1
|
Liu M, Chen L, Gu S, Zhang A, Tong M, Wang S, Wang J, Zhu Y, Zhang J, Sun Y, Guo Y, Li R. Arabidopsis TIC236 contributes to proplastid development and chloroplast biogenesis during embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1424994. [PMID: 39246812 PMCID: PMC11377289 DOI: 10.3389/fpls.2024.1424994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
Plastids are essential, semi-autonomous organelles in plants that carry out a multitude of functions during development. Plastids existing in different subtypes are derived from proplastids progenitors and interconvert in response to environmental and growth cues. Most efforts focus on the differentiation from proplastid to other forms. However, the studies of proplastid development are insufficient and whether proplastid biogenesis affects plant growth is yet to be determined. Arabidopsis TIC236, a translocon component at the inner membrane of the chloroplast envelope, is critical for importing chloroplast-targeted preproteins and chloroplast division. In this study, we uncovered the fundamental influence of proplastid biogenesis on embryo development by exploring the function of TIC236 during embryogenesis. Widespread and strong expression of TIC236 was observed in leaves and embryos. The null mutant tic236 had an embryo-lethal phenotype, with cell division in the mutant embryos delayed starting at the octant stage and arrested at the globular stage. Transmission electron microscopy revealed enlarged proplastids with an aberrant inner structure at the dermatogen and globular stages that ultimately did not differentiate into chloroplasts. Additionally, the fluorescence signal distribution patterns of tic236 embryos carrying the pDR5rev::3xVENUS-N7, pPIN1::PIN1-GFP, pWOX5::GFP, and pSCR::H2B-YFP reporter systems were altered. Together, we provide genetic evidence supporting proplastid biogenesis plays a vital role in embryo development and TIC236 is identified as an indispensable player, ensuring normal proplastid development.
Collapse
Affiliation(s)
- Mei Liu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lifen Chen
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shijie Gu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Aiwei Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengjuan Tong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuailei Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Juntao Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yirui Zhu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingsheng Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yi Guo
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Sierra J, Escobar-Tovar L, Leon P. Plastids: diving into their diversity, their functions, and their role in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2508-2526. [PMID: 36738278 DOI: 10.1093/jxb/erad044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
3
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
4
|
Miroshnichenko D, Klementyeva A, Dolgov S. The Effect of Daminozide, Dark/Light Schedule and Copper Sulphate in Tissue Culture of Triticum timopheevii. PLANTS (BASEL, SWITZERLAND) 2021; 10:2620. [PMID: 34961089 PMCID: PMC8706679 DOI: 10.3390/plants10122620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Triticum timopheevii Zhuk. is a tetraploid wheat that is utilized worldwide as a valuable breeding source for wheat improvement. Gene-based biotechnologies can contribute to this field; however, T. timopheevii exhibits recalcitrance and albinism in tissue cultures, making this species of little use for manipulation through genetic engineering and genome editing. This study tested various approaches to increasing in vitro somatic embryogenesis and plant regeneration, while reducing the portion of albinos in cultures derived from immature embryos (IEs) of T. timopheevii. They included (i) adjusting the balance between 2,4-D and daminozide in callus induction medium; (ii) cultivation using various darkness/illumination schedules; and (iii) inclusion of additional concentrations of copper ions in the tissue culture medium. We achieved a 2.5-fold increase in somatic embryogenesis (up to 80%) when 50 mg L-1 daminozide was included in the callus induction medium together with 3 mg L-1 2,4-D. It was found that the dark cultivation for 20-30 days was superior in terms of achieving maximum culture efficiency; moreover, switching to light in under 2 weeks from culture initiation significantly increased the number of albino plants, suppressed somatic embryogenesis, and decreased the regeneration of green plants. Media containing higher levels of copper ions did not have a positive effect on the regeneration of green plants; contrarily, the elevated concentrations caused albinism in plantlets. The results and relevant conclusions of the present study might be valuable for establishing an improved protocol for the regeneration of green plants in tissue cultures of T. timopheevii.
Collapse
Affiliation(s)
- Dmitry Miroshnichenko
- Kurchatov Genomics Center of All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street 42, 127550 Moscow, Russia
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russion Academy of Science, 142290 Pushchino, Russia; (A.K.); (S.D.)
| | - Anna Klementyeva
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russion Academy of Science, 142290 Pushchino, Russia; (A.K.); (S.D.)
| | - Sergey Dolgov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russion Academy of Science, 142290 Pushchino, Russia; (A.K.); (S.D.)
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street 42, 127550 Moscow, Russia
| |
Collapse
|
5
|
Canonge J, Roby C, Hamon C, Potin P, Pfannschmidt T, Philippot M. Occurrence of albinism during wheat androgenesis is correlated with repression of the key genes required for proper chloroplast biogenesis. PLANTA 2021; 254:123. [PMID: 34786602 DOI: 10.1007/s00425-021-03773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The phenomenon of albinism in wheat androgenesis is linked to the transcriptional repression of specific genes involved in chloroplast biogenesis during the first weeks of in vitro culture. Isolated microspore culture is widely used to accelerate breeding programs and produce new cultivars. However, in cereals and particularly in wheat, the use of this technique is limited due to the high proportion of regenerated albino plantlets. The causes and mechanisms leading to the formation of albino plantlets in wheat remain largely unknown and, to date, no concrete solution has been found to make it possible to overcome this barrier. We performed a molecular study of proplastid-to-chloroplast differentiation within wheat microspore cultures by analyzing the expression of 20 genes specifically involved in chloroplast biogenesis. Their expression levels were compared between two wheat genotypes that exhibit differential capacities to regenerate green plantlets, i.e., Pavon and Paledor, which produce high and low rates of green plants, respectively. We observed that chloroplast biogenesis within wheat microspores was affected as of the very early stages of the androgenesis process. A successful transition from a NEP- to a PEP-dependent transcription during early plastid development was found to be strongly correlated with the formation of green plantlets, while failure of this transition was strongly correlated with the regeneration of albino plantlets. The very low expression of plastid-encoded 16S and 23S rRNAs within plastids of the recalcitrant genotype Paledor suggests a low translation activity in albino plastids. Furthermore, a delay in the activation of the transcription of nuclear encoded key genes like GLK1 related to chloroplast biogenesis was observed in multicellular structures and pro-embryos of the genotype Paledor. These data help to understand the phenomenon of albinism in wheat androgenesis, which appears to be linked to the transcriptional activation of specific genes involved in the initial steps of chloroplast biogenesis that occurs between days 7 and 21 of in vitro culture.
Collapse
Affiliation(s)
- Julie Canonge
- Vegenov, Pen ar Prat, 29250, Saint-Pol-de-Léon, France
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | | | - Céline Hamon
- Vegenov, Pen ar Prat, 29250, Saint-Pol-de-Léon, France
| | - Philippe Potin
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Thomas Pfannschmidt
- Institut für Botanik, Pflanzenphysiologie, Leibniz-Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | | |
Collapse
|
6
|
Bednarek PT, Pachota KA, Dynkowska WM, Machczyńska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci 2021; 22:7546. [PMID: 34299165 PMCID: PMC8304781 DOI: 10.3390/ijms22147546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.A.P.); (W.M.D.); (J.M.); (R.O.)
| | | | | | | | | |
Collapse
|
7
|
Choi H, Yi T, Ha SH. Diversity of Plastid Types and Their Interconversions. FRONTIERS IN PLANT SCIENCE 2021; 12:692024. [PMID: 34220916 PMCID: PMC8248682 DOI: 10.3389/fpls.2021.692024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Plastids are pivotal subcellular organelles that have evolved to perform specialized functions in plant cells, including photosynthesis and the production and storage of metabolites. They come in a variety of forms with different characteristics, enabling them to function in a diverse array of organ/tissue/cell-specific developmental processes and with a variety of environmental signals. Here, we have comprehensively reviewed the distinctive roles of plastids and their transition statuses, according to their features. Furthermore, the most recent understanding of their regulatory mechanisms is highlighted at both transcriptional and post-translational levels, with a focus on the greening and non-greening phenotypes.
Collapse
Affiliation(s)
| | | | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
8
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC PLANT BIOLOGY 2021; 21:22. [PMID: 33413097 PMCID: PMC7792217 DOI: 10.1186/s12870-020-02755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.
Collapse
Affiliation(s)
- Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Beata Chmielewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Janusz Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Iwona Szarejko
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
9
|
Żur I, Gajecka M, Dubas E, Krzewska M, Szarejko I. Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts. Methods Mol Biol 2021; 2288:3-23. [PMID: 34270002 DOI: 10.1007/978-1-0716-1335-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Salazar-Iribe A, De-la-Peña C. Auxins, the hidden player in chloroplast development. PLANT CELL REPORTS 2020; 39:1595-1608. [PMID: 32960306 DOI: 10.1007/s00299-020-02596-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 05/21/2023]
Abstract
Throughout decades of plant research, the plant hormones known as auxins have been found to be of vital importance in most plant development processes. Indole-3-acetic acid (IAA) represents the most common auxin in plants and can be synthesized from its tryptophan precursor, which is synthesized in the chloroplast. The chloroplast constitutes an organelle of great relevance to plants since the photosynthesis process by which plants get most of their energy is carried out there. The role of auxins in photosynthesis has been studied for at least 50 years, and in this time, it has been shown that auxins have an effect on several of the essential components and structure of the chloroplast. In recent decades, a high number of genes have been reported to be expressed in the chloroplast and some of their mutants have been shown to alter different auxin-mediated pathways. Genes in signaling pathways such as IAA/AUX, ARF, GH.3, SAUR and TIR, biosynthesis-related genes such as YUCCA and transport-related genes such as PIN have been identified among the most regulated genes in mutants related to alterations in the chloroplast. This review aims to provide a complete and updated summary of the relationship between auxins and several processes that involve the chloroplast, including chloroplast development, plant albinism, redox regulation and pigment synthesis.
Collapse
Affiliation(s)
- Alexis Salazar-Iribe
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
11
|
Ohnoutková L, Vlčko T. Homozygous Transgenic Barley ( Hordeum vulgare L.) Plants by Anther Culture. PLANTS 2020; 9:plants9070918. [PMID: 32698526 PMCID: PMC7412030 DOI: 10.3390/plants9070918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022]
Abstract
Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.
Collapse
|