1
|
Li S, Wang H, Li Y, Jing F, Xu Y, Deng S, Wang N, Zhang Z, Chai S. Mapping and functional characterization of the golden fruit 1 (gf1) in melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:59. [PMID: 40009196 DOI: 10.1007/s00122-025-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
KEY MESSAGE A missense mutation that causes premature termination of the CmEGY1 protein leads to golden fruit in melon. Melon (Cucumis melo L.) is an economically important fruit crop that has been cultivated for thousands of years. Fruit color, a crucial trait influencing the appearance quality and economic value of melons, is primarily determined mainly by the type and concentration of pigments such as chlorophyll, carotenoids, and flavonoids. Identifying the genetic loci that govern melon fruit color contributes to breeding efforts aimed at enhancing melon rind coloration. This study reports an EMS-induced mutant, designated as gf1 (golden fruit 1), which produces fruit with both golden peel and flesh. Through MutMap and map-based cloning, we localized the gf1 locus to an 862 kb region containing 42 SNPs. Of these, a single SNP in the coding region caused a stop-gained mutation in the gene Cme13C08g017690, which exhibits the highest sequence similarity to Arabidopsis ETHYLENE-DEPENDENT GRAVITROPISM-DEFICIENT AND YELLOW-GREEN 1 (EGY1). Genome editing of CsEGY1, the cucumber homolog, confirmed its role in golden-fruit formation. Transcriptome and metabolome analyses revealed reduced flavonoid and carotenoid contents, accompanied by the downregulation of related biosynthetic genes. The identification and characterization of egy1 provide novel genetic insights and a valuable resource for improving melon appearance through breeding.
Collapse
Affiliation(s)
- Shuai Li
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huihui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Feng Jing
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuanchao Xu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijun Deng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Naonao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sen Chai
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Amadu MK, Beyene Y, Chaikam V, Tongoona PB, Danquah EY, Ifie BE, Burgueno J, Prasanna BM, Gowda M. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and agronomic traits under drought and optimum conditions in maize. BMC PLANT BIOLOGY 2025; 25:135. [PMID: 39893411 PMCID: PMC11786572 DOI: 10.1186/s12870-025-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Drought is a major abiotic stress in sub-Saharan Africa, impacting maize growth and development leading to severe yield loss. Drought tolerance is a complex trait regulated by multiple genes, making direct grain yield selection ineffective. To dissect the genetic architecture of grain yield and flowering traits under drought stress, a genome-wide association study (GWAS) was conducted on a panel of 236 maize lines testcrossed and evaluated under managed drought and optimal growing conditions in multiple environments using seven multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO, and FARMCPU) from mrMLM and GAPIT R packages. Genomic prediction with RR-BLUP model was applied on BLUEs across locations under optimum and drought conditions. RESULTS A total of 172 stable and reliable quantitative trait nucleotides (QTNs) were identified, of which 77 are associated with GY, AD, SD, ASI, PH, EH, EPO and EPP under drought and 95 are linked to GY, AD, SD, ASI, PH, EH, EPO and EPP under optimal conditions. Among these QTNs, 17 QTNs explained over 10% of the phenotypic variation (R2 ≥ 10%). Furthermore, 43 candidate genes were discovered and annotated. Two major candidate genes, Zm00001eb041070 closely associated with grain yield near peak QTN, qGY_DS1.1 (S1_216149215) and Zm00001eb364110 closely related to anthesis-silking interval near peak QTN, qASI_DS8.2 (S8_167256316) were identified, encoding AP2-EREBP transcription factor 60 and TCP-transcription factor 20, respectively under drought stress. Haplo-pheno analysis identified superior haplotypes for qGY_DS1.1 (S1_216149215) associated with the higher grain yield under drought stress. Genomic prediction revealed moderate to high prediction accuracies under optimum and drought conditions. CONCLUSION The lines carrying superior haplotypes can be used as potential donors in improving grain yield under drought stress. Integration of genomic selection with GWAS results leads not only to an increase in the prediction accuracy but also to validate the function of the identified candidate genes as well increase in the accumulation of favorable alleles with minor and major effects in elite breeding lines. This study provides valuable insight into the genetic architecture of grain yield and secondary traits under drought stress.
Collapse
Affiliation(s)
- Manigben Kulai Amadu
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- CSIR-Savanna Agricultural Research Institute, PO. Box 52, Tamale, Nyankpala, Ghana
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| | - Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Pangirayi B Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Eric Y Danquah
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Beatrice E Ifie
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3EE, UK
| | - Juan Burgueno
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, El Batán, Edo. de Mexico, CP 52640, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| |
Collapse
|
3
|
Hang J, Song T, Zhang L, Hou W, Liu X, Ma D. Comparative transcriptomic and proteomic analyses of two salt-tolerant alfalfa ( Medicago sativa L.) genotypes: investigation of the mechanisms underlying tolerance to salt. FRONTIERS IN PLANT SCIENCE 2024; 15:1442963. [PMID: 39606676 PMCID: PMC11598528 DOI: 10.3389/fpls.2024.1442963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Abiotic stressors such as salt stress restrict plant development and output, which lowers agricultural profitability. In this study, alfalfa (Medicago sativa L.) varieties with different levels of salt tolerance were examined using high-throughput RNA sequencing (RNA-Seq) and Tandem Mass Tags (TMT) technologies to study the reactions of the root systems to salt stress, from transcriptomics and proteomics perspectives. The varieties Atlantic (AT) and Zhongmu-1 (ZM-1) were selected and evaluated after 2 h and 6 h of treatment with 150 mM NaCl. The results showed that under salt stress for 2 h, 1810 differentially expressed genes (DEGs) and 160 differentially expressed proteins (DEPs) in AT were screened, while 9341 DEGs and 193 DEPs were screened in ZM-1. Under salt stress for 6 h, 7536 DEGs and 118 DEPs were screened in AT, while 11,754 DEGs and 190 DEPs were screened in ZM-1. Functional annotation and pathway enrichment analyses indicated that the DEGS and DEPs were mainly involved in the glutathione metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, and photosynthesis pathways. A series of genes related to salt tolerance were also identified, including GSTL3 and GSTU3 of the GST gene family, PER5 and PER10, of the PER gene family, and proteins such as APR and COMT, which are involved in biosynthesis of secondary metabolites. This study provides insights into salt resistance mechanisms in plants, and the related genes and metabolic pathways identified may be helpful for alfalfa breeding in the future.
Collapse
Affiliation(s)
- Jiahui Hang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Ting Song
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Ling Zhang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Wenjun Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Xiaoxia Liu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Shi H, Xiong Q, Zhao Z, Zhou L, Yin J, Lu X, Chen X, Wang J. Disruption of the Novel Small Protein RBR7 Leads to Enhanced Plant Resistance to Blast Disease. RICE (NEW YORK, N.Y.) 2023; 16:42. [PMID: 37733139 PMCID: PMC10513991 DOI: 10.1186/s12284-023-00660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Plant disease is a threat to global food security. Breeding crops carrying broad-spectrum resistance loci is an effective way to control infectious disease. Disease-resistant mutants are valuable resources for deciphering the underlying mechanisms of plant immunity and could provide genetic loci to generate disease-resistant crops. Here, we identified a rice mutant, rbr7 (rice blast resistance 7), that confers resistance against different strains of Magnaporthe oryzae. Disease-mimicking necrotic lesions started to appear on the leaves of rbr7 four weeks after sowing. Histochemical analysis revealed reactive oxygen species accumulation and cell death accompanied by spontaneous lesion formation in rbr7. Map-based cloning and bulk segregation analysis showed a 2855 bp fragment deletion on chromosome 5, leading to the disruption of the LOC_Os05g28480-coding protein. Transgenic rbr7 complementation plants showed compromised resistance to rice blast, indicating that LOC_Os05g28480, or Rbr7, regulates the rice immune response. Rbr7 encodes a small protein of unknown function with 85 amino acids. Transcriptomic analysis revealed that disruption of RBR7 led to the upregulation of genes responding to salicylic acid, systemic acquired resistance and pathogenesis-related genes. Taken together, our findings reveal insights into a novel small protein involved in regulating plant resistance to rice blast and provide a potential target for crop breeding.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhangjie Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lian Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Hu F, Ye Z, Zhang W, Fang D, Cao J. Decipher the molecular evolution and expression patterns of Cupin family genes in oilseed rape. Int J Biol Macromol 2023; 227:437-452. [PMID: 36549611 DOI: 10.1016/j.ijbiomac.2022.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cupin proteins are involved in plant growth and development as well as in response to various stresses. Here, a total of 173 Cupin genes were identified in Brassica napus, and their molecular evolution and expression patterns were analyzed. These genes were classified into ten groups. Motif and exon-intron structure indicated a high degree of conservation within each group during evolution. BnaCupins were distributed on 19 chromosomes and their expansion is mainly contributed by whole-genome duplication (WGD) and segmental duplication events. BnaCupins have undergone severe purifying selection during a long evolutionary process. Meanwhile, some positive selection sites were identified. Expression patterns and cis-element analysis indicated that BnaCupins play significant roles in plant growth and stress responses. In addition, the expression levels of some BnCupins were significantly altered when treated with different conditions (cold, salt, drought, IAA, ABA, and 6-BA). Some BnaCupin interacting proteins, such as glycosyl hydrolase5 (GHs5), carbohydrate kinase (CHKs), ATP-dependent 6-phosphofructokinase (ATP-PFK), S-adenosylmethionine synthase (S-MAT), and aldolase class II (ALD II), were identified by the protein-protein interaction network. It will contribute to enriching our knowledge of the Cupin gene family in B. napus and provide a basis for further studies of their functions.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Zhang Z, Tan J, Chen Y, Sun Z, Yan X, Ouyang J, Li S, Wang X. New Fructokinase, OsFRK3, Regulates Starch Accumulation and Grain Filling in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1056-1066. [PMID: 36595531 DOI: 10.1021/acs.jafc.2c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant fructokinase (FRK) guarantees the growth and development of higher plants by participating in carbohydrate metabolism. In this study, a new fructokinase, OsFRK3, was identified using bioinformatics analysis, enzyme assay, bacterial growth assay, and yeast complementation test. Then, we created OsFRK3 knockout transgenic lines (osfrk3-1 and osfrk3-2) by the CRISPR/Cas9 technology. We found that the 1000-grain weight decreased notably (approximately -3.6% and -6.1%, respectively) in osfrk3-1 and osfrk3-2. Evidently decreased grain width, grain thickness, and endosperm filling rate were detected in the osfrk3 mutants (osfrk3-1 and osfrk3-2) compared with those of the WT. In addition, the content of seed total starch was significantly decreased by 3.42 and 4.80% in osfrk3 lines, compared with that in the WT. The level of maltose was significantly reduced in the mutants, while that of sucrose and fructose was obviously increased in the mutants. The transcript levels of OsGBSS1, OsBEIIb, OsPFP1β, and OsAGPL1 were significantly decreased in the osfrk3 mutants. These results suggest that OsFRK3 may positively regulate the accumulation of starch through influencing the sugar metabolism.
Collapse
Affiliation(s)
- Zongfei Zhang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jiaxin Tan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yuting Chen
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhangyuqi Sun
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Fan L, Zhang W, Xu Z, Li S, Liu D, Wang L, Zhou X. A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis. Int J Mol Sci 2022; 23:ijms232214260. [PMID: 36430739 PMCID: PMC9698557 DOI: 10.3390/ijms232214260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Fructokinase (FRK) and fructokinase-like (FLN), belonging to the phosphofructokinase B type subfamily, share substantial sequence similarity, and are crucial in various plant physiological processes. However, there is limited information regarding what functionally differentiates plant FRKs from FLNs. Here, a total of three CsFRKs and two CsFLNs were identified from the cucumber genome. Their significant difference lay in the structure of their G/AXGD motif, which existed as GAGD in CsFRKs, but as G/ASGD in CsFLNs. Comparative phylogenetic analysis classified CsFRKs and CsFLNs into five sub-branches consistent with their quite different exon/intron organizations. Both transcriptome data and RT-qPCR analyses revealed that CsFRK3 was the most active gene, with the highest expression in the majority of tissues tested. Moreover, the expression levels of two putative plastidic genes, CsFRK1 and CsFLN2, were significantly positively associated with chlorophyll accumulation in the chlorophyll-reduced cucumber mutant. Briefly, both CsFRK and CsFLN genes were involved in the development of sink tissues, especially CsFRK3. CsFRK1 and CsFLN2 were recognized as candidates in the chlorophyll biosynthesis pathway of cucumber. These results would greatly assist in further investigation on functional characterization of FRKs and FLNs, especially in the development and chlorophyll biosynthesis of cucumber.
Collapse
Affiliation(s)
- Lianxue Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuo Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dong Liu
- Division of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
8
|
Ma Q, Xu X, Wang W, Zhao L, Ma D, Xie Y. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:203-214. [PMID: 34118683 DOI: 10.1016/j.plaphy.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Drought is one of the main abiotic factors that affect alfalfa yield. The identification of genes that control this complex trait can provide important insights for alfalfa breeding. However, little is known about how alfalfa responds and adapts to drought stress, particularly in cultivars of differing drought tolerance. In this study, the drought-tolerant cultivar Dryland 'DT' and the drought-sensitive cultivar WL343HQ 'DS' were used to characterize leaf and root physiological responses and transcriptional changes in response to water deficit. Under drought stress, Dryland roots (DTR) showed more differentially expressed genes than WL343HQ roots (DSR), whereas WL343HQ leaves (DSL) showed more differentially expressed genes than Dryland leaves (DTL). Many of these genes were involved in stress-related pathways, carbohydrate metabolism, and lignin and wax biosynthesis, which may have improved the drought tolerance of alfalfa. We also observed that several genes related to ABA metabolism, root elongation, peroxidase activity, cell membrane stability, ubiquitination, and genetic processing responded to drought stress in alfalfa. We highlighted several candidate genes, including sucrose synthase, xylan 1,4-beta-xylosidase, primary-amine oxidase, and alcohol-forming fatty acyl-CoA reductase, for future studies on drought stress resistance in alfalfa and other plant species. In summary, our results reveal the unique drought adaptation and resistance characteristics of two alfalfa genotypes. These findings, which may be valuable for drought resistance breeding, warrant further gene functional analysis to augment currently available information and to clarify the drought stress regulatory mechanisms of alfalfa and other plants.
Collapse
Affiliation(s)
- Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| | - Xing Xu
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| | - Wenjing Wang
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China.
| | - Lijuan Zhao
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China.
| | - Dongmei Ma
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China.
| | - Yingzhong Xie
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
9
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|