1
|
Xie Y, Yi Q, Xu C, Wang Y, Jiang Y, Feng Y, Wang L, Yang H, Zhang Y, Wang B. Identifying TNFSF4 low-MSCs superiorly treating idiopathic pulmonary fibrosis through Tregs differentiation modulation. Stem Cell Res Ther 2025; 16:194. [PMID: 40254578 PMCID: PMC12010539 DOI: 10.1186/s13287-025-04313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a progressive lung disorder, presenting clinically with symptoms such as shortness of breath and hypoxemia. Despite its severe prognosis and limited treatment options, the pathogenesis of idiopathic pulmonary fibrosis remains poorly understood. This study aims to investigate the therapeutic potential of mesenchymal stromal cells in treating idiopathic pulmonary fibrosis, focusing on their ability to modulate regulatory T cells through the low tumor necrosis factor superfamily member 4 (TNFSF4) pathway. The goal is to identify mesenchymal stromal cells subtypes with optimal immunomodulatory effects to enhance regulatory T cells functions and ameliorate fibrosis. METHODS We identified the immune characteristics of idiopathic pulmonary fibrosis by mining and analyzing multiple public datasets and detecting regulatory T cells in the blood and lung tissues of idiopathic pulmonary fibrosis patients. An extensive examination followed, including assessing the impact of mesenchymal stromal cells on regulatory T cells proportions in peripheral blood and lung tissue, and exploring the specific role of TNFSF4 expression in regulatory T cells modulation. Whole-genome sequencing and cluster analysis were used to identify mesenchymal stromal cells subtypes with low TNFSF4 expression. RESULTS Mesenchymal stromal cells characterized by TNFSF4 expression (TNFSF4low-MSCs) demonstrated enhanced ability to regulate regulatory T cells subpopulations and exhibited pronounced anti-fibrotic effects in the bleomycin-induced idiopathic pulmonary fibrosis mouse model. These mesenchymal stromal cells increased regulatory T cells proportions, reduced lung fibrosis, and improved survival rates. TNFSF4-tumor necrosis factor receptor superfamily member 4 (TNFRSF4) signaling was identified as a critical pathway influencing regulatory T cells generation and function. CONCLUSIONS Our findings underscore the pivotal role of TNFSF4 in mesenchymal stromal cells mediated regulatory T cells modulation and highlight the therapeutic potential of selecting mesenchymal stromal cells subtypes based on their TNFSF4 expression for treating idiopathic pulmonary fibrosis. This approach may offer a novel avenue for the development of targeted therapies aimed at modulating immune responses and ameliorating fibrosis in idiopathic pulmonary fibrosis. TRIAL REGISTRATION Our study involved collecting 10 mL of peripheral blood from idiopathic pulmonary fibrosis patients, and the Medical Ethics Committee of Nanjing Drum Tower Hospital approved our study protocol with the approval number 2023-675-01.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Qing Yi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210009, China
| | - Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210009, China
| | - Yue Jiang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Yirui Feng
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Liudi Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Hui Yang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Yingwei Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China.
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210009, China.
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Hamdan HZ. Exploring gene expression signatures in preeclampsia and identifying hub genes through bioinformatic analysis. Placenta 2025; 159:93-106. [PMID: 39675129 DOI: 10.1016/j.placenta.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/18/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a multisystem disease that affects women during the pregnancy. Its pathogenicity remains unclear, and no definitive screening test can predict its occurrence so far. The aim of this study is to identify the critical genes that are involved in the pathogenicity of PE by applying integrated bioinformatic methods and to investigate the genes' diagnostic capability. METHODS Datasets that investigated PE have been downloaded from Gene Expression Omnibus (GEO) datasets. Differential gene expression, weighted gene co-expression analysis (WGCNA), protein-protein interaction (PPI) network construction, and finally, the calculation of area under the curve and Receiver operating characteristic curve (ROC) analysis were done for the potential hub genes. The results generated from the GSE186257 dataset (discovery cohort) were validated in the GSE75010 dataset (validation cohort). Following validation of the hub-genes, a multilayer regulatory network was constructed to include the up-stream regulatory elements (transcription factors and miRNAs) of the validated hub-genes. RESULTS WGCNA revealed six modules that were significantly correlated with PE. A total of 231 differentially expressed genes (DEGs) were identified. DEGs were intersected with the WGCNA modules' genes, totalling 55 genes. These shared genes were used to construct the PPI network; subsequently, four genes, namely FLT1, HTRA4, LEP and PAPPA2, were identified as hub-genes for PE in the discovery cohort. The expressional of these four hub genes were validated in the validation cohort and found to be highly expressed. ROC analysis in both datasets revealed that all these genes had a significant PE diagnostic ability. The regulatory network showed that FLT1 gene is the most connected and regulated gene among the validated hub-genes. DISCUSSION This integrated analysis revealed that FLT1, LEP, HTRA4 and PAPPA2 may be strongly involved in the pathogenicity of PE and act as promising biomarkers and potential therapeutic targets for PE.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Pathology, College of Medicine, Qassim University, Buraidah, 51911, Saudi Arabia.
| |
Collapse
|
3
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
4
|
Yu F, Xing J, Li L, Xiang M. CircCRIM1 mediates proliferation, migration, and invasion of trophoblast cell through regulating miR-942-5p/IL1RAP axis. Am J Reprod Immunol 2023; 90:e13699. [PMID: 37382169 DOI: 10.1111/aji.13699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a severe complication that occurs during pregnancy and a main cause of perinatal mortality of mothers as well as infants, which is characterized by abnormal placental trophoblast. Previous study reported that aberrant circular RNA (circRNA) was involved in the pathogenesis and progression of PE. Herein, we aimed to investigate the role of circCRIM1 and explore the mechanism of circCRIM1 in PE. METHODS The quantitative real-time PCR (qRT-PCR) was conducted to determine the relative expression of circCRIM1, miR-942-5p, and IL1RAP in tissues and cells. Cell proliferation viability was assessed by both MTT and EdU assays. Cell cycle distribution was analyzed using flow cytometry. Transwell assay was performed to test the cell migration and invasion. The protein levels of CyclinD1, MMP9, MMP2, and IL1RAP were measured by western blot. The putative binding sites between miR-942-5p and circCRIM1 or IL1RAP 3'UTR were verified by dual-luciferase reporter gene assay. Rescue experiment was performed to confirm that miR-942-5p/IL1RAP axis was functional target of circCRIM1 in trophoblast cells. RESULTS CircCRIM1 was upregulated in placenta tissues of PE and its expression was inversely related to infant weight. Overexpression of circCRIM1 suppressed proliferation, migration, and invasion and reduced the protein levels of CyclinD1, MMP9, MMP2 of trophoblast cells, whereas its knockdown exerted the opposite effect. CircCRIM1 could interact with miR-942-5p, and introduction of miR-942-5p partially abated the inhibitory effect of circCRIM1 on trophoblast cell behaviors. IL1RAP was directly targeted and negatively regulated by miR-942-5p. miR-942-5p played its regulatory role on cell proliferation, migration, and invasion of trophoblast by IL1RAP. Further analysis showed that circCRIM1 modulated IL1RAP expression via sponging miR-942-5p. CONCLUSION The results of the present study demonstrated that circCRIM1 inhibited the proliferation, migration, and invasion of trophoblast cells through sponging miR-942-5p and up-regulating IL1RAP, providing a possible new mechanism of PE.
Collapse
Affiliation(s)
- Fen Yu
- Department of Gynecology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jie Xing
- Department of Obstetrics, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lingyun Li
- Department of Obstetrics, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Mi Xiang
- Department of Obstetrics, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Jin S, Wu C, Chen M, Sun D, Zhang H. The pathological and therapeutic roles of mesenchymal stem cells in preeclampsia. Front Med (Lausanne) 2022; 9:923334. [PMID: 35966876 PMCID: PMC9370554 DOI: 10.3389/fmed.2022.923334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have made progress in the treatment of ischemic and inflammatory diseases. Preeclampsia (PE) is characterized by placenta ischemic and inflammatory injury. Our paper summarized the new role of MSCs in PE pathology and its potency in PE therapy and analyzed its current limitations. Intravenously administered MSCs dominantly distributed in perinatal tissues. There may be additional advantages to using MSCs-based therapies for reproductive disorders. It will provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Sanshan Jin
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Canrong Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- Department of Rehabilitation Physiotherapy, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Dongyan Sun
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Hua Zhang
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Hua Zhang,
| |
Collapse
|
6
|
Li Z, Ru X, Wang S, Cao G. miR-24-3p regulation of retinol binding protein 4 in trophoblast biofunction and preeclampsia. Mol Reprod Dev 2022; 89:423-430. [PMID: 35818817 DOI: 10.1002/mrd.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related disease and is the leading cause of overall maternal mortality and morbidity. Our previous studies have shown that the serum and placental levels of retinol-binding protein 4 (RBP4) in PE are reduced. Our previous bioinformatics analysis predicted that RBP4 is a target of the microRNA miRNA-24-3p. In this study, our database analysis also indicated that RBP4 is a miR-24-3p target. Compared with that of the normal placenta, the expression level of RBP4 in human PE placenta was significantly reduced, and miR-24-3p was highly expressed. In HTR-8/SVneo cells, transfection of exogenous miR-24-3p reduced RBP4 expression. A dual-luciferase reporter assay validated RBP4 as a direct target of miR-24-3p, indicating that it directly binds to the 3'-untranslated region of RBP4. This binding was reversed by a mutation in the microRNA-binding site. Transwell invasion experiments and CCK8 assay showed that inhibitory effect of miR-24-3p reduced RBP4 mediated HTR-8/SVneo cell invasion and proliferation. These data provide a new overarching perspective on the physiological role played by miR-24-3p in regulating RBP4 during trophoblast dysfunction and PE development.
Collapse
Affiliation(s)
- Zhan Li
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Ru
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|