1
|
Bisia AM, Xypolita ME, Bikoff EK, Robertson EJ, Costello I. Eomesodermin in conjunction with the BAF complex promotes expansion and invasion of the trophectoderm lineage. Nat Commun 2025; 16:5079. [PMID: 40450029 DOI: 10.1038/s41467-025-60417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
The T-box transcription factor (TF) Eomesodermin/Tbr2 (Eomes) is essential for maintenance of the trophectoderm (TE) lineage, but the molecular mechanisms underlying this critical role remain obscure. Here, we show in trophoblast stem cells (TSCs) that Eomes partners with several TE-specific TFs as well as chromatin remodellers, including Brg1 and other subunits of the BAF complex. Degron-mediated Eomes protein depletion results in genome-wide loss of chromatin accessibility at TSC-specific loci. These overlap with a subset of sites that lose accessibility following Brg1 inhibition, suggesting that Eomes acts as a "doorstop" controlling TSC chromatin accessibility. Eomes depletion also causes transcriptional misregulation of TSC maintenance and early differentiation markers. An additional subset of Eomes-dependent genes encode intercellular/matricellular interaction and cytoskeletal components, likely explaining the implantation defects of Eomes-null embryos. Thus, Eomes promotes TE lineage maintenance by sustaining trophectoderm-specific chromatin accessibility, while promoting the gene regulatory networks that modulate expansion and cell behaviour during implantation.
Collapse
Affiliation(s)
| | | | | | | | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Kaltner H, Caballero GG, Schmidt S. Analysis of chicken LGALSL (galectin-related protein) gene's proximal promoter and its control by Krüppel-like factors 3 and 7. Gene 2025; 933:148972. [PMID: 39343186 DOI: 10.1016/j.gene.2024.148972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The Galectin-Related Protein (GRP), encoded by the LGALSL gene, assigned to the protein family of β-galactoside-binding Galectins, has lost carbohydrate-binding abilities. Its chicken homolog (C-GRP) occurs in the bursa of Fabricius' epithelial and B cells. Our study investigates the unknown regulatory mechanisms controlling its expression by analyzing the promoter region of the chicken (C-)LGALSL gene in chicken cells. We aimed to identify the sequence elements of the C-LGALSL gene promoter responsible for maximum activity and transcription factors (TFs) that can modulate this activity. Using luciferase reporter assays, we investigated deletion variants of the 5' region (-2480 bp to +26 bp). Through in silico analyses and site-directed mutagenesis, we explored potential transcription factor binding sites, identified crucial transcription factors through transient overexpression and tested its direct binding by ChIP. Our findings highlight that the region from -274 to -75 bp, conserved among bird species, is crucial for promoter regulation. Among other tested factors, only the chicken (ch) Krüppel-like factors, chKLF3 and chKLF7, modulate the promoter's activity. The TFs chKLF3 acts as a repressor, and chKLF7 as an activator, although direct binding could not be confirmed. In conclusion, chKLF3 and chKLF7 contribute, in contrast to other factors with binding sites in the region from -274 to -75 bp, to C-LGALSL gene promoter regulation with a balanced impact on activity.
Collapse
Affiliation(s)
- Herbert Kaltner
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany
| | - Gabriel García Caballero
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany
| | - Sebastian Schmidt
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Liu K, Wu S, Cui Y, Tao X, Li Y, Xiao X. Trophoblast fusion in fetal growth restriction is inhibited by CTGF in a cell-cycle-dependent manner. J Mol Histol 2024; 55:895-908. [PMID: 39122896 DOI: 10.1007/s10735-024-10239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Fetal growth restriction (FGR) is a relatively common complication of pregnancy, and insufficient syncytialization in the placenta may play an important role in the pathogenesis of FGR. However, the mechanism of impaired formation of the syncytiotrophoblast layer in FGR patients requires further exploration. In the present study, we demonstrated that the level of syncytialization was decreased in FGR patient placentas, while the expression of connective tissue growth factor (CTGF) was significantly upregulated. CTGF was found to inhibit trophoblast fusion via regulating cell cycle progress of BeWo cells. Furthermore, we found that CTGF negatively regulates cell cycle arrest in a p21-dependent manner as overexpression of p21 could rescue the impaired syncytialization induced by CTGF-overexpression. Besides, we also identified that CTGF inhibits the expression of p21 through ITGB4/PI3K/AKT signaling pathway. Our study provided a new insight for elucidating the pathogenic mechanism of FGR and a novel idea for the clinical therapy of FGR.
Collapse
Affiliation(s)
- Ketong Liu
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430050, China
| | - Yutong Cui
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Xiang Tao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Yanhong Li
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China.
| | - Xirong Xiao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China.
- Kashi Prefecture Second People's Hospital, Jiankang Road 1, Kashgar, 844000, China.
| |
Collapse
|
4
|
Racca AC, Nardi S, Flores-Martin J, Genti-Raimondi S, Panzetta-Dutari GM. KLF6 negatively regulates HIF-1α in extravillous trophoblasts under hypoxia. Placenta 2024; 156:38-45. [PMID: 39244791 DOI: 10.1016/j.placenta.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION HIF-1α, the master regulator of hypoxia cellular response, is stabilized under low oxygen levels and degraded in the presence of oxygen but its transcription, translation, and degradation are tightly regulated by numerous pathways. KLF6 is a transcription factor involved in proliferation, differentiation, and apoptosis in several cell systems. Under hypoxia it is upregulated in a HIF-1α-dependent manner in extravillous trophoblasts. Considering the importance of hypoxia modulation of EVT behavior through HIF1-α we aimed to study whether KLF6 modulates HIF-1α expression in HTR8/SVneo cells. METHODS HTR8/SVneo cells were cultured in a 1 % oxygen chamber or in 3D format where a spontaneous oxygen gradient is generated. qRT-PCR and Western blot were performed to analyze mRNA and protein expression, respectively. SiRNA, shRNA, or plasmids were used to down- or up-regulate gene expression. Wound healing assay was performed under hypoxia to evaluate migration. The NFκB pathway was modulated with dominant negative mutants and a chemical inhibitor. Cobalt chloride was used to block HIF-1α degradation. RESULTS KLF6 up- and down-regulation in HTR8/SVneo cells exposed to acute hypoxia revealed a negative regulation on HIF-1α. KLF6 silencing led to a partially HIF-1α-dependent increase in MMP9 and VEGF. The NF-κB pathway and HIF-1α degradation were involved in KLF6-dependent HIF-1α regulation. HTR8/SVneo-3D culture showed that KLF6 negatively regulates HIF-1α in a microenvironment with naturally generated hypoxia. DISCUSSION Present results reveal that KLF6 contributes to a fine tune modulation of HIF-1α level under hypoxia. Thus, sustaining a HIF-1α homeostatic level, KLF6 might contribute to control EVT adaptation to hypoxia.
Collapse
Affiliation(s)
- Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Sofía Nardi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Jésica Flores-Martin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
5
|
Kourdova LT, Miranda AL, Ovejero M, Anastasía A, Genti-Raimondi S, Racca AC, Panzetta-Dutari GM. Krüppel-like factor 6 involvement in the endoplasmic reticulum homeostasis of extravillous trophoblasts. Placenta 2024; 155:42-51. [PMID: 39121586 DOI: 10.1016/j.placenta.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Trophoblast homeostasis and differentiation require a proper endoplasmic reticulum (ER) function. The Krüppel-like factor-6 (KLF6) transcription factor modulates trophoblast migration, differentiation, and reactive oxygen species (ROS) production. Since ROS may impact on ER homeostasis, we assessed whether downregulation of KLF6 altered the unfolded protein response (UPR) and cellular process associated with ER homeostasis. MATERIALS AND METHODS Protein and RNA expression were analyzed by Western blot and qRT-PCR, respectively, in extravillous trophoblast HTR-8/SVneo cells silenced for KLF6. Apoptosis was detected by flow cell cytometry using Annexin V Apoptosis Detection Kit. Protein trafficking was assessed by confocal microscopy of a reporter fluorescent protein whose release from the ER was synchronized. RESULTS KLF6 downregulation reduced the expression of BiP, the master regulator of the UPR, at protein, mRNA, and pre-mRNA levels. Ire1α protein, XBP1 splicing, and DNAJB9 mRNA levels were also reduced in KLF6-silenced cells. Instead, PDI, Ero1α, and the p-eIF2α/eIF2α ratio as well as autophagy and proteasome dependent protein degradation remained unchanged while intracellular trafficking was increased. Under thapsigargin-induced stress, KLF6 silencing impaired BiP protein and mRNA expression increase, as well as the activation of the Ire1α pathway, but it raised the p-eIF2α/eIF2α ratio and CHOP protein levels. Nevertheless, apoptosis was not increased. DISCUSSION Results provide the first evidence of KLF6 as a modulator of the UPR components. The increase in protein trafficking and protection from apoptosis, observed in KLF6-silenced cells, are consistent with its role in extravillous trophoblast migration and differentiation.
Collapse
Affiliation(s)
- Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Milagros Ovejero
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Agustín Anastasía
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
6
|
Kasimanickam R, Kasimanickam V. MicroRNAs in the Pathogenesis of Preeclampsia-A Case-Control In Silico Analysis. Curr Issues Mol Biol 2024; 46:3438-3459. [PMID: 38666946 PMCID: PMC11048894 DOI: 10.3390/cimb46040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing protein-protein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetal-maternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Vanmathy Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
7
|
Mao Q, Ye Q, Xu Y, Jiang J, Fan Y, Zhuang L, Liu G, Wang T, Zhang Z, Feng T, Kong S, Lu J, Zhang H, Wang H, Lin CP. Murine trophoblast organoids as a model for trophoblast development and CRISPR-Cas9 screening. Dev Cell 2023; 58:2992-3008.e7. [PMID: 38056451 DOI: 10.1016/j.devcel.2023.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.
Collapse
Affiliation(s)
- Qian Mao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunhao Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Zhuang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Guohui Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother 2023; 162:114661. [PMID: 37068333 DOI: 10.1016/j.biopha.2023.114661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Collapse
Affiliation(s)
- Zi-Yi Li
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yu-Xin Zhu
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jian-Rui Chen
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xu Chang
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen-Zhen Xie
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Experimental teaching center of Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
9
|
Downregulation of krüppel-like factor 6 expression modulates extravillous trophoblast cell behavior by increasing reactive oxygen species. Placenta 2022; 127:62-72. [PMID: 35973366 DOI: 10.1016/j.placenta.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Placental extravillous trophoblasts play a crucial role in the establishment of a healthy pregnancy. Reactive oxygen species (ROS) may contribute to their differentiation and function as mediators in signaling processes or might cause oxidative stress resulting in trophoblast dysfunction. The krüppel-like transcription factor 6 (KLF6) regulates many genes involved in essential cell processes where ROS are also involved. However, whether KLF6 regulates ROS levels has not been previously investigated. MATERIALS AND METHODS KLF6 was silenced by siRNAs in HTR8-SV/neo cells, an extravillous trophoblast model. Total and mitochondrial ROS levels, as well as mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. The expression of genes and proteins of interest were analyzed by qRT-PCR and Western blot, respectively. Cell response to oxidative stress, proliferation, viability, morphology, and migration were evaluated. RESULTS KLF6 downregulation led to an increase in ROS and NOX4 mRNA levels, accompanied by reduced cell proliferation and increased p21 protein expression. Catalase activity, 2-Cys peroxiredoxin protein levels, Nrf2 cytoplasmic localization and hemoxygenase 1 expression, as well as mitochondrial membrane potential and cell apoptosis were not altered suggesting that ROS increase is not associated with cellular damage. Instead, KLF6 silencing induced cytoskeleton modifications and increased cell migration in a ROS-dependent manner. DISCUSSION Present data reveal a novel role of KLF6 on ROS balance and signaling demonstrating that KLF6 downregulation induces an increase in ROS levels that contribute to extravillous trophoblast cell migration.
Collapse
|
10
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
11
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|