were similar between pregnancies complicated by SGA and FGR (p > 0.05 for all). Compared to the control pregnancies, all the parameters were significantly decreased in the SGA and FGR groups, except for the D* value. The T2* Z score, ADC, and D values were negatively correlated with birthweight. CONCLUSION Although both pregnancies complicated by SGA and FGR were associated with significantly lower oxygenation and perfusion than normal control pregnancies, placental hypoxia seemed to be more predominant in pregnancies complicated by FGR than in pregnancies complicated by SGA. KEY POINTS • Pregnancy complicated by FGR was associated with a more severe type of hypoxia than pregnancy complicated by SGA. • The diffusion and perfusion parameters of pregnancies complicated by SGA and FGR were similar. • SGA may represent another growth disorder that is not entirely healthy.
Collapse
Affiliation(s)
- Junshen He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhao Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue, Guangzhou, 510515, China.
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Mydtskov ND, Sinding M, Aarøe KK, Thaarup LV, Madsen SBB, Hansen DN, Frøkjær JB, Peters DA, Sørensen ANW. Placental volume, thickness and transverse relaxation time (T2*) estimated by magnetic resonance imaging in relation to small for gestational age at birth. Eur J Obstet Gynecol Reprod Biol 2023; 282:72-76. [PMID: 36669243 DOI: 10.1016/j.ejogrb.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Placental magnetic resonance imaging (MRI) may be a valuable tool in the prediction of small for gestational age (SGA) at birth. MRI provides reliable estimates of placental volume and thickness. In addition, placental transverse relaxation time (T2*) may be directly related to placental function. This study aimed to explore and compare the predictive performance of three placental MRI parameters - volume, thickness and T2* - in relation to SGA at birth. METHODS A mixed cohort of 85 pregnancies was retrieved from the placental MRI database at the study hospital. MRI was performed in a 1.5 T system at gestational weeks 15-41. In normal birthweight (BW) pregnancies [BW > -22 % of expected for gestational age (GA)], the correlation between each of the MRI parameters and GA was investigated by linear regression. The prediction of SGA was investigated by logistic regression analysis adjusted for GA at MRI. RESULTS In normal BW pregnancies, a significant linear correlation was found between GA and each of the MRI parameters. Univariate analysis demonstrated that placental volume [odds ratio (OR) 0.97, p = 0.001] and placental T2* (OR 0.79, p = 0.003), but not placental thickness (OR 0.92, p = 0.862) were significant predictors of SGA. A multi-variate model including all three MRI parameters found that placental T2* was the only independent predictor of SGA (OR 0.81, p = 0.04). CONCLUSION Among the MRI parameters investigated in this study, placental T2* was the only independent predictor of SGA in a multi-variate model. This finding underlines the strong position of T2*-weighted placental MRI in the prediction of SGA.
Collapse
Affiliation(s)
- N D Mydtskov
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark
| | - M Sinding
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - K K Aarøe
- Department of Surgery, North Denmark Regional Hospital, Hjørring, Denmark
| | - L V Thaarup
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S B B Madsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - D N Hansen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J B Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus N, Denmark
| | - A N W Sørensen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
13
|
Differentiating between normal and fetal growth restriction-complicated placentas: is T2∗ imaging imaging more accurate than conventional diffusion-weighted imaging? Clin Radiol 2023; 78:362-368. [PMID: 36858925 DOI: 10.1016/j.crad.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
AIM To compare the performance of T2∗ imaging and apparent diffusion coefficient (ADC) in differentiating normal placentas from those complicated by fetal growth restriction (FGR). MATERIALS AND METHODS This prospective study included 28 control and 30 FGR placentas. Gradient-echo magnetic resonance imaging (MRI) at 16 different echo times and diffusion-weighted imaging (b-value of 0 and 800 s/mm2) were performed on all pregnant women using a 3 T MRI system. RESULTS Both T2∗ imaging Z-score and ADC were significantly lower in the FGR placentas (ADC, (1.69 ± 0.19) × 10-3 versus (1.42 ± 0.28) × 10-3 mm2/s, p<0.001; T2∗ imaging Z-score, -0.004 ± 0.95 versus -2.441 ± 1.48, p<0.001). The area under the curve for T2∗ imaging Z-score and ADC was 0.917 (95% confidence interval [CI] = 0.842-0.991) and 0.788 (95% CI = 0.655-0.887), respectively. The performance of T2∗ imaging in differentiating FGR placentas was significantly better than that of ADC (Z = 2.043, p=0.041). CONCLUSION Placental T2∗ imaging was found to be more reliable than ADC in differentiating between normal and FGR placentas.
Collapse
|
14
|
Baadsgaard K, Hansen DN, Peters DA, Frøkjær JB, Sinding M, Sørensen A. T2* weighted fetal MRI and the correlation with placental dysfunction. Placenta 2023; 131:90-97. [PMID: 36565490 DOI: 10.1016/j.placenta.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Transverse relaxation time (T2*) is related to tissue oxygenation and morphology. We aimed to describe T2* weighted MRI in selected fetal organs in normal pregnancies, and to investigate the correlation between fetal organ T2* and placental T2*, birthweight (BW) deviation, and redistribution of fetal blood flow. METHODS T2*-weighted MRI was performed in 126 singleton pregnancies between 23+6- and 41+3-weeks' gestation. The T2* value was obtained from the placenta and fetal organs (brain, lungs, heart, liver, kidneys, and spleen). In normal BW pregnancies (BW > 10th centile), the correlation between the T2* value and gestational age (GA) at MRI was estimated by linear regression. The correlation between fetal organ Z-score and BW group was demonstrated by boxplots and investigated by analysis of variance (ANOVA) for each organ. RESULTS In normal BW pregnancies fetal organ T2* was negatively correlated with GA. We found a significant correlation between BW group and fetal organ T2* z-score in the fetal heart, kidney, lung and spleen. A positive linear correlation was demonstrated between fetal organ T2* and outcomes related to placental function such as BW deviation and placenta T2* in all investigated fetal organs except for the fetal liver. In the fetal heart, kidneys, and spleen the T2* value showed a significant correlation with fetal redistribution of blood flow (Middle cerebral artery Pulsatility Index) before delivery. DISCUSSION Fetal T2* is correlated with BW, placental function, and redistribution of fetal blood flow, suggesting that fetal organ T2* reflects fetal oxygenation and morphological changes related to placental dysfunction.
Collapse
Affiliation(s)
- Kirstine Baadsgaard
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Universitetsbyen 25, 8000, Aarhus C, Denmark
| | - Jens B Frøkjær
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - Marianne Sinding
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - Anne Sørensen
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| |
Collapse
|
15
|
Desoye G, Carter AM. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol 2022; 18:593-607. [PMID: 35902735 DOI: 10.1038/s41574-022-00717-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Despite improvements in clinical management, pregnancies complicated by pre-existing diabetes mellitus, gestational diabetes mellitus or obesity carry substantial risks for parent and offspring. Some of the endocrine and metabolic changes in parent and fetus in diabetes mellitus and obesity lead to fetal oxygen deficit, mostly due to insulin-induced accelerated fetal metabolism. The human fetus deals with reduced oxygenation through a wide range of adaptive responses that act at various levels in the placenta as well as the fetus. These responses ensure adequate oxygen delivery to the fetus, increase the oxygen transport capacity of fetal blood and redistribute oxygen-rich blood to vital organs such as the brain and heart. The liver has a central role in adapting to reduced oxygenation by increasing its oxygen extraction and stimulating erythropoietin synthesis to increase haematocrit. The type of adaptive response depends on the onset and duration of hypoxia and the severity of the metabolic disturbance. In pregnancies characterized by diabetes mellitus or obesity, these adaptive systems come under additional strain owing to the increased maternal supply of glucose and resultant fetal hyperinsulinaemia, both of which stimulate oxidative metabolism. In the rare situation that the adaptive responses are overwhelmed, stillbirth can ensue.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
- Center for Pregnant Women with Diabetes, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Anthony M Carter
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Colford K, Price AN, Sigurdardottir J, Fotaki A, Steinweg J, Story L, Ho A, Chappell LC, Hajnal JV, Rutherford M, Pushparajah K, Lamata P, Hutter J. Cardiac and placental imaging (CARP) in pregnancy to assess aetiology of preeclampsia. Placenta 2022; 122:46-55. [PMID: 35430505 PMCID: PMC9810538 DOI: 10.1016/j.placenta.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The CARP study aims to investigate placental function, cardiac function and fetal growth comprehensively during pregnancy, a time of maximal cardiac stress, to work towards disentangling the complex cardiac and placental interactions presenting in the aetiology of pre-eclampsia as well as predicting maternal Cardiovascular Disease (CVD) risk in later life. BACKGROUND The involvement of the cardiovascular system in pre-eclampsia, one of the most serious complications of pregnancy, is evident. While the manifestations of pre-eclampsia during pregnancy (high blood pressure, multi-organ disease, and placental dysfunction) resolve after delivery, a lifelong elevated CVD risk remains. METHOD An assessment including both cardiac and placental Magnetic Resonance Imaging (MRI) optimised for use in pregnancy and bespoke to the expected changes was developed. Simultaneous structural and functional MRI data from the placenta, the heart and the fetus were obtained in a total of 32 pregnant women (gestational ages from 18.1 to 37.5 weeks), including uncomplicated pregnancies and five cases with early onset pre-eclampsia. RESULTS The achieved comprehensive MR acquisition was able to demonstrate a phenotype associated with pre-eclampsia linking both placental and cardiac factors, reduced mean T2* (p < 0.005), increased heterogeneity (p < 0.005) and a trend towards an increase in cardiac work, larger average mass (109.4 vs 93.65 gr), wall thickness (7.0 vs 6.4 mm), blood pool volume (135.7 vs 127.48 mL) and mass to volume ratio (0.82 vs 0.75). The cardiac output in the controls was, controlling for gestational age, positively correlated with placental volume (p < 0.05). DISCUSSION The CARP study constitutes the first joint assessment of functional and structural properties of the cardiac system and the placenta during pregnancy. Early indications of cardiac remodelling in pre-eclampsia were demonstrated paving the way for larger studies.
Collapse
Affiliation(s)
- Kathleen Colford
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Anthony N. Price
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Julie Sigurdardottir
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Anastasia Fotaki
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Johannes Steinweg
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Lisa Story
- Academic Women's Health Department, King's College London, London, UK
| | - Alison Ho
- Academic Women's Health Department, King's College London, London, UK
| | - Lucy C. Chappell
- Academic Women's Health Department, King's College London, London, UK
| | - Joseph V. Hajnal
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Mary Rutherford
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Kuberan Pushparajah
- Centre for Medical Engineering, King's College London, London, UK,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering, King's College London, London, UK
| | - Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK,Corresponding author. Perinatal Imaging, 1st Floor South Wing, St THomas' Hospital, Westminster Bridge Road, SE17EH, London, UK.
| |
Collapse
|
17
|
Liao Y, Sun T, Jiang L, Zhao Z, Liu T, Qian Z, Sun Y, Zhang Y, Wu D. Detecting abnormal placental microvascular flow in maternal and fetal diseases based on flow-compensated and non-compensated intravoxel incoherent motion imaging. Placenta 2022; 119:17-23. [PMID: 35066307 DOI: 10.1016/j.placenta.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
18
|
HANSEN DN, SINDING M, PETERSEN A, CHRISTIANSEN OB, ULDBJERG N, PETERS MDA, FRØKJÆR JB, SØRENSEN A. T2* weighted placental MRI: A biomarker of placental dysfunction in small-for-gestational-age pregnancies. Am J Obstet Gynecol MFM 2022; 4:100578. [DOI: 10.1016/j.ajogmf.2022.100578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
|
19
|
Ho A, Chappell LC, Story L, Al-Adnani M, Egloff A, Routledge E, Rutherford M, Hutter J. Visual assessment of the placenta in antenatal magnetic resonance imaging across gestation in normal and compromised pregnancies: Observations from a large cohort study. Placenta 2022; 117:29-38. [PMID: 34768166 PMCID: PMC8761363 DOI: 10.1016/j.placenta.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/12/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Visual assessment of the placenta in antenatal magnetic resonance imaging is important to confirm healthy appearances or to identify pathology complicating fetal anomaly or maternal disease. METHODS We assessed the placenta in a large cohort of 228 women with low and high risk pregnancies across gestation. All women gave written informed consent and were imaged using either a 3T Philips Achieva or 1.5T Philips Ingenia scanner. Images were acquired with a T2-weighted single shot turbo spin echo sequence of the whole uterus (thereby including placenta) for anatomical information. RESULTS A structured approach to visual assessment of the placenta on T2-weighted imaging has been provided including determination of key anatomical landmarks to aid orientation, placental shape, signal intensity, lobularity and granularity. Transient factors affecting imaging are shown including the effect of fetal movement, gross fetal motion and contractions. Placental appearances across gestation in low risk pregnancies are shown and compared to pregnancies complicated by preeclampsia and chronic hypertension. The utility of other magnetic resonance techniques (T2* mapping as an indirect marker for quantifying oxygenation) and histological assessment alongside visual assessment of placental T2-weighted imaging are demonstrated. DISCUSSION A systematic approach with qualitative descriptors for placental visual assessment using T2-weighted imaging allows confirmation of normal placental development and can detect placental abnormalities in pregnancy complications. T2-weighted imaging can be visually assessed alongside functional imaging (such as T2* maps) in order to further probe the visual characteristics seen.
Collapse
Affiliation(s)
- Alison Ho
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Mudher Al-Adnani
- Department of Cellular Pathology, Guy’s and St Thomas’ Hospital, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Emma Routledge
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, London, United Kingdom,Biomedical Engineering Department, King’s College London, London, United Kingdom
| |
Collapse
|
20
|
Andescavage N, Limperopoulos C. Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI). Exp Neurol 2021; 347:113868. [PMID: 34562472 DOI: 10.1016/j.expneurol.2021.113868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
Placental dysfunction is a major cause of fetal demise, fetal growth restriction, and preterm birth, as well as significant maternal morbidity and mortality. Infant survivors of placental dysfunction are at elevatedrisk for lifelong neuropsychiatric morbidity. However, despite the significant consequences of placental disease, there are no clinical tools to directly and non-invasively assess and measure placental function in pregnancy. In this work, we will review advanced MRI techniques applied to the study of the in vivo human placenta in order to better detail placental structure, architecture, and function. We will discuss the potential of these measures to serve as optimal biomarkers of placental dysfunction and review the evidence of these tools in the discrimination of health and disease in pregnancy. Efforts to advance our understanding of in vivo placental development are necessary if we are to optimize healthy pregnancy outcomes and prevent brain injury in successive generations. Current management of many high-risk pregnancies cannot address placental maldevelopment or injury, given the standard tools available to clinicians. Once accurate biomarkers of placental development and function are constructed, the subsequent steps will be to introduce maternal and fetal therapeutics targeting at optimizing placental function. Applying these biomarkers in future studies will allow for real-time assessments of safety and efficacy of novel interventions aimed at improving maternal-fetal well-being.
Collapse
Affiliation(s)
- Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National, Washington DC, USA; Department of Neonatology, Children's National, Washington DC, USA
| | | |
Collapse
|
21
|
Andersen AS, Anderson KB, Hansen DN, Sinding M, Petersen AC, Peters DA, Frøkjær JB, Sørensen A. Placental MRI: Longitudinal relaxation time (T1) in appropriate and small for gestational age pregnancies. Placenta 2021; 114:76-82. [PMID: 34482232 DOI: 10.1016/j.placenta.2021.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The antenatal detection of small for gestational age (SGA) pregnancies is a challenge, which may be improved by placental MRI. The longitudinal relaxation time (T1) is a tissue constant related to tissue morphology and tissue oxygenation, thereby placental T1 may be related to placental function. The aim of this study is to investigate placental T1 in appropriate for gestational age (AGA) and SGA pregnancies. METHODS A total of 132 singleton pregnancies were retrieved from our MRI research database. MRI and ultrasound estimated fetal weight (EFW) was performed at gestational week 20.6-41.7 in a 1.5 T system. SGA was defined as BW ≤ -15% of the expected for gestational age (≤10th centile). A subgroup of SGA pregnancies underwent postnatal placental histological examination (PHE) and abnormal PHE was defined as vascular malperfusion. The placental T1 values were converted into Z-scores adjusted for gestational age at MRI. The predictive performance of placental T1 and EFW was compared by receiver operating curves (ROC). RESULTS In AGA pregnancies, placental T1 showed a negative linear correlation with gestational age (r = -0.36, p = 0.004) Placental T1 was significantly reduced in SGA pregnancies (mean Z-score = -0.34) when compared to AGA pregnancies, p = 0.03. Among SGA pregnancies placental T1 was not reduced in cases with abnormal PHE, p = 0.84. The predictive performance of EFW (AUC = 0.84, 95% CI, 0.77-0.91) was significantly stronger than placental T1 (AUC = 0.62, 95% CI, 0.52-0.72) (p = 0.002). DISCUSSION A low placental T1 relaxation time is associated with SGA at birth. However, the predictive performance of placental T1 is not as strong as EFW.
Collapse
Affiliation(s)
- Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark.
| | - Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Nørrebrogade 44, 8000, Aarhus C, Denmark.
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| |
Collapse
|
22
|
Sinding M, Sørensen A, Hansen DN, Peters DA, Frøkjær JB, Petersen AC. T2* weighted placental MRI in relation to placental histology and birth weight. Placenta 2021; 114:52-55. [PMID: 34461455 DOI: 10.1016/j.placenta.2021.07.304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Placental dysfunction may be found among normal birth weight (BW) pregnancies, as indicated by abnormal histological findings in postnatal placental examination in some of these pregnancies. T2* weighted placental MRI provides non-invasive information on placental oxygenation and thereby placental function. The aim of this study was to investigate the correlation between placental T2*, BW and placental histology. METHODS A total of 63 pregnant women underwent T2* weighted placental MRI at 15-40 week's gestation and a standardized placental histological examination (PHE). Abnormal PHE was defined by vascular malperfusion according to the Amsterdam workshop consensus. The correlation between PHE, BW z-score and T2* z-score was analyzed by logistic regression. RESULTS Abnormal PHE was revealed in 28 pregnancies. Multiple logistic regression revealed a significant correlation between abnormal PHE and T2* z-score (OR = 0.34, p = 0.008), whereas BW z-score did not add significantly to the correlation of placental histology (OR = 0.52, p = 0.115). In BW z-score≥0, PHE was normal in 100% of pregnancies. In BW z-score ≤ -2, PHE was abnormal in 89% of pregnancies. In intermediate BW (z-score between -2 and 0), PPE was abnormal in 35% of pregnancies. In this intermediate group, placental T2* z-score was reduced (-1.52 ± 1.22 (mean SD)) when compared to normal PHE pregnancies (-0.28 ± 1.17), p = 0.006. DISCUSSION This study demonstrates a correlation between abnormal placental histology and low placental T2* value regardless of fetal size. This indicates that T2* provides information of placental function in vivo even when fetal size is normal. This finding highlights that fetal size alone is not a valid marker of placental dysfunction.
Collapse
Affiliation(s)
- Marianne Sinding
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| | - Anne Sørensen
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Denmark Hobrovej 18-22, 9100 Aalborg, Denmark.
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| |
Collapse
|
23
|
Pietsch M, Ho A, Bardanzellu A, Zeidan AMA, Chappell LC, Hajnal JV, Rutherford M, Hutter J. APPLAUSE: Automatic Prediction of PLAcental health via U-net Segmentation and statistical Evaluation. Med Image Anal 2021; 72:102145. [PMID: 34229190 PMCID: PMC8350147 DOI: 10.1016/j.media.2021.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Artificial-intelligence population-based automated quantification of placental maturation and health from a rapid functional Magnetic Resonance scan. The placenta plays a crucial role for any successful human pregnancy. Deviations from the normal dynamic maturation throughout gestation are closely linked to major pregnancy complications. Antenatal assessment in-vivo using T2* relaxometry has shown great promise to inform management and possible interventions but clinical translation is hampered by time consuming manual segmentation and analysis techniques based on comparison against normative curves over gestation. METHODS This study proposes a fully automatic pipeline to predict the biological age and health of the placenta based on a free-breathing rapid (sub-30 second) T2* scan in two steps: Automatic segmentation using a U-Net and a Gaussian process regression model to characterize placental maturation and health. These are trained and evaluated on 108 3T MRI placental data sets, the evaluation included 20 high-risk pregnancies diagnosed with pre-eclampsia and/or fetal growth restriction. An independent cohort imaged at 1.5 T is used to assess the generalization of the training and evaluation pipeline. RESULTS Across low- and high-risk groups, automatic segmentation performs worse than inter-rater performance (mean Dice coefficients of 0.58 and 0.68, respectively) but is sufficient for estimating placental mean T2* (0.986 Pearson Correlation Coefficient). The placental health prediction achieves an excellent ability to differentiate cases of placental insufficiency between 27 and 33 weeks. High abnormality scores correlate with low birth weight, premature birth and histopathological findings. Retrospective application on a different cohort imaged at 1.5 T illustrates the ability for direct clinical translation. CONCLUSION The presented automatic pipeline facilitates a fast, robust and reliable prediction of placental maturation. It yields human-interpretable and verifiable intermediate results and quantifies uncertainties on the cohort-level and for individual predictions. The proposed machine-learning pipeline runs in close to real-time and, deployed in clinical settings, has the potential to become a cornerstone of diagnosis and intervention of placental insufficiency. APPLAUSE generalizes to an independent cohort imaged at 1.5 T, demonstrating robustness to different operational and clinical environments.
Collapse
Affiliation(s)
- Maximilian Pietsch
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK.
| | - Alison Ho
- Department of Women and Children's Health, King's College London, London, UK
| | - Alessia Bardanzellu
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Aya Mutaz Ahmad Zeidan
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Mary Rutherford
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| |
Collapse
|
24
|
He J, Chen Z, Chen C, Liu P. Comparative study of placental T2* and intravoxel incoherent motion in the prediction of fetal growth restriction. Placenta 2021; 111:47-53. [PMID: 34157440 DOI: 10.1016/j.placenta.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Both transverse relaxation time (T2*) and intravoxel incoherent motion (IVIM) on magnetic resonance imaging (MRI) are promising for discriminating fetal growth restriction (FGR). We aimed to compare the utility of these two parameters and their combination in the same cohort. METHODS Twenty-seven FGR and 24 control pregnancies after 28 weeks of gestation in which both T2* and IVIM scans were performed on a 3.0 T MRI were recruited. We compared the T2* Z-score, perfusion fraction (f), diffusion coefficient (D) and pseudodiffusion coefficient (D*) between groups. Binary logistic regression analysis and areas under the curve (AUCs) with receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficacy of these parameters and their combination. RESULTS Compared with normal pregnancies, T2* Z-score (0.036 ± 0.95 vs. -2.479 ± 1.56, p < 0.001), f (0.2753 ± 0.035 vs. 0.3304 ± 0.035, p < 0.001), D* (48279.82 ± 7497.36 μm2/s vs. 56167.92 ± 8549.87 μm2/s, p = 0.001) and D (1664.32 ± 288.53 μm2/s vs. 1887.15 ± 204.08 μm2/s, p = 0.002) were significantly decreased in FGR pregnancies. However, only AUC(T2* Z-score) (0.903) and AUC(f) (0.873) were good predictors of FGR. The AUC(T2* Z-score-IVIM) (0.937), calculated with the combination of T2* Z-score and f, was similar to AUC(T2* Z-score) and ACU(f). DISCUSSION Both T2* and f were effective in discriminating FGR. However, the combination of the two parameters did not further improve diagnostic efficacy. We suggest that T2* might be more suitable for evaluating placental dysfunction, as it is fast to obtain and easy to measure.
Collapse
Affiliation(s)
- Junshen He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhao Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Slator PJ, Hutter J, Marinescu RV, Palombo M, Jackson LH, Ho A, Chappell LC, Rutherford M, Hajnal JV, Alexander DC. Data-Driven multi-Contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping. Med Image Anal 2021; 71:102045. [PMID: 33934005 PMCID: PMC8543043 DOI: 10.1016/j.media.2021.102045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
Unsupervised learning technique for spectroscopic analysis of quantitative MRI. Shares information across voxels to improve estimation of multi-dimensional or single-dimensional spectra. Spectral maps are dramatically improved compared to existing approaches. Can potentially identify and map tissue environments; in placental diffusion-relaxometry MRI we demonstrate that it identifies components that correspond to distinct tissue types.
We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single-contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These spectrum-based approaches allow model-free investigation of tissue properties, but require regularised inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show in simulations that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi-contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. Our InSpect code is available at github.com/paddyslator/inspect.
Collapse
Affiliation(s)
- Paddy J Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK.
| | - Jana Hutter
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Razvan V Marinescu
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Alison Ho
- Women's Health Department, King's College London, London, UK
| | - Lucy C Chappell
- Women's Health Department, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, Kings College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| |
Collapse
|
26
|
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, Sørensen A. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand 2020; 100:934-940. [PMID: 33258106 DOI: 10.1111/aogs.14057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental transverse relaxation time (T2) assessed by MRI may have the potential to improve the antenatal identification of small for gestational age. The aims of this study were to provide normal values of placental T2 in relation to gestational age at the time of MRI and to explore the correlation between placental T2 and birthweight. MATERIAL AND METHODS A mixed cohort of 112 singleton pregnancies was retrieved from our placental MRI research database. MRI was performed at 23.6-41.3 weeks of gestation in a 1.5T system (TE (8): 50-440 ms, TR: 4000 ms). Normal pregnancies were defined by uncomplicated pregnancies with normal obstetric outcome and birthweight deviation within ±1 SD of the expected for gestational age. The correlation between placental T2 and birthweight was investigated using the following outcomes; small for gestational age (birthweight ≤-2 SD of the expected for gestational age) and birthweight deviation (birthweight Z-scores). RESULTS In normal pregnancies (n = 27), placenta T2 showed a significant negative linear correlation with gestational age (r = -.91, P = .0001) being 184 ms ± 15.94 ms (mean ± SD) at 20 weeks of gestation and 89 ms ± 15.94 ms at 40 weeks of gestation. Placental T2 was significantly reduced among small-for-gestational-age pregnancies (mean Z-score -1.95, P < .001). Moreover, we found a significant positive correlation between placenta T2 deviation (Z-score) and birthweight deviation (Z-score) (R2 = .26, P = .0001). CONCLUSIONS This study provides normal values of placental T2 to be used in future studies on placental MRI. Placental T2 is closely related to birthweight and may improve the antenatal identification of small-for-gestational-age pregnancies.
Collapse
Affiliation(s)
- Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - Jens B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
27
|
Sørensen A, Sinding M. Placental Magnetic Resonance Imaging: A Method to Evaluate Placental Function In Vivo. Obstet Gynecol Clin North Am 2020; 47:197-213. [PMID: 32008669 DOI: 10.1016/j.ogc.2019.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This article describes the use of placental magnetic resonance imaging (MRI) relaxation times in the in vivo assessment of placental function. It focuses on T2*-weighted placental MRI, the main area of the authors' research over the past decade. The rationale behind T2*-weighted placental MRI, the main findings reported in the literature, and directions for future research and clinical applications of this method are discussed. The article concludes that placental T2* relaxation time is an easily obtained and robust measurement, which can discriminate between normal and dysfunctional placenta. Placenta T2* is a promising tool for in vivo assessment of placental function.
Collapse
Affiliation(s)
- Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, Aalborg 9000, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg 9000, Denmark.
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, Aalborg 9000, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg 9000, Denmark
| |
Collapse
|
28
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
29
|
Shriyan P, Babu GR, Ravi D, Ana Y, van Schayck OCP, Thankachan P, Murthy GVS. Ambient and Indoor Air Pollution in Pregnancy and the risk of Low birth weight and Ensuing Effects in Infants (APPLE): A cohort study in Bangalore, South India. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.14830.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Exposure to air pollution (IAP) from the combustion of solid fuels is a significant cause of morbidity and mortality in developing countries. Pregnant women exposed to higher pollutant levels are at higher risk of delivering a low-birth-weight (LBW) baby. There is a lack of standardized data regarding the levels and types of specific pollutants and how they impact LBW. We aim to prospectively assess the association between ambient and indoor air pollution levels in pregnancy and low birth weight and understand the subsequent risk of adiposity in these infants. Methods: We will conduct a prospective cohort study of 516 pregnant women recruited before 18 weeks of gestation in the urban slums of Bangalore, who have voluntarily consented to participate. We will estimate the level of air pollutants including particulate matter (<10 μm, <2.5 μm) and carbon monoxide (CO) parts per million (ppm) levels in both indoor and ambient environment. The follow-up of the delivered children will be done at delivery until the infant is one year old. The association between pollutants and LBW will be evaluated using logistic regression adjusting for potential confounders.Further, we will explore the mediation role of LBW in the hypothesized causal chain of air pollution and adiposity. Nested within a large cohort titled "Maternal Antecedents of Adiposity and Studying the Transgenerational role of Hyperglycemia and Insulin (MAASTHI)", we can estimate the absolute risk of having low birth weight caused by air pollution and other variables. Discussion: Understanding the association between exposures to ambient and indoor air pollution and low birth weight is essential in India. LBW babies have a higher risk of developing obesity and Non-Communicable Diseases (NCDs) during adulthood. The results from this study can inform the efforts for controlling the air pollution-related chronic diseases in India.
Collapse
|
30
|
Dellschaft NS, Hutchinson G, Shah S, Jones NW, Bradley C, Leach L, Platt C, Bowtell R, Gowland PA. The haemodynamics of the human placenta in utero. PLoS Biol 2020; 18:e3000676. [PMID: 32463837 PMCID: PMC7255609 DOI: 10.1371/journal.pbio.3000676] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
We have used magnetic resonance imaging (MRI) to provide important new insights into the function of the human placenta in utero. We have measured slow net flow and high net oxygenation in the placenta in vivo, which are consistent with efficient delivery of oxygen from mother to fetus. Our experimental evidence substantiates previous hypotheses on the effects of spiral artery remodelling in utero and also indicates rapid venous drainage from the placenta, which is important because this outflow has been largely neglected in the past. Furthermore, beyond Braxton Hicks contractions, which involve the entire uterus, we have identified a new physiological phenomenon, the ‘utero-placental pump’, by which the placenta and underlying uterine wall contract independently of the rest of the uterus, expelling maternal blood from the intervillous space. MRI provides important new insights into the function of the human placenta, revealing slow net flow and high, uniform oxygenation in healthy pregnancies, detecting changes that will lead to compromised oxygen delivery to the fetus in preeclampsia, and identifying a new physiological phenomenon, the ‘utero-placental pump’.
Collapse
Affiliation(s)
- Neele S. Dellschaft
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - George Hutchinson
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Simon Shah
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Nia W. Jones
- Department of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Bradley
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Lopa Leach
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Craig Platt
- Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Ho AEP, Hutter J, Jackson LH, Seed PT, Mccabe L, Al-Adnani M, Marnerides A, George S, Story L, Hajnal JV, Rutherford MA, Chappell LC. T2* Placental Magnetic Resonance Imaging in Preterm Preeclampsia: An Observational Cohort Study. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 75:1523-1531. [PMID: 32336233 PMCID: PMC7682790 DOI: 10.1161/hypertensionaha.120.14701] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Placental dysfunction underlies the cause of pregnancies complicated by preeclampsia. The use of placental magnetic resonance imaging to provide an insight into the pathophysiology of preeclampsia and thus assess its potential use to inform prognosis and clinical management was explored. In this prospective observational cohort study, 14 women with preterm preeclampsia and 48 gestation-matched controls using 3-Tesla magnetic resonance imaging at median of 31.6 weeks (interquartile range [IQR], 28.6-34.6) and 32.2 weeks (IQR, 28.6-33.8), respectively, were imaged. The acquired data included T2-weighted images and T2* maps of the placenta, the latter an indicative measure of placental oxygenation. Placentae in women with preeclampsia demonstrated advanced lobulation, varied lobule sizes, high granularity, and substantial areas of low-signal intensity on T2-weighted imaging, with reduced entire placental mean T2* values for gestational age (2 sample t test, t=7.49) correlating with a reduction in maternal PlGF (placental growth factor) concentrations (Spearman rank correlation coefficient 0.76) and increased lacunarity values (t=3.26). Median mean T2* reduced from 67 ms (IQR, 54-73) at 26.0 to 29.8 weeks' gestation to 38 ms (IQR, 28-40) at 34.0 to 37.9 weeks' gestation in the control group. In women with preeclampsia, median T2* was 23 ms (IQR, 20-23) at 26.0 to 29.8 weeks' gestation and remained low (22 ms [IQR, 20-26] at 34.0-37.8 weeks' gestation). Histological features of maternal vascular malperfusion were only found in placentae from women with preeclampsia. Placental volume did not differ between the control group and women with preeclampsia. Placental magnetic resonance imaging allows both objective quantification of placental function in vivo and elucidation of the complex mechanisms underlying preeclampsia development.
Collapse
Affiliation(s)
- Alison E P Ho
- From the Department of Women and Children's Health, School of Life Course Sciences (A.E.P.H., P.S., L.S., L.C.C.), King's College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain (J.H., L.H.J., L.M., J.V.H., M.A.R.), King's College London, United Kingdom.,Biomedical Engineering Department (J.H., L.H.J., J.V.H.), King's College London, United Kingdom
| | - Laurence H Jackson
- Centre for the Developing Brain (J.H., L.H.J., L.M., J.V.H., M.A.R.), King's College London, United Kingdom.,Biomedical Engineering Department (J.H., L.H.J., J.V.H.), King's College London, United Kingdom
| | - Paul T Seed
- From the Department of Women and Children's Health, School of Life Course Sciences (A.E.P.H., P.S., L.S., L.C.C.), King's College London, United Kingdom
| | - Laura Mccabe
- Centre for the Developing Brain (J.H., L.H.J., L.M., J.V.H., M.A.R.), King's College London, United Kingdom
| | - Mudher Al-Adnani
- Department of Cellular Pathology, Guy's and St Thomas' Hospital, London, United Kingdom (M.A.-A., A.M., S.G.)
| | - Andreas Marnerides
- Department of Cellular Pathology, Guy's and St Thomas' Hospital, London, United Kingdom (M.A.-A., A.M., S.G.)
| | - Simi George
- Department of Cellular Pathology, Guy's and St Thomas' Hospital, London, United Kingdom (M.A.-A., A.M., S.G.)
| | - Lisa Story
- From the Department of Women and Children's Health, School of Life Course Sciences (A.E.P.H., P.S., L.S., L.C.C.), King's College London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain (J.H., L.H.J., L.M., J.V.H., M.A.R.), King's College London, United Kingdom.,Biomedical Engineering Department (J.H., L.H.J., J.V.H.), King's College London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain (J.H., L.H.J., L.M., J.V.H., M.A.R.), King's College London, United Kingdom
| | - Lucy C Chappell
- From the Department of Women and Children's Health, School of Life Course Sciences (A.E.P.H., P.S., L.S., L.C.C.), King's College London, United Kingdom
| |
Collapse
|
32
|
Sørensen A, Hutter J, Seed M, Grant PE, Gowland P. T2*-weighted placental MRI: basic research tool or emerging clinical test for placental dysfunction? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:293-302. [PMID: 31452271 DOI: 10.1002/uog.20855] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Affiliation(s)
- A Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - J Hutter
- Center for Medical Engineering, King's College London, London, UK
| | - M Seed
- Department of Cardiology, The Hospital for Sick Children, Toronto, Canada
| | - P E Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - P Gowland
- Sir Peter Mansfield Imaging Centre, Nottingham University, Nottingham, UK
| |
Collapse
|
33
|
Aughwane R, Ingram E, Johnstone ED, Salomon LJ, David AL, Melbourne A. Placental MRI and its application to fetal intervention. Prenat Diagn 2020; 40:38-48. [PMID: 31306507 PMCID: PMC7027916 DOI: 10.1002/pd.5526] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of placental invasion has been part of clinical practice for many years. The possibility of being better able to assess placental vascularization and function using MRI has multiple potential applications. This review summarises up-to-date research on placental function using different MRI modalities. METHOD We discuss how combinations of these MRI techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for fetal growth restriction (FGR) and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions. RESULTS The whole placenta can easily be visualized on MRI, with a clear boundary against the amniotic fluid, and a less clear placental-uterine boundary. Contrasts such as diffusion weighted imaging, relaxometry, blood oxygenation level dependent MRI and flow and metabolite measurement by dynamic contrast enhanced MRI, arterial spin labeling, or spectroscopic techniques are contributing to our wider understanding of placental function. CONCLUSION The future of placental MRI is exciting, with the increasing availability of multiple contrasts and new models that will boost the capability of MRI to measure oxygen saturation and placental exchange, enabling examination of placental function in complicated pregnancies.
Collapse
Affiliation(s)
| | - Emma Ingram
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Edward D. Johnstone
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Laurent J. Salomon
- Hôpital Necker‐Enfants Malades, AP‐HP, EHU PACT and LUMIERE PlatformUniversité Paris DescartesParisFrance
| | - Anna L. David
- Institute for Women's HealthUniversity College LondonLondonUK
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research CentreLondonUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
34
|
Flouri D, Owen D, Aughwane R, Mufti N, Maksym K, Sokolska M, Kendall G, Bainbridge A, Atkinson D, Vercauteren T, Ourselin S, David AL, Melbourne A. Improved fetal blood oxygenation and placental estimated measurements of diffusion-weighted MRI using data-driven Bayesian modeling. Magn Reson Med 2019; 83:2160-2172. [PMID: 31742785 PMCID: PMC7064949 DOI: 10.1002/mrm.28075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Motion correction in placental DW-MRI is challenging due to maternal breathing motion, maternal movements, and rapid intensity changes. Parameter estimates are usually obtained using least-squares methods for voxel-wise fitting; however, they typically give noisy estimates due to low signal-to-noise ratio. We introduce a model-driven registration (MDR) technique which incorporates a placenta-specific signal model into the registration process, and we present a Bayesian approach for Diffusion-rElaxation Combined Imaging for Detailed placental Evaluation model to obtain individual and population trends in estimated parameters. METHODS MDR exploits the fact that a placenta signal model is available and thus we incorporate it into the registration to generate a series of target images. The proposed registration method is compared to a pre-existing method used for DCE-MRI data making use of principal components analysis. The Bayesian shrinkage prior (BSP) method has no user-defined parameters and therefore measures of parameter variation in a region of interest are determined by the data alone. The MDR method and the Bayesian approach were evaluated on 10 control 4D DW-MRI singleton placental data. RESULTS MDR method improves the alignment of placenta data compared to the pre-existing method. It also shows a further reduction of the residual error between the data and the fit. BSP approach showed higher precision leading to more clearly apparent spatial features in the parameter maps. Placental fetal oxygen saturation (FO2 ) showed a negative linear correlation with gestational age. CONCLUSIONS The proposed pipeline provides a robust framework for registering DW-MRI data and analyzing longitudinal changes of placental function.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Owen
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Rosalind Aughwane
- Institute for Women's Health, University College Hospital, London, United Kingdom
| | - Nada Mufti
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Institute for Women's Health, University College Hospital, London, United Kingdom
| | - Kasia Maksym
- Institute for Women's Health, University College Hospital, London, United Kingdom
| | | | - Giles Kendall
- Institute for Women's Health, University College Hospital, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics, University College Hospital, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anna L David
- Institute for Women's Health, University College Hospital, London, United Kingdom.,University Hospital KU Leuven, Leuven, Belgium.,NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
35
|
Hutter J, Jackson L, Ho A, Pietsch M, Story L, Chappell LC, Hajnal JV, Rutherford M. T2* relaxometry to characterize normal placental development over gestation in-vivo at 3T. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.15451.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: T2* relaxometry has been identified as a non-invasive way to study the placenta in-vivo with good potential to identify placental insufficiency. Typical interpretation links T2* values to oxygen concentrations. This study aimed to comprehensively assess T2* maps as a marker of placental oxygenation in-vivo. Methods: A multi-echo gradient echo echo planar imaging sequence is used in a cohort of 84 healthy pregnant women. Special emphasis is put on spatial analysis: histogram measures, Histogram Asymmetry Measure (HAM) and lacunarity. Influences of maternal, fetal and placental factors and experimental parameters on the proposed measures are evaluated. Results: T2* maps were obtained from each placenta in less than 30sec. The previously reported decreasing trend in mean T2* with gestation was confirmed (3.45 ms decline per week). Factors such as maternal age, BMI, fetal sex, parity, mode of delivery and placental location were shown to be uncorrelated with T2* once corrected for gestational age. Robustness of the obtained values with regard to variation in segmentation and voxel-size were established. The proposed spatially resolved measures reveal a change in T2* in late gestation. Conclusions: T2* mapping is a robust and quick technique allowing quantification of both whole volume and spatial quantification largely independent of confounding factors.
Collapse
|
36
|
Shriyan P, Babu GR, Ravi D, Ana Y, van Schayck OCP, Thankachan P, Murthy GVS. Ambient and Indoor Air Pollution in Pregnancy and the risk of Low birth weight and Ensuing Effects in Infants (APPLE): A cohort study in Bangalore, South India. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.14830.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Exposure to air pollution (IAP) from the combustion of solid fuels is a significant cause of morbidity and mortality in developing countries. Pregnant women exposed to higher pollutant levels are at higher risk of delivering a low-birth-weight (LBW) baby. There is a lack of standardized data regarding the levels and types of specific pollutants and how they impact LBW. We aim to prospectively assess the association between ambient and indoor air pollution levels in pregnancy and low birth weight and understand the subsequent risk of adiposity in these infants. Methods: We will conduct a prospective cohort study of 516 pregnant women recruited before 18 weeks of gestation in the urban slums of Bangalore, who have voluntarily consented to participate. We will estimate the level of air pollutants including coarse particulate matter 10 ug/m3 (PM10 ), fine particulate matter 2.5 ug/m3(PM2.5) and carbon monoxide (CO) parts per million (ppm) levels in both indoor and ambient environment. The follow-up of the delivered children will be done at delivery until the infant is two years old. The association between pollutants and LBW will be evaluated using logistic regression adjusting for potential confounders.Further, we will explore the mediation role of LBW in the hypothesized causal chain of air pollution and adiposity. Nested within a larger Maternal Antecedents of Adiposity and Studying the Transgenerational role of Hyperglycemia and Insulin (MAASTHI) cohort, we can estimate the absolute risk of having low birth weight caused by air pollution and other variables. Discussion: Understanding the association between exposures to ambient and indoor air pollution and low birth weight is essential in India. LBW babies have a higher risk of developing obesity and Non-Communicable Diseases (NCDs) during adulthood. The results from this study can inform the efforts for controlling the air pollution-related chronic diseases in India.
Collapse
|
37
|
Turk EA, Stout JN, Ha C, Luo J, Gagoski B, Yetisir F, Golland P, Wald LL, Adalsteinsson E, Robinson JN, Roberts DJ, Barth WH, Grant PE. Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. Top Magn Reson Imaging 2019; 28:285-297. [PMID: 31592995 PMCID: PMC7323862 DOI: 10.1097/rmr.0000000000000221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Human Placenta Project has focused attention on the need for noninvasive magnetic resonance imaging (MRI)-based techniques to diagnose and monitor placental function throughout pregnancy. The hope is that the management of placenta-related pathologies would be improved if physicians had more direct, real-time measures of placental health to guide clinical decision making. As oxygen alters signal intensity on MRI and oxygen transport is a key function of the placenta, many of the MRI methods under development are focused on quantifying oxygen transport or oxygen content of the placenta. For example, measurements from blood oxygen level-dependent imaging of the placenta during maternal hyperoxia correspond to outcomes in twin pregnancies, suggesting that some aspects of placental oxygen transport can be monitored by MRI. Additional methods are being developed to accurately quantify baseline placental oxygenation by MRI relaxometry. However, direct validation of placental MRI methods is challenging and therefore animal studies and ex vivo studies of human placentas are needed. Here we provide an overview of the current state of the art of oxygen transport and quantification with MRI. We suggest that as these techniques are being developed, increased focus be placed on ensuring they are robust and reliable across individuals and standardized to enable predictive diagnostic models to be generated from the data. The field is still several years away from establishing the clinical benefit of monitoring placental function in real time with MRI, but the promise of individual personalized diagnosis and monitoring of placental disease in real time continues to motivate this effort.
Collapse
Affiliation(s)
- Esra Abaci Turk
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Jeffrey N. Stout
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Christopher Ha
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julian N. Robinson
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, USA
| | | | - William H. Barth
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| |
Collapse
|
38
|
Hutter J, Harteveld AA, Jackson LH, Franklin S, Bos C, van Osch MJP, O'Muircheartaigh J, Ho A, Chappell L, Hajnal JV, Rutherford M, De Vita E. Perfusion and apparent oxygenation in the human placenta (PERFOX). Magn Reson Med 2019; 83:549-560. [PMID: 31433077 PMCID: PMC6825519 DOI: 10.1002/mrm.27950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE To study placental function-both perfusion and an oxygenation surrogate ( T 2 * )-simultaneously and quantitatively in-vivo. METHODS Fifteen pregnant women were scanned on a 3T MR scanner. For perfusion measurements, a velocity selective arterial spin labeling preparation module was placed before a multi-echo gradient echo EPI readout to integrate T 2 * and perfusion measurements in 1 joint perfusion-oxygenation (PERFOX) acquisition. Joint motion correction and quantification were performed to evaluate changes in T 2 * and perfusion over GA. RESULTS The optimized integrated PERFOX protocol and post-processing allowed successful visualization and quantification of perfusion and T 2 * in all subjects. Areas of high T 2 * and high perfusion appear to correspond to placental sub-units and show a systematic offset in location along the maternal-fetal axis. The areas of highest perfusion are consistently closer to the maternal basal plate and the areas of highest T 2 * closer to the fetal chorionic plate. Quantitative results show a strong negative correlation of gestational age with T 2 * and weak negative correlation with perfusion. CONCLUSIONS A strength of the joint sequence is that it provides truly simultaneous and co-registered estimates of local T 2 * and perfusion, however, to achieve this, the time per slice is prolonged compared to a perfusion only scan which can potentially limit coverage. The achieved interlocking can be particularly useful when quantifying transient physiological effects such as uterine contractions. PERFOX opens a new avenue to elucidate the relationship between maternal supply and oxygen uptake, both of which are central to placental function and dysfunction.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Anita A. Harteveld
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laurence H. Jackson
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Clemens Bos
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Alison Ho
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Lucy Chappell
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Mary Rutherford
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Enrico De Vita
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| |
Collapse
|
39
|
Slator PJ, Hutter J, Palombo M, Jackson LH, Ho A, Panagiotaki E, Chappell LC, Rutherford MA, Hajnal JV, Alexander DC. Combined diffusion-relaxometry MRI to identify dysfunction in the human placenta. Magn Reson Med 2019; 82:95-106. [PMID: 30883915 PMCID: PMC6519240 DOI: 10.1002/mrm.27733] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/27/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE A combined diffusion-relaxometry MR acquisition and analysis pipeline for in vivo human placenta, which allows for exploration of coupling between T 2 * and apparent diffusion coefficient (ADC) measurements in a sub 10-minute scan time. METHODS We present a novel acquisition combining a diffusion prepared spin echo with subsequent gradient echoes. The placentas of 17 pregnant women were scanned in vivo, including both healthy controls and participants with various pregnancy complications. We estimate the joint T 2 * -ADC spectra using an inverse Laplace transform. RESULTS T 2 * -ADC spectra demonstrate clear quantitative separation between normal and dysfunctional placentas. CONCLUSIONS Combined T 2 * -diffusivity MRI is promising for assessing fetal and maternal health during pregnancy. The T 2 * -ADC spectrum potentially provides additional information on tissue microstructure, compared to measuring these two contrasts separately. The presented method is immediately applicable to the study of other organs.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Jana Hutter
- Biomedical Engineering DepartmentKing’s College LondonLondonUnited Kingdom
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Marco Palombo
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Laurence H. Jackson
- Biomedical Engineering DepartmentKing’s College LondonLondonUnited Kingdom
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Alison Ho
- Women’s Health DepartmentKing’s College LondonLondonUnited Kingdom
| | - Eleftheria Panagiotaki
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Lucy C. Chappell
- Women’s Health DepartmentKing’s College LondonLondonUnited Kingdom
| | - Mary A. Rutherford
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Biomedical Engineering DepartmentKing’s College LondonLondonUnited Kingdom
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
40
|
Poulsen SS, Sinding M, Hansen DN, Peters DA, Frøkjær JB, Sørensen A. Placental T2* estimated by magnetic resonance imaging and fetal weight estimated by ultrasound in the prediction of birthweight differences in dichorionic twin pairs. Placenta 2019; 78:18-22. [PMID: 30955706 DOI: 10.1016/j.placenta.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Intertwin birthweight (BW) difference is associated with an increased risk of adverse outcome. Ultrasound estimated fetal weight (EFW) is the current method to predict intertwin BW difference, however, the sensitivity is poor. Therefore, new methods are needed. Placental T2* estimated by magnetic resonance imaging (MRI) provides non-invasive information about the placental function. This study aimed to investigate placental T2* difference as a new predictor of BW difference, and to compare it to the EFW. METHODS We included 25 dichorionic twin pairs at 19-38 weeks' gestation. Placental T2* was obtained by MRI and EFW by ultrasound. Correlations between each predictor and BW difference were examined by simple linear regression, and the combined model was analyzed by multiple linear regression and likelihood ratio test. RESULTS Strong positive correlations were demonstrated between intertwin differences in placental T2* and BW (r = 0.80, p < 0.005), and EFW and BW (r = 0.64, p < 0.005). Placental T2* difference was a strong independent predictor of BW difference (p < 0.001), and the combined model performed better than each predictor alone (p < 0.0001). DISCUSSION This pilot study demonstrates that placental T2* difference may be a predictor of intertwin BW difference irrespectively of fetal size. The clinical potential of this method deserves further investigation in a larger clinical study.
Collapse
Affiliation(s)
- Sofie Sondrup Poulsen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Viborg Regional Hospital, Heibergs Alle 4, 8800, Viborg, Denmark.
| | - Ditte Nymark Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Olof Palmes Alle 13, 8200, Aarhus N, Denmark
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark
| |
Collapse
|
41
|
Hutter J, Slator PJ, Jackson L, Gomes ADS, Ho A, Story L, O’Muircheartaigh J, Teixeira RPAG, Chappell LC, Alexander DC, Rutherford MA, Hajnal JV. Multi-modal functional MRI to explore placental function over gestation. Magn Reson Med 2019; 81:1191-1204. [PMID: 30242899 PMCID: PMC6585747 DOI: 10.1002/mrm.27447] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE To investigate, visualize and quantify the physiology of the human placenta in several dimensions - functional, temporal over gestation, and spatial over the whole organ. METHODS Bespoke MRI techniques, combining a rich diffusion protocol, anatomical data and T2* mapping together with a multi-modal pipeline including motion correction and extracted quantitative features were developed and employed on pregnant women between 22 and 38 weeks gestational age including two pregnancies diagnosed with pre-eclampsia. RESULTS A multi-faceted assessment was demonstrated showing trends of increasing lacunarity, and decreasing T2* and diffusivity over gestation. CONCLUSIONS The obtained multi-modal acquisition and quantification shows promising opportunities for studying evolution, adaptation and compensation processes.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Paddy J. Slator
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Laurence Jackson
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Ana Dos Santos Gomes
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Alison Ho
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Lisa Story
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | | | - Rui P. A. G. Teixeira
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Lucy C. Chappell
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonUnited Kingdom
| | | | - Joseph V. Hajnal
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| |
Collapse
|
42
|
Shriyan P, Babu GR, Ravi D, Ana Y, van Schayck OCP, Thankachan P, Murthy GVS. Ambient and Indoor Air Pollution in Pregnancy and the risk of Low birth weight and Ensuing Effects in Infants (APPLE): A cohort study in Bangalore, South India. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.14830.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Exposure to air pollution (IAP) from the combustion of solid fuels is a significant cause of morbidity and mortality in developing countries. Pregnant women exposed to higher pollutant levels are at higher risk of delivering a low-birth-weight (LBW) baby. There is a lack of standardized data regarding the levels and types of specific pollutants and how they impact LBW. We aim to prospectively assess the association between ambient and indoor air pollution levels in pregnancy and low birth weight and understand the subsequent risk of adiposity in these infants. Methods: We will conduct a prospective cohort study of 516 pregnant women recruited before 18 weeks of gestation in the urban slums of Bangalore, who have voluntarily consented to participate. We will estimate the level of air pollutants including coarse particulate matter 10 ug/m3 (PM10 ), fine particulate matter 2.5 ug/m3(PM2.5) and carbon monoxide (CO) parts per million (ppm) levels in both indoor and ambient environment. The follow-up of the delivered children will be done at delivery until the infant is two years old. The association between pollutants and LBW will be evaluated using logistic regression adjusting for potential confounders.Further, we will explore the mediation role of LBW in the hypothesized causal chain of air pollution and adiposity. Nested within a larger Maternal Antecedents of Adiposity and Studying the Transgenerational role of Hyperglycemia and Insulin (MAASTHI) cohort, we can estimate the absolute risk of having low birth weight caused by air pollution and other variables. Discussion: Understanding the association between exposures to ambient and indoor air pollution and low birth weight is essential in India. LBW babies have a higher risk of developing obesity and Non-Communicable Diseases (NCDs) during adulthood. The results from this study can inform the efforts for controlling the air pollution-related chronic diseases in India.
Collapse
|
43
|
Melbourne A, Aughwane R, Sokolska M, Owen D, Kendall G, Flouri D, Bainbridge A, Atkinson D, Deprest J, Vercauteren T, David A, Ourselin S. Separating fetal and maternal placenta circulations using multiparametric MRI. Magn Reson Med 2018; 81:350-361. [PMID: 30239036 PMCID: PMC6282748 DOI: 10.1002/mrm.27406] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE The placenta is a vital organ for the exchange of oxygen, nutrients, and waste products between fetus and mother. The placenta may suffer from several pathologies, which affect this fetal-maternal exchange, thus the flow properties of the placenta are of interest in determining the course of pregnancy. In this work, we propose a new multiparametric model for placental tissue signal in MRI. METHODS We describe a method that separates fetal and maternal flow characteristics of the placenta using a 3-compartment model comprising fast and slowly circulating fluid pools, and a tissue pool is fitted to overlapping multiecho T2 relaxometry and diffusion MRI with low b-values. We implemented the combined model and acquisition on a standard 1.5 Tesla clinical system with acquisition taking less than 20 minutes. RESULTS We apply this combined acquisition in 6 control singleton placentas. Mean myometrial T2 relaxation time was 123.63 (±6.71) ms. Mean T2 relaxation time of maternal blood was 202.17 (±92.98) ms. In the placenta, mean T2 relaxation time of the fetal blood component was 144.89 (±54.42) ms. Mean ratio of maternal to fetal blood volume was 1.16 (±0.6), and mean fetal blood saturation was 72.93 (±20.11)% across all 6 cases. CONCLUSION The novel acquisition in this work allows the measurement of histologically relevant physical parameters, such as the relative proportions of vascular spaces. In the placenta, this may help us to better understand the physiological properties of the tissue in disease.
Collapse
Affiliation(s)
- Andrew Melbourne
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Rosalind Aughwane
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Institute for Women's Health, University College Hospital,London, London, United Kingdom
| | | | - David Owen
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Giles Kendall
- Institute for Women's Health, University College Hospital,London, London, United Kingdom
| | - Dimitra Flouri
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics, University College Hospital, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Jan Deprest
- Institute for Women's Health, University College Hospital,London, London, United Kingdom.,University Hospital KU Leuven, Leuven, Belgium
| | - Tom Vercauteren
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Anna David
- Institute for Women's Health, University College Hospital,London, London, United Kingdom.,University Hospital KU Leuven, Leuven, Belgium.,NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| |
Collapse
|
44
|
Armstrong T, Liu D, Martin T, Masamed R, Janzen C, Wong C, Chanlaw T, Devaskar SU, Sung K, Wu HH. 3D R 2 * mapping of the placenta during early gestation using free-breathing multiecho stack-of-radial MRI at 3T. J Magn Reson Imaging 2018; 49:291-303. [PMID: 30142239 DOI: 10.1002/jmri.26203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Multiecho gradient-echo Cartesian MRI characterizes placental oxygenation by quantifying R 2 * . Previous research was performed at 1.5T using breath-held 2D imaging during later gestational age (GA). PURPOSE To evaluate the accuracy and repeatability of a free-breathing (FB) 3D multiecho gradient-echo stack-of-radial technique (radial) for placental R 2 * mapping at 3T and report placental R 2 * during early GA. STUDY TYPE Prospective. POPULATION Thirty subjects with normal pregnancies and three subjects with ischemic placental disease (IPD) were scanned twice: between 14-18 and 19-23 weeks GA. FIELD STRENGTH 3T. SEQUENCE FB radial. ASSESSMENT Linear correlation (concordance coefficient, ρc ) and Bland-Altman analyses (mean difference, MD) were performed to evaluate radial R 2 * mapping accuracy compared to Cartesian in a phantom. Radial R 2 * mapping repeatability was characterized using the coefficient of repeatability (CR) between back-to-back scans. The mean and spatial coefficient of variation (CV) of R 2 * was determined for all subjects, and separately for anterior and posterior placentas, at each GA range. STATISTICAL TESTS ρc was tested for significance. Differences in mean R 2 * and CV were tested using Wilcoxon Signed-Rank and Rank-Sum tests. P < 0.05 was considered significant. Z-scores for the IPD subjects were determined. RESULTS FB radial demonstrated accurate (ρc ≥0.996; P < 0.001; |MD|<0.2s-1 ) and repeatable (CR<4s-1 ) R 2 * mapping in a phantom, and repeatable (CR≤4.6s-1 ) R 2 * mapping in normal subjects. At 3T, placental R 2 * mean ± standard deviation was 12.9s-1 ± 2.7s-1 for 14-18 and 13.2s-1 ± 1.9s-1 for 19-23 weeks GA. The CV was significantly greater (P = 0.043) at 14-18 (0.63 ± 0.12) than 19-23 (0.58 ± 0.13) weeks GA. At 19-23 weeks, the CV was significantly lower (P < 0.001) for anterior (0.49 ± 0.08) than posterior (0.67 ± 0.11) placentas. One IPD subject had a lower mean R 2 * than normal subjects at both GA ranges (Z<-2). DATA CONCLUSION FB radial provides accurate and repeatable 3D R 2 * mapping for the entire placenta at 3T during early GA. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:291-303.
Collapse
Affiliation(s)
- Tess Armstrong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Dapeng Liu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas Martin
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Rinat Masamed
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Cass Wong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Teresa Chanlaw
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kyunghyun Sung
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
45
|
Wu C, Bayer CL. Imaging placental function: current technology, clinical needs, and emerging modalities. ACTA ACUST UNITED AC 2018; 63:14TR01. [DOI: 10.1088/1361-6560/aaccd9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Placental baseline conditions modulate the hyperoxic BOLD-MRI response. Placenta 2018; 61:17-23. [DOI: 10.1016/j.placenta.2017.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/31/2023]
|
47
|
Sabour S. Prediction of low birth weight: Methodological issues. Placenta 2017; 55:101. [PMID: 28216257 DOI: 10.1016/j.placenta.2017.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Siamak Sabour
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Clinical Epidemiology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|