1
|
Bennett MGA, Meakin AS, Botting-Lawford KJ, Niu Y, Ford SG, Murphy MP, Wiese MD, Giussani DA, Morrison JL. Maternal MitoQ Treatment Is Protective Against Programmed Alterations in CYP Activity Due to Antenatal Dexamethasone. Pharmaceutics 2025; 17:285. [PMID: 40142951 PMCID: PMC11944367 DOI: 10.3390/pharmaceutics17030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: In pregnancy threatened by preterm birth, antenatal corticosteroids (ACS) are administered to accelerate fetal lung maturation. However, they have side effects, including the production of reactive oxygen species that can impact cytochrome P450 (CYP) activity. We hypothesised that antioxidants could protect a fetus treated with ACS during gestation and prevent the programming of altered hepatic CYP activity in the offspring. The primary outcome of our study was the impact of different maternal treatments on the activity of hepatic drug-metabolising enzymes in offspring. Methods: At 100 ± 1 days gestational age (dGA, term = 147 dGA), 73 ewes were randomly allocated to the following: saline (5 mL IV daily 105-137 ± 2 dGA, n = 17), ACS (Dexamethasone (Dex); 12 mg IM at 115 and 116 dGA; n = 25), MitoQ (6 mg/kg MS010 IV, daily bolus 105-137 ± 2 dGA; n = 17) or Dex and MitoQ (Dex+MitoQ; n = 14). CYP activity and protein abundance were assessed using functional assays and Western blot. Results: Dex decreased the hepatic activity of fetal CYP3A (-56%, PDex = 0.0322), and 9 mo lamb CYP1A2 (-22%, PDex = 0.0003), CYP2B6 (-36%, PDex = 0.0234), CYP2C8 (-34%, PDex = 0.0493) and CYP2E1 (-57%, PDex = 0.0009). For all, except CYP1A2, activity returned to control levels with Dex+MitoQ in 9 mo lambs. In 9 mo lambs, MitoQ alone increased activity of CYP2B6 (+16%, PMitoQ = 0.0011) and CYP3A (midazolam, +25%, PMitoQ = 0.0162) and increased CAT expression (PMitoQ = 0.0171). Dex+MitoQ increased CYP3A4/5 activity (testosterone, +65%, PIntx < 0.0003), decreased CYP1A2 activity (-14%, PIntx = 0.0036) and decreased mitochondrial abundance (PIntx = 0.0051). All treatments decreased fetal hepatic DRP1, a regulator of mitochondrial fission (PDex = 0.0055, PMitoQ = 0.0006 and PIntx = 0.0034). Conclusions: Antenatal Dex reduced activity of only one CYP in the fetus but programmed the reduced activity of several hepatic CYPs in young adult offspring, and this effect was ameliorated by combination with MitoQ.
Collapse
Affiliation(s)
- Millicent G. A. Bennett
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| | - Kimberley J. Botting-Lawford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Sage G. Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Michael D. Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| | - Dino A. Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| |
Collapse
|
2
|
McGillick EV, Orgeig S, Allison BJ, Brain KL, Bertossa MR, Holman SL, Meakin AS, Wiese MD, Niu Y, Itani N, Skeffington KL, Beck C, Botting-Lawford KJ, Morrison JL, Giussani DA. Chronic fetal hypoxia and antenatal Vitamin C exposure differentially regulate molecular signalling in the lung of female lambs in early adulthood. Front Physiol 2025; 15:1488152. [PMID: 39882327 PMCID: PMC11775154 DOI: 10.3389/fphys.2024.1488152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress in utero to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood. Methods Chronically catheterised pregnant sheep were exposed to normoxia (N; n = 20) or hypoxia (H; n = 18; 10% O2) ± maternal daily i. v. saline (N = 11; H = 8) or Vitamin C (VC; NVC = 9; HVC = 10) from 105 to 138 days (term, ∼145 days). Lungs were collected from female lambs 9 months after birth (early adulthood). Lung tissue expression of genes and proteins regulating oxidative stress, mitochondrial function, hypoxia signalling, glucocorticoid signalling, surfactant maturation, inflammation and airway remodelling were measured. Results Chronic fetal hypoxia upregulated lung expression of markers of prooxidant, surfactant lipid transport and airway remodelling pathways in early adulthood. Antenatal Vitamin C normalized prooxidant and airway remodelling markers, increased endogenous antioxidant, vasodilator and inflammatory markers, and altered regulation of hypoxia signalling and glucocorticoid availability. Conclusion There are differential effects of antenatal Vitamin C on molecular markers in the lungs of female lambs from normoxic and hypoxic pregnancy in early adulthood.
Collapse
Affiliation(s)
- Erin V. McGillick
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Beth J. Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty L. Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Michael D. Wiese
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christian Beck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Huang S, Xu Y, Guo Y, Zhang Y, Tang Y, Liang C, Gao L, Yao B, Wang X. Aspirin increases estrogen levels in the placenta to prevent preeclampsia by regulating placental metabolism and transport function. Biochem Pharmacol 2024; 230:116561. [PMID: 39343179 DOI: 10.1016/j.bcp.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Preeclampsia is a unique multisystem progressive disease during pregnancy, which seriously endangers the health of pregnant women and fetuses. In clinical practice, aspirin is recommended for the prevention of preeclampsia, but the mechanism by which aspirin prevents preeclampsia has not yet been revealed. This report comprehensively evaluates the effects of aspirin on the expression and activity of placental metabolic enzymes and transporters. We found that after aspirin administration, only the expression of organic anion transporter 4 (OAT4) in the placenta showed a significant increase at both mRNA and protein levels, consistent with the results in JAR cells. Meanwhile, studies on the metabolic enzyme activity in the placenta showed a high upregulation of CYP19A1 activity. Subsequently, significant increases in endogenous substrates of OAT4 and CYP19A1 (dehydroepiandrosterone sulfate (DHEAS) and androstenedione) as well as estrone were detected in placental tissue. In summary, aspirin enhances the transport of DHEAS through OAT4 and promotes the metabolism of androstenedione through CYP19A1, thereby increasing estrogen levels in the placenta. This may be the mechanism by which aspirin prevents preeclampsia and maintains pregnancy by regulating the metabolism and transport function of the placenta.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China.
| |
Collapse
|
4
|
Meakin AS, Nathanielsz PW, Li C, Huber HF, Clifton VL, Wiese MD, Morrison JL. Maternal obesogenic diet during pregnancy and its impact on fetal hepatic function in baboons. Obesity (Silver Spring) 2024; 32:1910-1922. [PMID: 39210592 PMCID: PMC11421985 DOI: 10.1002/oby.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Maternal obesity (MO) increases the risk of later-life liver disease in offspring, especially in males. This may be due to impaired cytochrome P450 (CYP) enzyme activity driven by an altered maternal-fetal hormonal milieu. MO increases fetal cortisol concentrations that may increase CYP activity; however, glucocorticoid receptor (GR)-mediated signaling can be modulated by alternative GR isoform expression. We hypothesized that MO induces sex-specific changes in GR isoform expression and localization that contribute to reduced hepatic CYP activity. METHODS Nonpregnant, nulliparous female baboons were assigned to either an ad libitum control diet or a high-fat, high-energy diet (HF-HED) at 9 months pre pregnancy. At 165 days' gestation (term = 180 days), fetal liver samples were collected (n = 6/sex/group). CYP activity was quantified using functional assays, and GR was measured using quantitative RT-PCR and Western blot. RESULTS CYP3A activity was reduced in the HF-HED group, whereas CYP2B6 activity was reduced in HF-HED males only. Total GR expression was increased in the HF-HED group. Relative nuclear expression of the antagonistic GR isoform GRβ was increased in HF-HED males only. CONCLUSIONS Reduced CYP activity in HF-HED males may be driven in part by dampened hepatic-specific glucocorticoid signaling via altered GR isoform expression. These findings highlight targetable mechanisms that may reduce later-life sex-specific disease risk.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, AUS
| | | | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vicki L. Clifton
- Mater Medical Research Institute – The University of Queensland, Brisbane, QLD, AUS
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA, AUS
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, AUS
| |
Collapse
|
5
|
Meakin AS, Gatford KL, Lien YC, Wiese MD, Simmons RA, Morrison JL. Characterisation of ciclesonide metabolism in human placentae across gestation. Placenta 2024; 154:42-48. [PMID: 38875771 DOI: 10.1016/j.placenta.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Current clinical management of pregnancies at risk of preterm delivery includes maternal antenatal corticosteroid (ACS) treatment. ACS activate the glucocorticoid receptor (GR) in all fetal tissues, maturing the lungs at the cost of impaired brain development, creating a need for novel treatments. The prodrug ciclesonide (CIC) activates the GR only when converted to des-CIC by specific enzymes, including acetylcholinesterase (ACHE) and carboxylesterase 1 and 2 (CES1, CES2). Importantly, the human placenta expresses ACHE and CES, and could potentially produce des-CIC, resulting in systemic fetal exposure and GR activation in all fetal tissues. We therefore investigated CES gene expression and conversion of CIC to des-CIC in human placentae collected during the second trimester (Tri2), and at preterm and term birth. METHODS Differential expression analysis was performed in Tri2 (n = 27), preterm (n = 34), and term (n = 40) placentae using the DESeq2 R-package. Conversion of CIC to des-CIC was measured in a subset of placenta samples (Tri2 n = 7, preterm n = 26, term n = 20) using functional assays. RESULTS ACHE mRNA expression was higher in Tri2 male than preterm and term male placentae only, whereas CES1 mRNA expression was higher in Tri2 than preterm or term placentae of both sexes. Conversion of CIC to des-CIC did not differ between gestational ages. DISCUSSION Conversion of CIC to des-CIC by the human placenta may preclude its use as a novel GR-agonist in threatened preterm birth. In vivo studies are required to confirm the extent to which placental activation occurs after maternal treatment.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Yu-Chin Lien
- Centre for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA, Australia
| | - Rebecca A Simmons
- Centre for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Bertossa MR, Darby JR, Holman SL, Meakin AS, Li C, Huber HF, Wiese MD, Nathanielsz PW, Morrison JL. Maternal high fat-high energy diet alters metabolic factors in the non-human primate fetal heart. J Physiol 2024; 602:4251-4269. [PMID: 39087821 PMCID: PMC11366491 DOI: 10.1113/jp286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart. At ∼9 months preconception, female baboons (Papio hamadryas) were randomly assigned to either a control diet or HF-HED. At 165 days gestational age (term = 184 days), fetuses were delivered by Caesarean section under anaesthesia, humanely killed, and left ventricular cardiac tissue (Control (n = 6 female, 6 male); HF-HED (n = 6 F, 6 M)) was collected. Maternal HF-HED decreased the concentration of active cardiac TH (i.e. triiodothyronine (T3)), and type 1 iodothyronine deiodinase (DIO1) mRNA expression. Maternal HF-HED decreased the abundance of cardiac markers of insulin-mediated glucose uptake phosphorylated insulin receptor substrate 1 (Ser789) and glucose transporter 4, and increased protein abundance of key oxidative phosphorylation complexes (I, III, IV) and mitochondrial abundance in both sexes. Maternal HF-HED alters cardiac TH status, which may induce early signs of cardiac insulin resistance. This may increase the risk of cardiometabolic disorders in later life in offspring born to these pregnancies. KEY POINTS: Babies born to mothers who consume a high fat-high energy diet (HF-HED) prior to and during pregnancy are predisposed to an increased risk of cardiometabolic disorders across the life course. Maternal HF-HED prior to and during pregnancy decreased thyroid hormone triiodothyronine (T3) concentrations and type 1 iodothyronine deiodinase DIO1 mRNA expression in the non-human primate fetal heart. Maternal HF-HED decreased markers of insulin-dependent glucose uptake, phosphorylated insulin receptor substrate 1 and glucose transporter 4 in the fetal heart. Maternal HF-HED increased mitochondrial abundance and mitochondrial OXPHOS complex I, III and IV in the fetal heart. Fetuses from HF-HED pregnancies are predisposed to cardiometabolic disorders that may be mediated by changes in T3, placing them on a poor lifetime cardiovascular health trajectory.
Collapse
Affiliation(s)
- Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Jack R.T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | | | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| |
Collapse
|
7
|
Darby JRT, Saini BS, Holman SL, Hammond SJ, Perumal SR, Macgowan CK, Seed M, Morrison JL. Acute-on-chronic: using magnetic resonance imaging to disentangle the haemodynamic responses to acute and chronic fetal hypoxaemia. Front Med (Lausanne) 2024; 11:1340012. [PMID: 38933113 PMCID: PMC11199546 DOI: 10.3389/fmed.2024.1340012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The fetal haemodynamic response to acute episodes of hypoxaemia are well characterised. However, how these responses change when the hypoxaemia becomes more chronic in nature such as that associated with fetal growth restriction (FGR), is less well understood. Herein, we utilised a combination of clinically relevant MRI techniques to comprehensively characterize and differentiate the haemodynamic responses occurring during acute and chronic periods of fetal hypoxaemia. Methods Prior to conception, carunclectomy surgery was performed on non-pregnant ewes to induce FGR. At 108-110 days (d) gestational age (GA), pregnant ewes bearing control (n = 12) and FGR (n = 9) fetuses underwent fetal catheterisation surgery. At 117-119 days GA, ewes underwent MRI sessions where phase-contrast (PC) and T2 oximetry were used to measure blood flow and oxygenation, respectively, throughout the fetal circulation during a normoxia and then an acute hypoxia state. Results Fetal oxygen delivery (DO2) was lower in FGR fetuses than controls during the normoxia state but cerebral DO2 remained similar between fetal groups. Acute hypoxia reduced both overall fetal and cerebral DO2. FGR increased ductus venosus (DV) and foramen ovale (FO) blood flow during both the normoxia and acute hypoxia states. Pulmonary blood flow (PBF) was lower in FGR fetuses during the normoxia state but similar to controls during the acute hypoxia state when PBF in controls was decreased. Conclusion Despite a prevailing level of chronic hypoxaemia, the FGR fetus upregulates the preferential streaming of oxygen-rich blood via the DV-FO pathway to maintain cerebral DO2. However, this upregulation is unable to maintain cerebral DO2 during further exposure to an acute episode of hypoxaemia. The haemodynamic alterations required at the level of the liver and lung to allow the DV-FO pathway to maintain cerebral DO2, may have lasting consequences on hepatic function and pulmonary vascular regulation after birth.
Collapse
Affiliation(s)
- Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Brahmdeep S. Saini
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarah J. Hammond
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Mike Seed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Meakin AS, Amirmostofian M, Darby JRT, Holman SL, Morrison JL, Wiese MD. Characterisation of cytochrome P450 isoenzyme activity in sheep liver and placental microsomes. Placenta 2023; 131:82-89. [PMID: 36527743 DOI: 10.1016/j.placenta.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Drug metabolism during pregnancy is a complex process that involves maternal, placental and fetal sites of metabolism. Indeed, there is a lack of clarity provided from drug metabolism in human pregnancy due to ethical limitations. Large animal models of human pregnancy provide an opportunity to quantify activity of phase 1 drug metabolism mediated by cytochrome P450 (CYP) enzymes in the maternal, placental, and fetal compartments. Herein, we have validated a comprehensive assay to quantify maternal, placental, and fetal CYP activity. METHODS Isolated microsomes from sheep maternal liver, placenta, and fetal liver (140d gestation, term = 150d) were incubated with CYP-specific probe drugs to quantify the activity of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A. Inhibition studies were performed to validate specificity of probe drugs. The validated assay was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1 and CYP3A were active in maternal liver. In contrast, only CYP1A2, CYP2C8 and CYP2D6 were active in the placenta, whereas CYP2B6, CYP2C8 and CYP2D6 were active in the fetal liver. Of the placental-specific CYPs validated, CYP1A2 increased in type A compared with type D placentomes, whereas CYP2C8 activity increased in type B compared with type A and C. DISCUSSION This study has established conditions for compartment-specific CYP activity in the sheep maternal-placental-fetal unit using a validated and standardised experimental workflow. Compartment- and placentome type-specific CYP activity are important considerations when examining drug metabolism in the maternal-placental-fetal unit and in determining the impact of pregnancy complications.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Marzieh Amirmostofian
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack RT Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
9
|
Kammala AK, Lintao RC, Vora N, Mosebarger A, Khanipov K, Golovko G, Yaklic JL, Peltier MR, Conrads TP, Menon R. Expression of CYP450 enzymes in human fetal membranes and its implications in xenobiotic metabolism during pregnancy. Life Sci 2022; 307:120867. [DOI: 10.1016/j.lfs.2022.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
10
|
Meakin AS, Darby JR, Holman SL, Wiese MD, Morrison JL. Maternal-placental-fetal drug metabolism is altered by late gestation undernutrition in the pregnant ewe. Life Sci 2022; 298:120521. [DOI: 10.1016/j.lfs.2022.120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|