1
|
Tan Q, Li R, Liu L, Wang D, Dai XF, Song LM, Zhang DD, Kong ZQ, Klosterman SJ, Usami T, Subbarao KV, Liang WX, Chen JY. Functional Characterization of Verticillium dahliae Race 3-Specific Gene VdR3e in Virulence and Elicitation of Plant Immune Responses. Microbiol Spectr 2023; 11:e0108323. [PMID: 37378525 PMCID: PMC10434166 DOI: 10.1128/spectrum.01083-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Verticillium dahliae is a soilborne fungal pathogen that causes disease on many economically important crops. Based on the resistance or susceptibility of differential cultivars in tomato, isolates of V. dahliae are divided into three races. Avirulence (avr) genes within the genomes of the three races have also been identified. However, the functional role of the avr gene in race 3 isolates of V. dahliae has not been characterized. In this study, bioinformatics analysis showed that VdR3e, a cysteine-rich secreted protein encoded by the gene characterizing race 3 in V. dahliae, was likely obtained by horizontal gene transfer from the fungal genus Bipolaris. We demonstrate that VdR3e causes cell death by triggering multiple defense responses. In addition, VdR3e localized at the periphery of the plant cell and triggered immunity depending on its subcellular localization and the cell membrane receptor BAK1. Furthermore, VdR3e is a virulence factor and shows differential pathogenicity in race 3-resistant and -susceptible hosts. These results suggest that VdR3e is a virulence factor that can also interact with BAK1 as a pathogen-associated molecular pattern (PAMP) to trigger immune responses. IMPORTANCE Based on the gene-for-gene model, research on the function of avirulence genes and resistance genes has had an unparalleled impact on breeding for resistance in most crops against individual pathogens. The soilborne fungal pathogen, Verticillium dahliae, is a major pathogen on many economically important crops. Currently, avr genes of the three races in V. dahliae have been identified, but the function of avr gene representing race 3 has not been described. We investigated the characteristics of VdR3e-mediated immunity and demonstrated that VdR3e acts as a PAMP to activate a variety of plant defense responses and induce plant cell death. We also demonstrated that the role of VdR3e in pathogenicity was host dependent. This is the first study to describe the immune and virulence functions of the avr gene from race 3 in V. dahliae, and we provide support for the identification of genes mediating resistance against race 3.
Collapse
Affiliation(s)
- Qian Tan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, People’s Republic of China
| | - Lei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, People’s Republic of China
| | - Li-Min Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Steve J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, USA
| | - Toshiyuki Usami
- Graduate School of Horticulture, Chiba University, Matsudo City, Japan
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California—Davis, c/o U.S. Agricultural Research Station, Salinas, California, USA
| | - Wen-Xing Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, People’s Republic of China
| |
Collapse
|
2
|
Oh Y, Ingram T, Shekasteband R, Adhikari T, Louws FJ, Dean RA. Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4685-4706. [PMID: 37184211 PMCID: PMC10433936 DOI: 10.1093/jxb/erad182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato-V. dahliae interaction.
Collapse
Affiliation(s)
- Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza Shekasteband
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Tika Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Ralph A Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Kalischuk M, Müller B, Fusaro AF, Wijekoon CP, Waterhouse PM, Prüfer D, Kawchuk L. Amplification of cell signaling and disease resistance by an immunity receptor Ve1Ve2 heterocomplex in plants. Commun Biol 2022; 5:497. [PMID: 35614138 PMCID: PMC9132969 DOI: 10.1038/s42003-022-03439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Immunity cell-surface receptors Ve1 and Ve2 protect against fungi of the genus Verticillium causing early dying, a worldwide disease in many crops. Characterization of microbe-associated molecular pattern immunity receptors has advanced our understanding of disease resistance but signal amplification remains elusive. Here, we report that transgenic plants expressing Ve1 and Ve2 together, reduced pathogen titres by a further 90% compared to plants expressing only Ve1 or Ve2. Confocal and immunoprecipitation confirm that the two receptors associate to form heteromeric complexes in the absence of the ligand and positively regulate signaling. Bioassays show that the Ve1Ve2 complex activates race-specific amplified immunity to the pathogen through a rapid burst of reactive oxygen species (ROS). These results indicate a mechanism by which the composition of a cell-surface receptor heterocomplex may be optimized to increase immunity against devastating plant diseases. Transgenic plants expressing both Ve1 and Ve2 conferred enhanced signaling and disease resistance in susceptible potato in a race-specific manner, a step forward in generating disease resistant plants against Verticillium.
Collapse
Affiliation(s)
- Melanie Kalischuk
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Boje Müller
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Münster, Germany
| | - Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-590, Brazil
| | - Champa P Wijekoon
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, 351 Taché Avenue, R2020, Winnipeg, MB, R2H 2A6, Canada
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Münster, Germany. .,Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| | - Lawrence Kawchuk
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Robb EJ, Nazar RN. Tomato Ve-resistance locus: resilience in the face of adversity? PLANTA 2021; 254:126. [PMID: 34811576 DOI: 10.1007/s00425-021-03783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The Ve-resistance locus in tomato acts as a resilience gene by affecting both the stress/defense cascade and growth, constituting a signaling intercept with a competitive regulatory mechanism. For decades, the tomato Ve-gene has been recognized as a classical resistance R-gene, inherited as a dominant Mendelian trait and encoding a receptor protein that binds with a fungal effector to provide defense against Verticillium dahliae and V. albo-atrum. However, recent molecular studies suggest that the function and role(s) of the Ve-locus and the two proteins that it encodes are more complex than previously understood. This review summarizes both the background and recent molecular evidence and provides a reinterpretation of the function and role(s) of the Ve1- and Ve2-genes and proteins that better accommodates existing data. It is proposed that these two plasma membrane proteins interact to form a signaling intercept that directly links defense and growth. The induction of Ve1 by infection or wounding promotes growth but also downregulates Ve2 signaling, resulting in a decreased biosynthesis of PR proteins. In this context, the Ve1 R-gene acts as a Resilience gene rather than a Resistance gene, promoting taller more robust tomato plants with reduced symptoms (biotic and abiotic) and Verticillium concentration.
Collapse
Affiliation(s)
- E Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
6
|
Nazar RN, Xu X, Kim TW, Lee SW, Robb J. The Ve-resistance locus, a plant signaling intercept. PLANTA 2020; 252:7. [PMID: 32556732 DOI: 10.1007/s00425-020-03412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Ve-resistance locus in tomato and potato affects both stress/defense and growth, consistent with a signaling intercept and a competitive regulatory mechanism. Acting in an antagonistic fashion, the two genes comprising the tomato Ve-resistance locus have been shown to influence both the defense/stress cascade, which causes wilt symptoms, and plant growth (Nazar et al. in Planta 247:1339-1350, 2018c); in contrast, both have been reported to elevate wilt resistance in potato or Arabidopsis. In a further examination of this influence in potato transformed with the Ve1 gene, effects are again demonstrated with respect to both disease resistance and crop productivity consistent with the Ve locus being a signaling intercept and the antagonistic effects, previously observed in tomato. The results support a competitive model in which the tomato Ve1 and Ve2 proteins act to reduce the detrimental effects of the defense/stress cascade and energy transfers to the developing potato tubers.
Collapse
Affiliation(s)
- Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Xin Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tae Won Kim
- Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, 52733, Korea
| | - Shin Woo Lee
- Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology, Jinju, 52725, Korea
| | - Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Kim JH, Castroverde CDM. Diversity, Function and Regulation of Cell Surface and Intracellular Immune Receptors in Solanaceae. PLANTS 2020; 9:plants9040434. [PMID: 32244634 PMCID: PMC7238418 DOI: 10.3390/plants9040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.H.K.); (C.D.M.C.)
| | | |
Collapse
|
8
|
Song R, Li J, Xie C, Jian W, Yang X. An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae. Int J Mol Sci 2020; 21:ijms21031120. [PMID: 32046212 PMCID: PMC7037454 DOI: 10.3390/ijms21031120] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungus that can lead to plant vascular disease and significant economic loss worldwide. Its hosts include over 400 dicotyledon plant species, such as annual herbs, perennials, and woody plants. The average yield loss of cotton crop caused by Verticillium wilt is approximately 10–35%. As the control of this disease is an urgent task for many countries, further understanding of the interaction between plants and V. dahliae is essential. Fungi can promote or inhibit plant growth, which is important; however, the most important relationship between plants and fungi is the host–pathogen relationship. Plants can become resistant to V. dahliae through diverse mechanisms such as cell wall modifications, extracellular enzymes, pattern recognition receptors, transcription factors, and salicylic acid (SA)/jasmonic acid (JA)/ethylene (ET)-related signal transduction pathways. Over the last decade, several studies on the physiological and molecular mechanisms of plant resistance to V. dahliae have been undertaken. In this review, many resistance-related genes are summarised to provide a theoretical basis for better understanding of the molecular genetic mechanisms of plant resistance to V. dahliae. Moreover, it is intended to serve as a resource for research focused on the development of genetic resistance mechanisms to combat Verticillium wilt.
Collapse
Affiliation(s)
| | | | - Chenjian Xie
- Correspondence: (C.X.); (X.Y.); Tel.: +86-23-6591-0315 (C.X. & X.Y.)
| | | | - Xingyong Yang
- Correspondence: (C.X.); (X.Y.); Tel.: +86-23-6591-0315 (C.X. & X.Y.)
| |
Collapse
|
9
|
Nazar RN, Castroverde CDM, Xu X, Kurosky A, Robb J. Wounding induces tomato Ve1 R-gene expression. PLANTA 2019; 249:1779-1797. [PMID: 30838445 DOI: 10.1007/s00425-019-03121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
In tomato, Ve1 gene expression is induced specifically by physical damage or plant wounding, resulting in a defense/stress cascade that mimics responses during Verticillium colonization and wilt. In tomato, Verticillium resistance is determined by the Ve gene locus, which encodes two leucine-rich repeat-receptor-like proteins (Ve1, Ve2); the Ve1 gene is induced differentially while Ve2 is constitutively expressed throughout disease development. These profiles have been observed even during compatible Verticillium interactions, colonization by some bacterial pathogens, and growth of transgenic tomato plants expressing the fungal Ave1 effector, suggesting broader roles in disease and/or stress. Here, we have examined further Ve gene expression in resistant and susceptible plants under abiotic stress, including a water deficit, salinity and physical damage. Using both quantitative RT-PCR and label-free LC-MS methods, changes have been evaluated at both the mRNA and protein levels. The results indicate that Ve1 gene expression responds specifically to physical damage or plant wounding, resulting in a defense/stress cascade that resembles observations during Verticillium colonization. In addition, the elimination or reduction of Ve1 or Ve2 gene function also result in proteomic responses that occur with wilt pathogen and continue to be consistent with an antagonistic relationship between the two genes. Mutational analyses also indicate the plant wounding hormone, systemin, is not required, while jasmonic acid again appears to play a direct role in induction of the Ve1 gene.
Collapse
Affiliation(s)
- Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | - Xin Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
10
|
Nazar RN, Xu X, Kurosky A, Robb J. Antagonistic function of the Ve R-genes in tomato. PLANT MOLECULAR BIOLOGY 2018; 98:67-79. [PMID: 30121732 DOI: 10.1007/s11103-018-0764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/02/2018] [Indexed: 05/06/2023]
Abstract
Key message In Verticillium wilt, gene silencing indicates that tomato Ve2-gene expression can have a dramatic effect on many defense/stress protein levels while Ve1-gene induction modulates these effects in a negative fashion. In tomato, Verticillium resistance is dependent on the Ve R-gene locus, which encodes two leucine-rich repeat receptor-like proteins, Ve1 and Ve2. During fungal wilt, Ve1 protein is sharply induced while Ve2 appears expressed constitutively throughout disease development; the disease resistance function usually is attributed to the Ve1 receptor alone. To study Ve2 function, levels of Ve2 mRNA were suppressed using RNAi in both susceptible and resistant Craigella tomato near-isolines and protein changes were evaluated at both the mRNA and protein levels. The results indicate that Ve2-gene expression can have dramatic effects on many defense/stress protein levels while the presence of intact Ve1 protein minimizes these effects in a negative fashion. The data suggest an antagonistic relationship between the Ve proteins in which Ve1 modulates the induction of defense/stress proteins by Ve2.
Collapse
Affiliation(s)
- Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Xin Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|