1
|
Cheng M, Li S, Wang J, Yang X, Duan D, Shao Z. Genome-Wide Mining of Chitinase Diversity in the Marine Diatom Thalassiosira weissflogii and Functional Characterization of a Novel GH19 Enzyme. Mar Drugs 2025; 23:144. [PMID: 40278265 PMCID: PMC12028343 DOI: 10.3390/md23040144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Chitin represents a globally abundant marine polymer with significant ecological and biotechnological value. β-chitin is an important carbon fixation product of diatoms and has a greater range of applications than α- and γ-chitin. However, there has been a paucity of research on the characterization of chitin-related enzymes from β-chitin producers. In this study, we performed a genome-wide identification of 38 putative chitinase genes in Thalassiosira weissflogii, a key producer of β-chitin. Through comprehensive analyses of phylogenetic relationships, conserved motifs, structural domains, and subcellular localization predictions, we revealed that T. weissflogii possesses evolutionarily distinct GH18 and GH19 chitinase families exhibiting unique motif and domain configurations. Subcellular localization predictions showed that most TwChis were presumed to be located in the chloroplast, with a few being present in the nucleus and extracellular. The enzymatic activity of TwChi2, a GH19 chitinase, showed that TwChi2 was a member of exochitinase (EC 3.2.1.201) with strong thermal stability (40 °C) and broad substrate adaptability of hydrolyzing bipolymer, 1% and 5% colloidal chitin, α-chitin and β-chitin. Altogether, we analyzed the chitinase gene family and characterized a highly active exochitinase from T. weissflogii, which can catalyze the degradation of both chitin polymers and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of high-value chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoqi Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Delin Duan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhanru Shao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Guo C, Ling N, Tian H, Wang Z, Gao M, Chen Y, Ji C. Comprehensive review of extraction, purification, structural characteristics, pharmacological activities, structure-activity relationship and application of seabuckthorn protein and peptides. Int J Biol Macromol 2025; 294:139447. [PMID: 39756720 DOI: 10.1016/j.ijbiomac.2024.139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Seabuckthorn (Hippophae rhamnoides) is an excellent plant that has the concomitant function of both medicine and foodstuff with high nutritional and health-promoting properties. As a pivotal bioactive component mainly existing in the seeds and leaves, seabuckthorn protein and its derived peptides have aroused wide attention owing to their multifaceted pharmacological activities, including anti-hypertensive, hypoglycemic, anti-obesity, anti-freeze, immunomodulatory, anti-inflammatory, sobriety, anti-oxidant and anti-neurodegenerative functions. Despite these promising attributes, the application of seabuckthorn peptides as functional food and medicines are impeded due to lack of a comprehensive understanding of pharmacological activities and intricate structure-activity relationship. Therefore, this review systematically summarizes the latest advancements in the extraction, purification, structural characteristics, pharmacological activities, digestion, absorption and transport, and application of seabuckthorn protein or peptides. Noteworthily, the structure-activity relationship is specifically delved into the hypoglycemic, anti-hypertensive, anti-obesity, anti-neurodegenerative and anti-oxidant peptides. Moreover, the shortcomings of current research and promising prospects are also highlighted. This comprehensive overview will provide a framework for future exploration and application of seabuckthorn protein or peptides in the realms of food and pharmaceuticals, offering a promising horizon for health benefits.
Collapse
Affiliation(s)
- Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zihao Wang
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yin Chen
- School of Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
3
|
Liu Q, Zhu C, Li X, Qi L, Yan H, Zhou Y, Gao F. AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109436. [PMID: 39733727 DOI: 10.1016/j.plaphy.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus. Here, we analyzed the evolution and expression patterns of the chitinase gene family in A. mongolicus and investigated the function and regulatory mechanisms of the AmChi7 gene in response to abiotic stress. The chitinase gene family in A. mongolicus comprises 27 members, many of which arose through formed by tandem and segmental duplication. Several chitinase genes, including AmChi7 gene, were significantly upregulated in winter. Overexpression of AmChi7 gene enhanced the tolerance of yeast to freeze-thaw cycle and osmotic stress, and enhanced the tolerance of transgenic Arabidopsis to low-temperature and drought stress. Furthermore, AmWRKY59, a MeJA-induced transcription factor, bound to the W box element in the AmChi7 gene promoter, activating its expression in winter. It is speculated that chitinase AmChi7 accumulation in winter enhances adaptation to temperate winter climates in A. mongolicus. This study expands our understanding of the biological functions of chitinases and provides insights into the molecular mechanisms underlying winter climate adaptation in A. mongolicus.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Changxin Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xuting Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lanting Qi
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hongxi Yan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
4
|
Camalle MD, Levin E, David S, Faigenboim A, Foolad MR, Lers A. Molecular and biochemical components associated with chilling tolerance in tomato: comparison of different developmental stages. MOLECULAR HORTICULTURE 2024; 4:31. [PMID: 39232835 PMCID: PMC11375913 DOI: 10.1186/s43897-024-00108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
The cultivated tomato, Solanum lycopersicum, is highly sensitive to cold stress (CS), resulting in significant losses during cultivation and postharvest fruit storage. Previously, we demonstrated the presence of substantial genetic variation in fruit chilling tolerance in a tomato recombinant inbred line (RIL) population derived from a cross between a chilling-sensitive tomato line and a chilling-tolerant accession of the wild species S. pimpinellifolium. Here, we investigated molecular and biochemical components associated with chilling tolerance in fruit and leaves, using contrasting groups of "chilling tolerant" and "chilling sensitive" RI lines. Transcriptomic analyses were conducted on fruit exposed to CS, and gene expressions and biochemical components were measured in fruit and leaves. The analyses revealed core responding genes specific to either the cold-tolerant or cold-sensitive RI lines, which were differentially regulated in similar fashion in both leaves and fruit within each group. These genes may be used as markers to determine tomato germplasm cold tolerance or sensitivity. This study demonstrated that tomato response to CS in different developmental stages, including seedling and postharvest fruit, might be mediated by common biological/genetic factors. Therefore, genetic selection for cold tolerance during early stages of plant development may lead to lines with greater postharvest fruit chilling tolerance.
Collapse
Affiliation(s)
- Maria Dolores Camalle
- Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel.
- Robert H. Smith Faculty of Agriculture Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Elena Levin
- Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel
| | - Sivan David
- Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel
- Robert H. Smith Faculty of Agriculture Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel
| | - Majid R Foolad
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| | - Amnon Lers
- Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel.
| |
Collapse
|
5
|
Tiwari V, Bussi Y, Kamara I, Faigenboim A, Irihimovitch V, Charuvi D. Priming avocado with sodium hydrosulfide prior to frost conditions induces the expression of genes involved in protection and stress responses. PHYSIOLOGIA PLANTARUM 2024; 176:e14291. [PMID: 38628053 DOI: 10.1111/ppl.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Priming plants with chemical agents has been extensively investigated as a means for improving their tolerance to many biotic and abiotic stresses. Earlier, we showed that priming young avocado (Persea americana Mill cv. 'Hass') trees with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, improves the response of photosynthesis to simulated frost (cold followed by high light) conditions. In the current study, we performed a transcriptome analysis to gain insight into the molecular response of avocado 'Hass' leaves to frost, with or without NaHS priming. The analysis revealed 2144 (down-regulated) and 2064 (up-regulated) differentially expressed genes (DEGs) common to both non-primed and primed trees. Non-primed trees had 697 (down) and 559 (up) unique DEGs, while primed trees exhibited 1395 (down) and 1385 (up) unique DEGs. We focus on changes in the expression patterns of genes encoding proteins involved in photosynthesis, carbon cycle, protective functions, biosynthesis of isoprenoids and abscisic acid (ABA), as well as ABA-regulated genes. Notably, the differential expression results depict the enhanced response of primed trees to the frost and highlight gene expression changes unique to primed trees. Amongst these are up-regulated genes encoding pathogenesis-related proteins, heat shock proteins, enzymes for ABA metabolism, and ABA-induced transcription factors. Extending the priming experiments to field conditions, which showed a benefit to the physiology of trees following chilling, suggests that it can be a possible means to improve trees' response to cold stress under natural winter conditions.
Collapse
Affiliation(s)
- Vivekanand Tiwari
- Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Yuval Bussi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Itzhak Kamara
- Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Vered Irihimovitch
- Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Dana Charuvi
- Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
6
|
Xu C, Gui Z, Huang Y, Yang H, Luo J, Zeng X. Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Qingke in Response to Cold Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18345-18358. [PMID: 37966343 DOI: 10.1021/acs.jafc.3c07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The survival and productivity of qingke in high altitude (>4300 m, average yearly temperature <0 °C) of the Tibetan Plateau are significantly impacted by low-temperature stress. Uncovering the mechanisms underlying low-temperature stress response in cold-tolerant qingke varieties is crucial for qingke breeding. Herein, we conducted a comprehensive transcriptomic and metabolomic analysis on cold-sensitive (ZQ) and cold-tolerant (XL) qingke varieties under chilling and freezing treatments and identified lipid metabolism pathways as enriched in response to freezing treatment. Additionally, a significant positive correlation was observed between the expression of C-repeat (CRT) binding factor 10A (HvCBF10A) and Gly-Asp-Ser-Leu-motif lipase (HvGDSL) and the accumulation of multiple lipids. Functional analysis confirmed that HvCBF10A directly binds to HvGDSL, and silencing HvCBF10A resulted in a significant decrease in both HvGDSL and lipid levels, consequently impairing the cold tolerance. Overall, HvCBF10A and HvGDSL are functional units in actively regulating lipid metabolism to enhance freezing stress tolerance in qingke.
Collapse
Affiliation(s)
- Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Zihao Gui
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiao Huang
- Hainan Yazhou Bay grain Laboratory, Sanya 572025, China
| | - Haizhen Yang
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Jie Luo
- Hainan Yazhou Bay grain Laboratory, Sanya 572025, China
| | - Xingquan Zeng
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| |
Collapse
|
7
|
Ritonga FN, Ngatia JN, Wang Y, Khoso MA, Farooq U, Chen S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1953-1968. [PMID: 34616115 PMCID: PMC8484489 DOI: 10.1007/s12298-021-01061-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 05/07/2023]
Abstract
Increasing the vulnerability of plants especially crops to a wide range of cold stress reduces plant growth, development, yield production, and plant distribution. Cold stress induces physiological, morphological, biochemical, phenotypic, and molecular changes in plants. Transcription factor (TF) is one of the most important regulators that mediate gene expression. TF is activated by the signal transduction pathway, together with cis-acting element modulate the transcription of cold-responsive genes which contribute to increasing cold tolerance in plants. Here, AP2/ERF TF family is one of the most important cold stress-related TF families that along with other TF families, such as WRKY, bHLH, bZIP, MYB, NAC, and C2H2 interrelate to enhance cold stress tolerance. Over the past decade, significant progress has been found to solve the role of transcription factors (TFs) in improving cold tolerance in plants, such as omics analysis. Furthermore, numerous studies have identified and characterized the complexity of cold stress mechanisms among TFs or between TFs and other factors (endogenous and exogenous) including phytohormones, eugenol, and light. The role, function, and relationship among these TFs or between TFs and other factors to enhance cold tolerance still need to be clarified. Here, the current study analysed the role of AP2/ERF TF and the linkages among AP2/ERF with MYB, WRKY, bZIP, bHLH, C2H2, or NAC against cold stress tolerance.
Collapse
Affiliation(s)
| | - Jacob Njaramba Ngatia
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040 China
| | - Yiran Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China
| | - Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Umar Farooq
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
8
|
Mota APZ, Brasileiro ACM, Vidigal B, Oliveira TN, da Cunha Quintana Martins A, Saraiva MADP, de Araújo ACG, Togawa RC, Grossi-de-Sá MF, Guimaraes PM. Defining the combined stress response in wild Arachis. Sci Rep 2021; 11:11097. [PMID: 34045561 PMCID: PMC8160017 DOI: 10.1038/s41598-021-90607-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Nematodes and drought are major constraints in tropical agriculture and often occur simultaneously. Plant responses to these stresses are complex and require crosstalk between biotic and abiotic signaling pathways. In this study, we explored the transcriptome data of wild Arachis species subjected to drought (A-metaDEG) and the root-knot nematode Meloidogyne arenaria (B-metaDEG) via meta-analysis, to identify core-stress responsive genes to each individual and concurrent stresses in these species. Transcriptome analysis of a nematode/drought bioassay (cross-stress) showed that the set of stress responsive DEGs to concurrent stress is distinct from those resulting from overlapping A- and B-metaDEGs, indicating a specialized and unique response to combined stresses in wild Arachis. Whilst individual biotic and abiotic stresses elicit hormone-responsive genes, most notably in the jasmonic and abscisic acid pathways, combined stresses seem to trigger mainly the ethylene hormone pathway. The overexpression of a cross-stress tolerance candidate gene identified here, an endochitinase-encoding gene (AsECHI) from Arachis stenosperma, reduced up to 30% of M. incognita infection and increased post-drought recovery in Arabidopsis plants submitted to both stresses. The elucidation of the network of cross-stress responsive genes in Arachis contributes to better understanding the complex regulation of biotic and abiotic responses in plants facilitating more adequate crop breeding for combined stress tolerance.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.8532.c0000 0001 2200 7498Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil ,grid.8183.20000 0001 2153 9871Present Address: CIRAD, UMR AGAP, 34398 Montpellier, France ,grid.463758.b0000 0004 0445 8705Present Address: AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Ana Cristina Miranda Brasileiro
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Bruna Vidigal
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Thais Nicolini Oliveira
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Andressa da Cunha Quintana Martins
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Mario Alfredo de Passos Saraiva
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Ana Claudia Guerra de Araújo
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Roberto C. Togawa
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria Fatima Grossi-de-Sá
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil ,grid.411952.a0000 0001 1882 0945Universidade Católica de Brasília (UCB)-Genomic Sciences and Biotechnology, Brasilia, DF Brazil
| | - Patricia Messenberg Guimaraes
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| |
Collapse
|
9
|
Cheng H, Shao Z, Lu C, Duan D. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses. BMC PLANT BIOLOGY 2021; 21:87. [PMID: 33568068 PMCID: PMC7874618 DOI: 10.1186/s12870-021-02849-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nitrogen-containing polysaccharide chitin is the second most abundant biopolymer on earth and is found in the cell walls of diatoms, where it serves as a scaffold for biosilica deposition. Diatom chitin is an important source of carbon and nitrogen in the marine environment, but surprisingly little is known about basic chitinase metabolism in diatoms. RESULTS Here, we identify and fully characterize 24 chitinase genes from the model centric diatom Thalassiosira pseudonana. We demonstrate that their expression is broadly upregulated under abiotic stresses, despite the fact that chitinase activity itself remains unchanged, and we discuss several explanations for this result. We also examine the potential transcriptional complexity of the intron-rich T. pseudonana chitinase genes and provide evidence for two separate tandem duplication events during their evolution. CONCLUSIONS Given the many applications of chitin and chitin derivatives in suture production, wound healing, drug delivery, and other processes, new insight into diatom chitin metabolism has both theoretical and practical value.
Collapse
Affiliation(s)
- Haomiao Cheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
| | - Chang Lu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, 266400, P. R. China.
| |
Collapse
|
10
|
Jin L, Wang D, Mu Y, Guo Y, Lin Y, Qiu L, Pan Y. Proteomics analysis reveals that foreign cp4-epsps gene regulates the levels of shikimate and branched pathways in genetically modified soybean line H06-698. GM CROPS & FOOD 2021; 12:497-508. [PMID: 34984949 PMCID: PMC9208623 DOI: 10.1080/21645698.2021.2000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Although genetically modified (GM) glyphosate-resistant soybeans with cp4-epsps gene have been widely planted all over the world, their proteomic characteristics are not very clear. In this study, the soybean seeds of a GM soybean line H06-698 (H) with cp4-epsps gene and its non-transgenic counterpart Mengdou12 (M), which were collected from two experiment fields in two years and used as 4 sample groups, were analyzed with label-free proteomics technique. A total of 1706 proteins were identified quantitatively by label-free quantification, and a total of 293 proteins were detected as common differential abundance proteins (DAPs, FC is not less than 1.5) both in two groups or more. Functional enrichment analysis of common DAPs identified from four groups, shows that most up-regulated proteins were clustered into stress response, carbon and energy metabolism, and genetic information processing. Further documentary analysis shows that 15 proteins play important roles in shikimate pathways, reactive oxygen species (ROS) and stress response. These results indicated that the change of protein abundance in different samples were affected by various factors, but except shikimate and branched pathways related proteins, only ROS and stress-related proteins were found to be stably regulated by cp4-epsps gene, and no unexpected and safety-related proteins such as antinutritional factors, allergenic proteins, and toxic proteins were found as DAPs. The influence of foreign genes in genetically modified plants is worthy of attention and this work provides new clues for exploring the regulated proteins and pathways in GM plants.
Collapse
Affiliation(s)
- Longguo Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangjie Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Kashyap P, Kumar S, Singh D. Performance of antifreeze protein HrCHI4 from Hippophae rhamnoides in improving the structure and freshness of green beans upon cryopreservation. Food Chem 2020; 320:126599. [DOI: 10.1016/j.foodchem.2020.126599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 01/26/2023]
|
12
|
Lu X, Wang B, Cai X, Chen S, Chen Z, Xin Z. Feeding on tea GH19 chitinase enhances tea defense responses induced by regurgitant derived from Ectropis grisescens. PHYSIOLOGIA PLANTARUM 2020; 169:529-543. [PMID: 32196677 DOI: 10.1111/ppl.13094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Multiple isoforms of chitinases participate in plant defense against outside invaders. However, the functions of hydrolase family 19 (GH19) chitinases on pest control remain largely unknown. Here we reported the isolation and functional analysis of a gene CsChi19, which encodes a GH19 endochitinase protein of 332 amino acid residues from tea plant (Camellia sinensis). CsChi19 expression levels were upregulated in response to mechanical wounding, infestation by two important pests: the tea geometrid Ectropis grisescens and the tea green leafhopper Empoasca (Matsumurasca) onukii, a fungal pathogen Colletotrichum fructicola, and treatment with two phytohormones: jasmonic acid (JA) and salicylic acid. CsChi19 was heterologously expressed in Escherichia coli, and its catalytic function was further elucidated. The protein could hydrolyze colloidal chitin, and the optimum temperature and pH for its activity was 40°C and pH 5.0. CsChi19 were found to be toxic to tea pests when they were fed on artificial diets containing this protein. Interestingly, the regurgitant derived from E. grisescens fed with artificial diets containing CsChi19 protein induced stronger expression of CsMPK3, more JA burst, more accumulation of defense-related secondary metabolites, and more emission of volatiles than the regurgitant derived from E. grisescens fed only with artificial diets. Our results provide first evidence that CsChi19 is involved in mediating a novel defense mechanism of tea plant through altering the composition of the regurgitant.
Collapse
Affiliation(s)
- Xiaotong Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Baohui Wang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Shenglong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Zhaojun Xin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| |
Collapse
|
13
|
Liu Z, Shi L, Weng Y, Zou H, Li X, Yang S, Qiu S, Huang X, Huang J, Hussain A, Zhang K, Guan D, He S. ChiIV3 Acts as a Novel Target of WRKY40 to Mediate Pepper Immunity Against Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1121-1133. [PMID: 31039081 DOI: 10.1094/mpmi-11-18-0313-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ChiIV3, a chitinase of pepper (Capsicum annuum), stimulates cell death in pepper plants. However, there are only scarce reports on its role in resistance against bacterial wilt disease such as that caused by Ralstonia solanacearum and their transcriptional regulation. In this study, the silencing of ChiIV3 in pepper plants significantly reduced the resistance to R. solanacearum. The transcript of ChiIV3 was induced by R. solanacearum inoculation (RSI) as well as exogenous application of methyl jasmonate and abscisic acid. The bioinformatics analysis revealed that the ChiIV3 promoter consists of multiple stress-related cis elements, including six W-boxes and one MYB1AT. With the 5' deletion assay in the ChiIV3 promoter, the W4-box located from -640 to -635 bp was identified as the cis element that is required for the response to RSI. In addition, the W4-box element was shown to be essential for the binding of the ChiIV3 promoter by the WRKY40 transcription factor, which is known to positively regulate the defense response to R. solanacearum. Site-directed mutagenesis in the W4-box sequence impaired the binding of WRKY40 to the ChiIV3 promoter. Subsequently, the transcription of ChiIV3 decreased in WRKY40-silenced pepper plants. These results demonstrated that the expression of the defense gene ChiIV3 is controlled through multiple modes of regulation, and WRKY40 directly binds to the W4-box element of the ChiIV3 promoter region for its transcriptional regulation.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Shanshan Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Xueying Huang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Jinfeng Huang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Kan Zhang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| |
Collapse
|
14
|
Cao S, Wang Y, Li Z, Shi W, Gao F, Zhou Y, Zhang G, Feng J. Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic stress in Ammopiptanthus nanus. Genes (Basel) 2019; 10:genes10060472. [PMID: 31234426 PMCID: PMC6627877 DOI: 10.3390/genes10060472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
Chitinase is a kind of hydrolase with chitin as a substrate and is proposed to play an essential role in plant defense system by functioning against fungal pathogens through degrading chitin. Recent studies indicated chitinase is also involved in abiotic stress response in plants, helping plants to survive in stressful environments. A. nanus, a rare evergreen broad-leaved shrub distrusted in deserts in Central Asia, exhibits a high level of tolerance to drought and low temperature stresses. To identify the chitinase gene involved in drought and low temperature responses in A. nanus, we performed genome-wide identification, classification, sequence alignment, and spatio-temporal gene expression analysis of the chitinases in A. nanus under osmotic and low temperature stress. A total of 32 chitinase genes belonging to glycosyl hydrolase 18 (GH18) and GH19 families were identified from A. nanus. Class III chitinases appear to be amplified quantitatively in A. nanus, and their genes carry less introns, indicating their involvement in stress response in A. nanus. The expression level of the majority of chitinases varied in leaves, stems, and roots, and regulated under environmental stress. Some chitinases, such as EVM0022783, EVM0020238, and EVM0003645, are strongly induced by low temperature and osmotic stress, and the MYC/ICE1 (inducer of CBF expression 1) binding sites in promoter regions may mediate the induction of these chitinases under stress. These chitinases might play key roles in the tolerance to these abiotic stress in A. nanus and have potential for biotechnological applications. This study provided important data for understanding the biological functions of chitinases in A. nanus.
Collapse
Affiliation(s)
- Shilin Cao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhiqiang Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Wei Shi
- Key Laboratory of Biogeography and Bioresource in Arid Land, Institute of Ecology and Geography in Xinjiang, The Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Genfa Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
15
|
Kashyap P, Deswal R. Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling. Gene 2019; 695:32-41. [PMID: 30738965 DOI: 10.1016/j.gene.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/25/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
C-repeat binding factor (CBF) dependent cold stress signaling cascade is well studied in the model plant arabidopsis but is relatively lesser studied in the crop plants. In the present study, two novel isoforms of an upstream regulator of CBF, Inducer of CBF expression (ICE), BjICE46 (1314 bp, accession number HQ446510) and BjICE53 (1494 bp, accession number HQ857208) were isolated from Brassica juncea seedlings. Genomic clones of both the isoforms (accession numbers HQ433510 and JX571043) showed three introns, out of which one intron was spanning the bHLH (basic helix-loop-helix) domain. Interestingly, the constitutive expression of BjICE53 was 21 fold higher than BjICE46. Real time quantitative expression (RT-qPCR) showed BjICE53 to be cold induced but non-responsive to phytohormones. Interestingly, BjICE46 was salinity stress induced and showed upregulation with methyl jasmonate (MeJa) and abscisic acid (ABA). This was supported by the presence of ABA, MeJa and defense related cis- acting regulatory elements in the promoter region of BjICE46. The downstream transcription factor BjCBF (645 bp) was also isolated. The promoter region of BjCBF showed three E-boxes, the binding site for ICE. BjCBF was expressed and purified from E. coli and binding of purified BjCBF with the DRE/CRT elements (present in the promoter of cold responsive genes) was EMSA confirmed. Overall, this study shows that ICE-CBF pathway is conserved in Brassica juncea along with the differential regulation of the ICE isoforms indicating cross-talk between cold and defense signaling.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
16
|
Cao J, Tan X. Comprehensive Analysis of the Chitinase Family Genes in Tomato ( Solanum lycopersicum). PLANTS 2019; 8:plants8030052. [PMID: 30823433 PMCID: PMC6473868 DOI: 10.3390/plants8030052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Chitinase catalyzes the hydrolysis of chitin β-1,4 linkages. However, plants cannot produce chitin, suggesting that plant chitinases do not have the same function as animals. This study investigated the chitinase gene family in tomato and divided into eight groups via phylogenetic analyses with Arabidopsis and rice members. Conserved gene structures and motif arrangements indicated their functional relevance with each group. These genes were nonrandomly distributed across the tomato chromosomes, and tandem duplication contributed to the expansion of this gene family. Synteny analysis also established orthology relationships and functional linkages between Arabidopsis and tomato chitinase genes. Several positive selection sites were identified, which may contribute to the functional divergence of the protein family in evolution. In addition, differential expression profiles of the tomato chitinase genes were also investigated at some developmental stages, or under different biotic and abiotic stresses. Finally, functional network analysis found 124 physical or functional interactions, implying the diversity of physiological functions of the family proteins. These results provide a foundation for the exploration of the chitinase genes in plants and will offer some insights for further functional studies.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Purification of dual-functioning chitinases with hydrolytic and antifreeze activities from Hippophae rhamnoides seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Broberg M, Dubey M, Sun MH, Ihrmark K, Schroers HJ, Li SD, Jensen DF, Brandström Durling M, Karlsson M. Out in the Cold: Identification of Genomic Regions Associated With Cold Tolerance in the Biocontrol Fungus Clonostachys rosea Through Genome-Wide Association Mapping. Front Microbiol 2018; 9:2844. [PMID: 30524411 PMCID: PMC6262169 DOI: 10.3389/fmicb.2018.02844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/05/2018] [Indexed: 01/16/2023] Open
Abstract
There is an increasing importance for using biocontrol agents in combating plant diseases sustainably and in the long term. As large scale genomic sequencing becomes economically viable, the impact of single nucleotide polymorphisms (SNPs) on biocontrol-associated phenotypes can be easily studied across entire genomes of fungal populations. Here, we improved a previously reported genome assembly of the biocontrol fungus Clonostachys rosea strain IK726 using the PacBio sequencing platform, which resulted in a total genome size of 70.7 Mbp and 21,246 predicted genes. We further performed whole-genome re-sequencing of 52 additional C. rosea strains isolated globally using Illumina sequencing technology, in order to perform genome-wide association studies in conditions relevant for biocontrol activity. One such condition is the ability to grow at lower temperatures commonly encountered in cryic or frigid soils in temperate regions, as these will be prevalent for protecting growing crops in temperate climates. Growth rates at 10°C on potato dextrose agar of the 53 sequenced strains of C. rosea were measured and ranged between 0.066 and 0.413 mm/day. Performing a genome wide association study, a total of 1,478 SNP markers were significantly associated with the trait and located in 227 scaffolds, within or close to (< 1000 bp distance) 265 different genes. The predicted gene products included several chaperone proteins, membrane transporters, lipases, and proteins involved in chitin metabolism with possible roles in cold tolerance. The data reported in this study provides a foundation for future investigations into the genetic basis for cold tolerance in fungi, with important implications for biocontrol.
Collapse
Affiliation(s)
- Martin Broberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Man-Hong Sun
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Shi-Dong Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, Lysiuk R. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. Basic Clin Pharmacol Toxicol 2018; 122:539-558. [DOI: 10.1111/bcpt.12972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine; Mo i Rana Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Natália Martins
- Mountain Research Centre (CIMO), ESA; Polytechnic Institute of Bragança, Campus de Santa Apolónia; Bragança Portugal
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences; University of Verona; Verona Italy
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Center of Health Outcomes Research and Therapeutic Safety; School of Pharmaceutical Sciences; University of Phayao; Phayao Thailand
- Asian Centre for Evidence Synthesis in Population; Implementation and Clinical Outcomes; Health and Well-Being Cluster; Global Asia in the 21st Century Platform; Monash University Malaysia; Bandar Sunway Malaysia
| | - Kateryna Smetanina
- Department of Management and Economy of Pharmacy; Postgraduate Faculty; Drug Technology and Pharmacoeconomics; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| |
Collapse
|