1
|
Yan J, Song Y, Li M, Hu T, Hsu YF, Zheng M. IRR1 contributes to de novo root regeneration from Arabidopsis thaliana leaf explants. PHYSIOLOGIA PLANTARUM 2023; 175:e14047. [PMID: 37882290 DOI: 10.1111/ppl.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plants are capable of regenerating adventitious roots (ARs), which is important for plant response to stress and survival. Although great advances in understanding AR formation of leaf explants have been made, the regulatory mechanisms of AR formation still need to be investigated. In this study, irr1-1 (impaired root regeneration) was isolated with the inhibition of adventitious rooting from Arabidopsis leaf explants. The β-glucuronidase (GUS) signals of IRR1pro::GUS in detached leaves could be detected at 2-6 days after culture. IRR1 is annotated to encode a Class III peroxidase localized in the cell wall. The total peroxidase (POD) activity of irr1 mutants was significantly lower than that of the wild type. Detached leaves of irr1 mutants showed enhanced reactive oxygen species (ROS) accumulation 4 days after leaves were excised from seedlings. Moreover, thiourea, a ROS scavenger, was able to rescue the adventitious rooting rate in leaf explants of irr1 mutants. Addition of 0.1 μM indole-3-acetic acid (IAA) improved the adventitious rooting from leaf explants of irr1 mutants. Taken together, these results indicated that IRR1 was involved in AR formation of leaf explants, which was associated with ROS homeostasis to some extent.
Collapse
Affiliation(s)
- Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Meng Li
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Hu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Lei S, Wang Q, Chen Y, Song Y, Zheng M, Hsu YF. Capsicum SIZ1 contributes to ABA-induced SUMOylation in pepper. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111099. [PMID: 34895537 DOI: 10.1016/j.plantsci.2021.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Abiotic and biotic stresses are the major factors limiting plant growth. Arabidopsis E3 SUMO ligase SIZ1 plays an essential role in plant stress tolerance. Herein, we identified a SIZ/PAIS-type protein in pepper (Capsicum annuum), namely CaSIZ1, which shares 60 % sequence identity with AtSIZ1. The stems and flowers of pepper had a relatively higher expression of CaSIZ1 than the fruits, leaves, and roots. ABA and NaCl treatments induced CaSIZ1. CaSIZ1 protein was localized in the nucleus and partially rescued the dwarf and ABA-sensitive phenotypes of Atsiz1-2, suggesting the functional replacement of CaSIZ1 with AtSIZ1. We found that CaSIZ1 interacted with CaABI5, and ABA promoted the accumulation of SUMO conjugates in pepper. CaSIZ1 knockdown did not only reduce ABA-induced SUMOylation, but also attenuated the salt tolerance of pepper. Overall, the results of this study suggest that CaSIZ1 has a significant role in ABA-induced SUMOylation and stress response.
Collapse
Affiliation(s)
- Shikang Lei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Qingzhu Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yu Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Du C, Bai HY, Chen JJ, Wang JH, Wang ZF, Zhang ZH. Alternative Splicing Regulation of Glycine-Rich Proteins via Target of Rapamycin-Reactive Oxygen Species Pathway in Arabidopsis Seedlings Upon Glucose Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:830140. [PMID: 35498646 PMCID: PMC9051487 DOI: 10.3389/fpls.2022.830140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 05/05/2023]
Abstract
Glucose can serve as both the source of energy and regulatory signaling molecule in plant. Due to the environmental and metabolic change, sugar levels could affect various developmental processes. High glucose environment is hardly conductive to the plant growth but cause development arrest. Increasing evidence indicate that alternative splicing (AS) plays a pivotal role in sugar signaling. However, the regulatory mechanism upon glucose stress remains unclear. The full-length transcriptomes were obtained from the samples of Arabidopsis seedlings with 3% glucose and mock treatment, using Oxford Nanopore sequencing technologies. Further analysis indicated that many genes involved in photosynthesis were significantly repressed and many genes involved in glycolysis, mitochondrial function, and the response to oxidative stress were activated. In total, 1,220 significantly differential alternative splicing (DAS) events related to 619 genes were identified, among which 75.74% belong to intron retention (IR). Notably, more than 20% of DAS events come from a large set of glycine-rich protein (GRP) family genes, such as GRP7, whose AS types mostly belong to IR. Besides the known productive GRP transcript isoforms, we identified a lot of splicing variants with diverse introns spliced in messenger RNA (mRNA) region coding the glycine-rich (GR) domain. The AS pattern of GRPs changed and particularly, the productive GRPs increased upon glucose stress. These ASs of GRP pre-mRNAs triggered by glucose stress could be abolished by AZD-8055, which is an ATP competitive inhibitor for the target of rapamycin (TOR) kinase but could be mimicked by H2O2. Additionally, AS pattern change of arginine/serine-rich splicing factor 31(RS31) via TOR pathway, which was previously described in response to light and sucrose signaling, was also induced in a similar manner by both glucose stress and reactive oxygen species (ROS). Here we conclude that (i) glucose stress suppresses photosynthesis and activates the glycolysis-mitochondria energy relay and ROS scavenging system; (ii) glucose stress triggers transcriptome-wide AS pattern changes including a large set of splicing factors, such as GRPs and RS31; (iii) high sugars regulate AS pattern change of both GRPs and RS31 via TOR-ROS pathway. The results from this study will deepen our understanding of the AS regulation mechanism in sugar signaling.
Collapse
|
4
|
Zheng M, Peng T, Yang T, Yan J, Yang K, Meng D, Hsu YF. Arabidopsis MHP1, a homologue of yeast Mpo1, is involved in ABA signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110732. [PMID: 33568285 DOI: 10.1016/j.plantsci.2020.110732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
Sphingolipids and their intermediates play multiple roles in biological processes. The sphingoid long-chain base component of sphingolipids has emerged as a participant in the regulation of plant biotic and abiotic stress responses. The phytohormone abscisic acid (ABA) regulates many stress responses in plants for environmental adaptation. However, the relationship between the sphingoid bases and ABA is undetermined. In this study, mhp1-1 (the yeast Mpo1 homolog in plants) was isolated through a sodium chloride (NaCl)-sensitivity screen of Arabidopsis transfer DNA (T-DNA) insertion mutants. mhp1-1 was hypersensitivity to salt/osmotic stress and ABA. MHP1 encodes a protein with a domain of unknown function 962 (DUF962). Endoplasmic reticulum-localized MHP1 was found to interact with ABI1. MHP1, a homolog of yeast dioxygenase Mpo1, rescued the growth arrest of mpo1Δ cells caused by ER stress, suggesting functional homology of MHP1 to Mpo1. Overall, MHP1 plays important roles in response to ABA.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| | - Tao Peng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Jiawen Yan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Qian J, Sun T, Yan J, Hsu YF, Zheng M. Arabidopsis glucose-sensitive mutant 3 affects ABA biosynthesis and sensitivity during early seedling development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:20-29. [PMID: 32898831 DOI: 10.1016/j.plaphy.2020.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In plants, glucose (Glc) plays pivotal roles in development and stress responses mainly by supplying fuel for growth and regulating expression of genes essential for crosstalk with hormonal, oxidative, and defense signaling. However, the complicated relationship between Glc and plant hormones is still not very clear. In this study, gsm3 (glucose-sensitive mutant 3), an Arabidopsis mutant with Glc-sensitive phenotype, was identified. Compared to wild type, the cotyledon expansion rate of gsm3 was significantly decreased under the condition of 4.5% Glc. Fluridone was able to rescue the Glc-induced defects of gsm3 in cotyledon expansion. AAO3 and ABI4 are key genes involved in abscisic acid (ABA) biosynthesis and signaling transduction, respectively. We found that inactivation of AAO3 or ABI4 in gsm3 background led to reduced sensitivity to Glc. These results indicated that increased ABA synthesis resulted in the sensitivity of gsm3 to Glc. Moreover, our results indicated that gsm3 mutant accumulated more ROS, which made it more sensitive to the application of exogenous H2O2. Overall, GSM3 plays an important role in Glc-ABA signaling cascade during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Jie Qian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Tengfei Sun
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| | - Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Zheng M, Zhu C, Yang T, Qian J, Hsu YF. GSM2, a transaldolase, contributes to reactive oxygen species homeostasis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2020; 104:39-53. [PMID: 32564178 DOI: 10.1007/s11103-020-01022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Plants are exposed to various environmental cues that lead to reactive oxygen species (ROS) accumulation. ROS production and detoxification are tightly regulated to maintain balance. Although studies of glucose (Glc) are always accompanied by ROS in animals, the role of Glc in respect of ROS in plants is unclear. We isolated gsm2 (Glc-hypersensitive mutant 2), a mutant with a notably chlorotic-cotyledon phenotype. The chloroplast-localized GSM2 was characterized as a transaldolase in the pentose phosphate pathway. With 3% Glc treatment, fewer or no thylakoids were observed in gsm2 cotyledon chloroplasts than in wild-type cotyledon chloroplasts, suggesting that GSM2 is required for chloroplast protection under stress. gsm2 also showed evaluated accumulation of ROS with 3% Glc treatment and was more sensitive to exogenous H2O2 than the wild type. Gene expression analysis of the antioxidant enzymes in gsm2 revealed that chloroplast damage to gsm2 cotyledons results from the accumulation of excessive ROS in response to Glc. Moreover, the addition of diphenyleneiodonium chloride or phenylalanine can rescue Glc-induced chlorosis in gsm2 cotyledons. This work suggests that GSM2 functions to maintain ROS balance in response to Glc during early seedling growth and sheds light on the relationship between Glc, the pentose phosphate pathway and ROS.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Jie Qian
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Chandrasekaran U, Luo X, Zhou W, Shu K. Multifaceted Signaling Networks Mediated by Abscisic Acid Insensitive 4. PLANT COMMUNICATIONS 2020; 1:100040. [PMID: 33367237 PMCID: PMC7748004 DOI: 10.1016/j.xplc.2020.100040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 05/04/2023]
Abstract
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Collapse
Affiliation(s)
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| |
Collapse
|
8
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|