1
|
Li Y, Gao M, Zhang W, Liu Y, Wang S, Zhang H, Li X, Yu S, Lu L. Halotolerant Enterobacter asburiae A103 isolated from the halophyte Salix linearistipularis: Genomic analysis and growth-promoting effects on Medicago sativa under alkali stress. Microbiol Res 2024; 289:127909. [PMID: 39305780 DOI: 10.1016/j.micres.2024.127909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/02/2024]
Abstract
Soil salinization negatively affects plant growth and threatens food security. Halotolerant plant growth-promoting bacteria (PGPB) can alleviate salt stress in plants via diverse mechanisms. In the present study, we isolated salt-tolerant bacteria with phosphate-solubilizing abilities from the rhizosphere of Salix linearistipularis, a halophyte distributed in saline-alkali soils. Strain A103 showed high phosphate solubilization activity and was identified as Enterobacter asburiae based on genome analysis. In addition, it can produce indole-3-acetic acid (IAA), siderophores, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Genome mining has also revealed the presence of several functional genes involved in the promotion of plant growth. Inoculation with A103 markedly improved alfalfa growth in the presence of 100 mM NaHCO3. Under alkali stress, the shoot and root dry weights after bacterial inoculation improved by 42.9 % and 21.9 %, respectively. Meanwhile, there was a 35.9-37.1 % increase in the shoot and root lengths after treatment with A103 compared to the NaHCO3-treated group. Soluble sugar content, peroxidase and catalase activities increased in A103-inoculated alfalfa under alkaline stress. A significant decrease in the malondialdehyde content was observed after treatment with strain A103. Metabolomic analysis indicated that strain A103 positively regulated alkali tolerance in alfalfa through the accumulation of metabolites, such as homocarnosine, panthenol, and sorbitol, which could reduce oxidative damage and act as osmolytes. These results suggest that halophytes are valuable resources for bioprospecting halotolerant beneficial bacteria and that the application of halotolerant growth-promoting bacteria is a natural and efficient strategy for developing sustainable agriculture.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mengya Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Weiting Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuchen Liu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Wang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyan Li
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shuyu Yu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Lei Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Qiao L, Li Y, Wang L, Gu C, Luo S, Li X, Yan J, Lu C, Chang Z, Gao W, Zhang X. Identification of Salt-Stress-Responding Genes by Weighted Gene Correlation Network Analysis and Association Analysis in Wheat Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2642. [PMID: 39339617 PMCID: PMC11435117 DOI: 10.3390/plants13182642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The leaf is not only the main site of photosynthesis, but also an important organ reflecting plant salt tolerance. Discovery of salt-stress-responding genes in the leaf is of great significance for the molecular improvement of salt tolerance in wheat varieties. In this study, transcriptome sequencing was conducted on the leaves of salt-tolerant wheat germplasm CH7034 seedlings at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on weighted gene correlation network analysis of differentially expressed genes (DEGs) under salt stress, 12 co-expression modules were obtained, of which, 9 modules containing 4029 DEGs were related to the salt stress time-course. These DEGs were submitted to the Wheat Union database, and a total of 904,588 SNPs were retrieved from 114 wheat germplasms, distributed on 21 wheat chromosomes. Using the R language package and GAPIT program, association analysis was performed between 904,588 SNPs and leaf salt injury index of 114 wheat germplasms. The results showed that 30 single nucleotide polymorphisms (SNPs) from 15 DEGs were associated with salt tolerance. Then, nine candidate genes, including four genes (TaBAM, TaPGDH, TaGluTR, and TaAAP) encoding enzymes as well as five genes (TaB12D, TaS40, TaPPR, TaJAZ, and TaWRKY) encoding functional proteins, were identified by converting salt tolerance-related SNPs into Kompetitive Allele-Specifc PCR (KASP) markers for validation. Finally, interaction network prediction was performed on TaBAM and TaAAP, both belonging to the Turquoise module. Our results will contribute to a further understanding of the salt stress response mechanism in plant leaves and provide candidate genes and molecular markers for improving salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linyi Qiao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yijuan Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liujie Wang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunxia Gu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shiyin Luo
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinlong Yan
- Millet Research Institute, Shanxi Agricultural University, Changzhi 046011, China
| | - Chengda Lu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhijian Chang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wei Gao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
3
|
Pérez-Oliver MA, González-Mas MDC, Renau-Morata B, Arrillaga I, Sales E. Heat-Priming during Somatic Embryogenesis Increased Resilience to Drought Stress in the Generated Maritime Pine ( Pinus pinaster) Plants. Int J Mol Sci 2023; 24:ijms24119299. [PMID: 37298255 DOI: 10.3390/ijms24119299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drought stress is becoming the most important factor of global warming in forests, hampering the production of reproductive material with improved resilience. Previously, we reported that heat-priming maritime pine (Pinus pinaster) megagametophytes during SE produced epigenetic changes that generated plants better adapted to subsequent heat stress. In this work, we tested, in an experiment performed under greenhouse conditions, whether heat-priming will produce cross-tolerance to mild drought stress (30 days) in 3-year-old priming-derived plants. We found that they maintain constitutive physiological differences as compared to controls, such as higher proline, abscisic acid, starch, and reduced glutathione and total protein contents, as well as higher ΦPSII yield. Primed plants also displayed a constitutive upregulation of the WRKY transcription factor and the Responsive to Dehydration 22 (RD22) genes, as well as of those coding for antioxidant enzymes (APX, SOD, and GST) and for proteins that avoid cell damage (HSP70 and DHNs). Furthermore, osmoprotectants as total soluble sugars and proteins were early accumulated in primed plants during the stress. Prolongated water withdrawal increased ABA accumulation and negatively affected photosynthesis in all plants but primed-derived plants recovered faster than controls. We concluded that high temperature pulses during somatic embryogenesis resulted in transcriptomic and physiological changes in maritime pine plants that can increase their resilience to drought stress, since heat-primed plants exhibit permanent activation of mechanisms for cell protection and overexpression of stress pathways that pre-adapt them to respond more efficiently to soil water deficit.
Collapse
Affiliation(s)
- María Amparo Pérez-Oliver
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - María Del Carmen González-Mas
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Begoña Renau-Morata
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Isabel Arrillaga
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Ester Sales
- Agrarian and Environmental Sciences Department, Institute of Environmental Sciences (IUCA), University of Zaragoza, High Polytechnic School, Ctra. Cuarte s/n, 22197 Huesca, Spain
| |
Collapse
|
4
|
Zhang Z, Zhang T, Ma L. Analysis of basic pentacysteine6 transcription factor involved in abiotic stress response in Arabidopsis thaliana. Front Genet 2023; 14:1097381. [PMID: 37139231 PMCID: PMC10150019 DOI: 10.3389/fgene.2023.1097381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Abiotic stress is a significant environmental factor that limits plant growth. Plants have complex and diverse mechanisms for dealing with abiotic stress, and different response mechanisms are interconnected. Our research aims to find key transcription factors that can respond to multiple non -biological stress. Methods: We used gene expression profile data of Arabidopsis in response to abiotic stress, constructed a weighted gene co-expression network, to obtain key modules in the network. The functions and pathways involved in these modules were further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Through the enrichment analysis of transcription factor, the transcription factor that plays an important regulatory role in the key module. Through gene difference expression analysis and building protein interaction networks, the important role of key transcription factors is verified. Result: In weighted gene co-expression network, identified three gene modules that are primarily associated with cold stress, heat stress, and salt stress. Functional enrichment analysis indicated that the genes in these modules participate in biological processes such as protein binding, stress response, and others. Transcription factor enrichment analysis revealed that the transcription factor Basic Pentacysteine6 (BPC6) plays a crucial regulatory role in these three modules. The expression of the BPC6 gene is dramatically affected under a variety of abiotic stress treatments, according to an analysis of Arabidopsis gene expression data under abiotic stress treatments. Differential expression analysis showed that there were 57 differentially expressed genes in bpc4 bpc6 double mutant Arabidopsis relative to normal Arabidopsis samples, including 14 BPC6 target genes. Protein interaction network analysis indicated that the differentially expressed genes had strong interactions with BPC6 target genes within the key modules. Conclusion: Our findings reveal that the BPC6 transcription factor plays a key regulatory function in Arabidopsis coping with a variety of abiotic stresses, which opens up new ideas and perspectives for us to understand the mechanism of plants coping with abiotic stresses.
Collapse
Affiliation(s)
| | | | - Lei Ma
- *Correspondence: Tingting Zhang, ; Lei Ma,
| |
Collapse
|
5
|
Lu Y, Deng S, Li Z, Wu J, Zhu D, Shi W, Zhou J, Fayyaz P, Luo ZB. Physiological Characteristics and Transcriptomic Dissection in Two Root Segments with Contrasting Net Fluxes of Ammonium and Nitrate of Poplar Under Low Nitrogen Availability. PLANT & CELL PHYSIOLOGY 2022; 63:30-44. [PMID: 34508646 DOI: 10.1093/pcp/pcab137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
To investigate physiological and transcriptomic regulation mechanisms underlying the distinct net fluxes of NH4+ and NO3- in different root segments of Populus species under low nitrogen (N) conditions, we used saplings of Populus × canescens supplied with either 500 (normal N) or 50 (low N) μM NH4NO3. The net fluxes of NH4+ and NO3-, the concentrations of NH4+, amino acids and organic acids and the enzymatic activities of nitrite reductase (NiR) and glutamine synthetase (GS) in root segment II (SII, 35-70 mm to the apex) were lower than those in root segment I (SI, 0-35 mm to the apex). The net NH4+ influxes and the concentrations of organic acids were elevated, whereas the concentrations of NH4+ and NO3- and the activities of NiR and GS were reduced in SI and SII in response to low N. A number of genes were significantly differentially expressed in SII vs SI and in both segments grown under low vs normal N conditions, and these genes were mainly involved in the transport of NH4+ and NO3-, N metabolism and adenosine triphosphate synthesis. Moreover, the hub gene coexpression networks were dissected and correlated with N physiological processes in SI and SII under normal and low N conditions. These results suggest that the hub gene coexpression networks play pivotal roles in regulating N uptake and assimilation, amino acid metabolism and the levels of organic acids from the tricarboxylic acid cycle in the two root segments of poplars in acclimation to low N availability.
Collapse
Affiliation(s)
- Yan Lu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Shurong Deng
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Zhuorong Li
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Jiangting Wu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Dongyue Zhu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Wenguang Shi
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Jing Zhou
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Zhi-Bin Luo
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| |
Collapse
|
6
|
Lavell A, Smith M, Xu Y, Froehlich JE, De La Mora C, Benning C. Proteins associated with the Arabidopsis thaliana plastid rhomboid-like protein RBL10. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1332-1345. [PMID: 34582071 PMCID: PMC9219029 DOI: 10.1111/tpj.15514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
Rhomboid-like proteins are intramembrane proteases with a variety of regulatory roles in cells. Though many rhomboid-like proteins are predicted in plants, their detailed molecular mechanisms or cellular functions are not yet known. Of the 13 predicted rhomboids in Arabidopsis thaliana, one, RBL10, affects lipid metabolism in the chloroplast, because in the respective rbl10 mutant the transfer of phosphatidic acid through the inner envelope membrane is disrupted. Here we show that RBL10 is part of a high-molecular-weight complex of 250 kDa or greater in size. Nine likely components of this complex are identified by two independent methods and include Acyl Carrier Protein 4 (ACP4) and Carboxyltransferase Interactor1 (CTI1), which have known roles in chloroplast lipid metabolism. The acp4 mutant has decreased C16:3 fatty acid content of monogalactosyldiacylglycerol, similar to the rbl10 mutant, prompting us to offer a mechanistic model of how an interaction between ACP4 and RBL10 might affect chloroplast lipid assembly. We also demonstrate the presence of a seventh transmembrane domain in RBL10, refining the currently accepted topology of this protein. Taken together, the identity of possible RBL10 complex components as well as insights into RBL10 topology and distribution in the membrane provide a stepping-stone towards a deeper understanding of RBL10 function in Arabidopsis lipid metabolism.
Collapse
Affiliation(s)
- Anastasiya Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Montgomery Smith
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Yang Xu
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - John E. Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Cameron De La Mora
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Dept. of Molecular & Cellular Biology, Illinois State University, Normal, IL 61761
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
7
|
Diversified amino acid-mediated allosteric regulation of phosphoglycerate dehydrogenase for serine biosynthesis in land plants. Biochem J 2021; 478:2217-2232. [PMID: 34032263 PMCID: PMC8238522 DOI: 10.1042/bcj20210191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
The phosphorylated pathway of serine biosynthesis is initiated with 3-phosphoglycerate dehydrogenase (PGDH). The liverwort Marchantia polymorpha possesses an amino acid-sensitive MpPGDH which is inhibited by l-serine and activated by five proteinogenic amino acids, while the eudicot Arabidopsis thaliana has amino acid-sensitive AtPGDH1 and AtPGDH3 as well as amino acid-insensitive AtPGDH2. In this study, we analyzed PGDH isozymes of the representative land plants: the monocot Oryza sativa (OsPGDH1–3), basal angiosperm Amborella trichopoda (AmtriPGDH1–2), and moss Physcomitrium (Physcomitrella) patens (PpPGDH1–4). We demonstrated that OsPGDH1, AmtriPGDH1, PpPGDH1, and PpPGDH3 were amino acid-sensitive, whereas OsPGDH2, OsPGDH3, AmtriPGDH2, PpPGDH2, and PpPGDH4 were either sensitive to only some of the six effector amino acids or insensitive to all effectors. This indicates that PGDH sensitivity to effectors has been diversified among isozymes and that the land plant species examined, except for M. polymorpha, possess different isozyme types in terms of regulation. Phylogenetic analysis suggested that the different sensitivities convergently evolved in the bryophyte and angiosperm lineages. Site-directed mutagenesis of AtPGDH1 revealed that Asp538 and Asn556 residues in the ACT domain are involved in allosteric regulation by the effectors. These findings provide insight into the evolution of PGDH isozymes, highlighting the functional diversification of allosteric regulation in land plants.
Collapse
|
8
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Casatejada-Anchel R, Muñoz-Bertomeu J, Rosa-Téllez S, Anoman AD, Nebauer SG, Torres-Moncho A, Fernie AR, Ros R. Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110863. [PMID: 33775368 DOI: 10.1016/j.plantsci.2021.110863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Phenotypic, metabolomic and gene expression analysis in PGDH single, double and triple mutants indicate that both PGDH2 and PGDH3 are functional, affecting plant metabolism and development. PGDH2 has a stronger effect on plant growth than PGDH3, having a partial redundant role with PGDH1. PGDH3, however, could have additional functions in photosynthetic cells unrelated to Ser biosynthesis.
Collapse
Affiliation(s)
- Rubén Casatejada-Anchel
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain; Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100, Burjassot, Spain.
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain.
| | - Sara Rosa-Téllez
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain; Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100, Burjassot, Spain.
| | - Armand D Anoman
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain; Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100, Burjassot, Spain.
| | - Sergio G Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Alejandro Torres-Moncho
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain; Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100, Burjassot, Spain.
| | - Alisdair R Fernie
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany.
| | - Roc Ros
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain; Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
10
|
Yoshida K, Ohtaka K, Hirai MY, Hisabori T. Biochemical insight into redox regulation of plastidial 3-phosphoglycerate dehydrogenase from Arabidopsis thaliana. J Biol Chem 2020; 295:14906-14915. [PMID: 32848019 PMCID: PMC7606689 DOI: 10.1074/jbc.ra120.014263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
Thiol-based redox regulation is a post-translational protein modification for controlling enzyme activity by switching oxidation/reduction states of Cys residues. In plant cells, numerous proteins involved in a wide range of biological systems have been suggested as the target of redox regulation; however, our knowledge on this issue is still incomplete. Here we report that 3-phosphoglycerate dehydrogenase (PGDH) is a novel redox-regulated protein. PGDH catalyzes the first committed step of Ser biosynthetic pathway in plastids. Using an affinity chromatography-based method, we found that PGDH physically interacts with thioredoxin (Trx), a key factor of redox regulation. The in vitro studies using recombinant proteins from Arabidopsis thaliana showed that a specific PGDH isoform, PGDH1, forms the intramolecular disulfide bond under nonreducing conditions, which lowers PGDH enzyme activity. MS and site-directed mutagenesis analyses allowed us to identify the redox-active Cys pair that is mainly involved in disulfide bond formation in PGDH1; this Cys pair is uniquely found in land plant PGDH. Furthermore, we revealed that some plastidial Trx subtypes support the reductive activation of PGDH1. The present data show previously uncharacterized regulatory mechanisms of PGDH and expand our understanding of the Trx-mediated redox-regulatory network in plants.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Kinuka Ohtaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | | | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
11
|
Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:546213. [PMID: 33343588 PMCID: PMC7744598 DOI: 10.3389/fpls.2020.546213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: P. B. Kavi Kishor,
| | | | | | - Nagaraju Marka
- Biochemistry Division, National Institute of Nutrition-ICMR, Hyderabad, India
| | | | - Divya Dhulala
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Kummari Divya
- Department of Genetics, Osmania University, Hyderabad, India
| | - Madhavi Doma
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | |
Collapse
|