1
|
Lu Y, Deng S, Wu J, Li H, Zhou J, Shi W, Fayyaz P, Luo ZB. Proteomic reprogramming underlying anatomical and physiological characteristics of poplar wood in acclimation to changing light and nitrogen availabilities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17234. [PMID: 39912282 DOI: 10.1111/tpj.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
To explore the proteomic regulation that underlies the physiological, anatomical, and chemical characteristics of wood in acclimation to changing light and nitrogen (N), saplings of Populus × canescens were treated with control or high irradiance in combination with low, control or high N for 4 months. High irradiance led to elevated levels of starch, sucrose, glucose, and fructose, decreased concentrations of ammonium, nitrate, most amino acids and total N, wider xylem, more xylem cell layers, narrower vessel lumina, longer fiber cells, greater fiber wall thickness, and more cellulose and hemicellulose but less lignin deposition in poplar wood. Limiting N resulted in increased levels of starch and sucrose, reduced levels of glucose, fructose, ammonium, nitrate, amino acids and total N, narrower xylem, fewer xylem cell layers, reduced vessel lumen diameter, thicker fiber walls, and less cellulose and more hemicellulose and lignin accumulation, whereas high N had the opposite effects on poplar wood. Correspondingly, numerous differentially abundant proteins, which are related mainly to the metabolism of carbohydrates and amino acids, cell division and expansion, and deposition of secondary cell walls, such as sucrose synthase 6 (SUS6), cell division cycle protein 48 (CDC48) and laccases (LACs), were identified in poplar cambiums in response to changes in light intensity and N availability. These results suggest that proteomic relays play essential roles in regulating the physiological characteristics and anatomical and chemical properties of poplar wood in acclimation to changing light and N availabilities.
Collapse
Affiliation(s)
- Yan Lu
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, Shandong Province, 257000, People's Republic of China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, 210014, People's Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Hong Li
- Postgraduate School, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj, 75919 63179, Islamic Republic of Iran
| | - Zhi-Bin Luo
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, Shandong Province, 257000, People's Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| |
Collapse
|
2
|
Ding W, Wang C, Mei M, Li X, Zhang Y, Lin H, Li Y, Ma Z, Han J, Song X, Wu M, Zheng C, Lin J, Zhao Y. Phytohormones involved in vascular cambium activity in woods: current progress and future challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1508242. [PMID: 39741679 PMCID: PMC11685017 DOI: 10.3389/fpls.2024.1508242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Vascular cambium is the continuation of meristem activity at the top of plants, which promotes lateral growth of plants. The vascular cambium evolved as an adaptation for secondary growth, initially in early seed plants, and became more refined in the evolution of gymnosperms and angiosperms. In angiosperms, it is crucial for plant growth and wood formation. The vascular cambium is regulated by a complex interplay of phytohormones, which are chemical messengers that coordinate various aspects of plant growth and development. This paper synthesizes the current knowledge on the regulatory effects of primary plant hormones and peptide signals on the development of the cambium in forest trees, and it outlines the current research status and future directions in this field. Understanding these regulatory mechanisms holds significant potential for enhancing our ability to manage and cultivate forest tree species in changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chencan Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, Hebei, China
| | - Man Mei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuqian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Hongxia Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yang Li
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Zhiqiang Ma
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Jianwei Han
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Xiaoxia Song
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Minjie Wu
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Caixia Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Wang H. Endogenous and environmental signals in regulating vascular development and secondary growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1369241. [PMID: 38628366 PMCID: PMC11018896 DOI: 10.3389/fpls.2024.1369241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Huanzhong Wang
- Department of Plant Science & Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Tian Z, Wang X, Dun X, Tian Z, Zhang X, Li J, Ren L, Tu J, Wang H. Integrating biochemical and anatomical characterizations with transcriptome analysis to dissect superior stem strength of ZS11 ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2023; 14:1144892. [PMID: 37229131 PMCID: PMC10203542 DOI: 10.3389/fpls.2023.1144892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Stem lodging resistance is a serious problem impairing crop yield and quality. ZS11 is an adaptable and stable yielding rapeseed variety with excellent resistance to lodging. However, the mechanism regulating lodging resistance in ZS11 remains unclear. Here, we observed that high stem mechanical strength is the main factor determining the superior lodging resistance of ZS11 through a comparative biology study. Compared with 4D122, ZS11 has higher rind penetrometer resistance (RPR) and stem breaking strength (SBS) at flowering and silique stages. Anatomical analysis shows that ZS11 exhibits thicker xylem layers and denser interfascicular fibrocytes. Analysis of cell wall components suggests that ZS11 possessed more lignin and cellulose during stem secondary development. By comparative transcriptome analysis, we reveal a relatively higher expression of genes required for S-adenosylmethionine (SAM) synthesis, and several key genes (4-COUMATATE-CoA LIGASE, CINNAMOYL-CoA REDUCTASE, CAFFEATE O-METHYLTRANSFERASE, PEROXIDASE) involved in lignin synthesis pathway in ZS11, which support an enhanced lignin biosynthesis ability in the ZS11 stem. Moreover, the difference in cellulose may relate to the significant enrichment of DEGs associated with microtubule-related process and cytoskeleton organization at the flowering stage. Protein interaction network analysis indicate that the preferential expression of several genes, such as LONESOME HIGHWAY (LHW), DNA BINDING WITH ONE FINGERS (DOFs), WUSCHEL HOMEOBOX RELATED 4 (WOX4), are related to vascular development and contribute to denser and thicker lignified cell layers in ZS11. Taken together, our results provide insights into the physiological and molecular regulatory basis for the formation of stem lodging resistance in ZS11, which will greatly promote the application of this superior trait in rapeseed breeding.
Collapse
Affiliation(s)
- Zhengshu Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xiaoxue Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Jinfeng Li
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lijun Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Jinxing Tu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol 2022:1-19. [PMID: 35658789 DOI: 10.1080/07388551.2022.2055995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cambial meristematic cells (CMCs) culture has received a fair share of scientific and industrial attention among the trending topics of plant cell culture, especially their potential toward secondary metabolites production. However, the conventional plant cell culture is often not commercially feasible because of difficulties associated with culture dedifferentiated cells. Several reports have been published to culture CMCs and bypass the dedifferentiation process in plant cell culture. Numerous mitochondria, multiple vacuoles, genetic stability, self-renewal, higher biomass, and stable metabolites accumulation are the characteristics features of CMCs compared with dedifferentiated cells (DDCs) culture. The CMCs culture has a broader application to produce large-scale natural compounds for: pharmaceuticals, food, and cosmetic industries. Cutting-edge progress in plant cellular and molecular biology has allowed unprecedented insights into cambial stem cell culture and its fundamental processes. Therefore, regarding sustainability and natural compound production, cambial cell culture ranks among the most vital biotechnological interventions for industrial and economic perspectives. This review highlights the recent advances in plant stem cell culture and understands the cambial cells induction and culture mechanisms that affect the growth and natural compounds production.
Collapse
Affiliation(s)
- Mahinder Partap
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Turley EK, Etchells JP. Laying it on thick: a study in secondary growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:665-679. [PMID: 34655214 PMCID: PMC8793872 DOI: 10.1093/jxb/erab455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
Collapse
Affiliation(s)
- Emma K Turley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence:
| |
Collapse
|
7
|
Khalilzadeh M, Weber KC, Dutt M, El-Mohtar CA, Levy A. Comparative transcriptome analysis of Citrus macrophylla tree infected with Citrus tristeza virus stem pitting mutants provides new insight into the role of phloem regeneration in stem pitting disease. FRONTIERS IN PLANT SCIENCE 2022; 13:987831. [PMID: 36267951 PMCID: PMC9577373 DOI: 10.3389/fpls.2022.987831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 05/21/2023]
Abstract
Stem pitting is a complex and economically important virus-associated disease of perennial woody plants. Molecular mechanisms and pathways occurring during virus-plant interaction that result in this phenomenon are still obscure. Previous studies indicated that different Citrus tristeza virus (CTV) mutants induce defined stem pitting phenotypes ranging from mild (CTVΔp13) to severe (CTVΔp33) in Citrus macrophylla trees. In this study, we conducted comparative transcriptome analyses of C. macrophylla trees infected with CTV mutants (CTVΔp13 and CTVΔp33) and a full-length virus in comparison to healthy plants as control. The mild CTV stem pitting mutant had very few differentially expressed genes (DEGs) related to plant defense mechanism and plant growth and development. In contrast, substantial gene expression changes were observed in plants infected with the severe mutant and the full-length virus, indicating that both the p13 and p33 proteins of CTV acted as a regulator of symptom production by activating and modulating plant responses, respectively. The analysis of transcriptome data for CTVΔp33 and the full-length virus suggested that xylem specification has been blocked by detecting several genes encoding xylem, cell wall and lignin degradation, and cell wall loosening enzymes. Furthermore, stem pitting was accompanied by downregulation of transcription factors involved in regulation of xylem differentiation and downregulation of some genes involved in lignin biosynthesis, showing that the xylem differentiation and specification program has been shut off. Upregulation of genes encoding transcription factors associated with phloem and cambium development indicated the activation of this program in stem pitting disease. Furthermore, we detected the induction of several DEGs encoding proteins associated with cell cycle re-entry such as chromatin remodeling factors and cyclin, and histone modification. This kind of expression pattern of genes related to xylem differentiation and specification, phloem and cambium development, and cell cycle re-entry is demonstrated during secondary vascular tissue (SVT) regeneration. The microscopy analysis confirmed that the regeneration of new phloem is associated with stem pitting phenotypes. The findings of this study, thus, provide evidence for the association between stem pitting phenotypes and SVT regeneration, suggesting that the expression of these genes might play important roles in development of stem pitting symptoms. Overall, our findings suggest that phloem regeneration contributes to development of stem pitting symptoms.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Kyle Clark Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Choaa Amine El-Mohtar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Amit Levy
| |
Collapse
|
8
|
Wilczek-Ponce A, Włoch W, Iqbal M. How Do Trees Grow in Girth? Controversy on the Role of Cellular Events in the Vascular Cambium. Acta Biotheor 2021; 69:643-670. [PMID: 34152499 PMCID: PMC8594270 DOI: 10.1007/s10441-021-09418-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Radial growth has long been a subject of interest in tree biology research. Recent studies have brought a significant change in the understanding of some basic processes characteristic to the vascular cambium, a meristem that produces secondary vascular tissues (phloem and xylem) in woody plants. A new hypothesis regarding the mechanism of intrusive growth of the cambial initials, which has been ratified by studies of the arrangement of cambial cells, negates the influence of this apical cell growth on the expansion of the cambial circumference. Instead, it suggests that the tip of the elongating cambial initial intrudes between the tangential (periclinal) walls, rather than the radial (anticlinal) walls, of the initial(s) and its(their) derivative(s) lying ahead of the elongating cell tip. The new concept also explains the hitherto obscure mechanism of the cell event called 'elimination of initials'. This article evaluates these new concepts of the cambial cell dynamics and offers a new interpretation for some curious events occurring in the cambial meristem in relation to the radial growth in woody plants.
Collapse
Affiliation(s)
- Anna Wilczek-Ponce
- Department of Biosystematics, University of Opole, Oleska 22, 40-052, Opole, Poland
| | - Wiesław Włoch
- Department of Biosystematics, University of Opole, Oleska 22, 40-052, Opole, Poland.
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Polish Academy of Sciences, Prawdziwka 2, 02-973, Warsaw, Poland.
| | - Muhammad Iqbal
- Department of Botany, Hamdard University, Tughlaqabad, New Delhi, 110 062, India
| |
Collapse
|
9
|
Lee KH, Wang S, Du Q, Chhetri GT, Qi L, Wang H. The XVP/ NAC003 protein associates with the plasma membrane through KR rich regions and translocates to the nucleus by changing phosphorylation status. PLANT SIGNALING & BEHAVIOR 2021; 16:1970449. [PMID: 34498541 PMCID: PMC8525969 DOI: 10.1080/15592324.2021.1970449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Membrane localized transcription factors play essential roles in various plant developmental processes. The XVP/NAC003 protein is a NAC domain transcription factor associated with the plasma membrane and involved in the TDIF-PXY signaling during vascular development. We report here the mechanisms of XVP membrane localization and its nuclear translocation. Using a transient transformation approach, we found that XVP is associated with the plasma membrane through positively charged KR-rich regions. Mutagenesis studies found that the threonine amino acid at position 354 (T354) is critical for XVP translocation to the nucleus. In particular, the threonine to alanine mutation (T354A) resulted in a partial nucleus localization, while threonine to aspartic acid (T354D) mutation showed no effect on protein localization, indicating that dephosphorylation at T354 may serve as a nucleus translocation signal. This research sheds new light on the nucleus partitioning of plasma membrane-associated transcription factors.
Collapse
Affiliation(s)
- Kwang-Hee Lee
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Sining Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Gaurav Thapa Chhetri
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
10
|
Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. FRONTIERS IN PLANT SCIENCE 2021; 12:719606. [PMID: 34539713 PMCID: PMC8446620 DOI: 10.3389/fpls.2021.719606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Plant small peptides, including CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) and Epidermal Patterning Factor-Like (EPFL) peptides, play pivotal roles in coordinating developmental processes through cell-cell communication. Recent studies have revealed that the phloem-derived CLE peptides, CLE41/44 and CLE42, promote (pro-)cambial cell proliferation and inhibit xylem cell differentiation. The endodermis-derived EPFL peptides, EPFL4 and EPFL6, modulate vascular development in the stem. Further, several other peptide ligands CLE9, CLE10, and CLE45 play crucial roles in regulating vascular development in the root. The peptide signaling pathways interact with each other and crosstalk with plant hormone signals. In this mini-review, we summtarize the recent advances on peptides function in vascular development and discuss future perspectives for the research of the CLE and EPFL peptides.
Collapse
Affiliation(s)
- Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Kankong P, Poungparn S, Komiyama A, Rodtassana C, Pravinvongvuthi T. Leaf phenology and trunk growth of
Avicennia alba
(Blume) under a seasonally fluctuating saline environment in the tropical monsoon area of eastern Thailand. Ecol Res 2021. [DOI: 10.1111/1440-1703.12251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Piyapon Kankong
- Department of Botany, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Sasitorn Poungparn
- Department of Botany, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Akira Komiyama
- Faculty of Applied Biological Sciences Gifu University Gifu Japan
| | - Chadtip Rodtassana
- Department of Botany, Faculty of Science Chulalongkorn University Bangkok Thailand
| | | |
Collapse
|
12
|
Słupianek A, Dolzblasz A, Sokołowska K. Xylem Parenchyma-Role and Relevance in Wood Functioning in Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:1247. [PMID: 34205276 PMCID: PMC8235782 DOI: 10.3390/plants10061247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (A.D.); (K.S.)
| | | | | |
Collapse
|
13
|
Yang S, Wang S, Li S, Du Q, Qi L, Wang W, Chen J, Wang H. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7160-7170. [PMID: 32926140 DOI: 10.1093/jxb/eraa423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Ethylene is a gaseous hormone that affects many processes of plant growth and development. During vascular development, ethylene positively regulates cambial cell division in parallel with tracheary element differentiation inhibitory factor (TDIF) peptide signaling. In this study, we identified an ethylene overproducing mutant, acs7-d, exhibiting enhanced cambial activity and reduced wall development in fiber cells. Using genetic analysis, we found that ethylene signaling is necessary for the phenotypes of enhanced cambial cell division as well as defects in stem elongation and fiber cell wall development. Further, the cambial cell proliferation phenotype of acs7-d depends on WOX4, indicating that the two parallel pathways, ethylene and TDIF signaling, converge at WOX4 in regulating cambium activity. Gene expression analysis showed that ethylene impedes fiber cell wall biosynthesis through a conserved hierarchical transcriptional regulation. These results advance our understanding of the molecular mechanisms of ethylene in regulating vascular meristem activity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Sining Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Jingtang Chen
- College of Agronomy, Hebei Agricultural University, Baoding, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- Institute for System Genomics, University of Connecticut, Storrs CT, USA
| |
Collapse
|
14
|
Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:762. [PMID: 32625220 PMCID: PMC7313660 DOI: 10.3389/fpls.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
The plasticity of plant development relies on its ability to balance growth and stress resistance. To do this, plants have established highly coordinated gene regulatory networks (GRNs) of the transcription factors and signaling components involved in developmental processes and stress responses. In root crops, yields of storage roots are mainly determined by secondary growth driven by the vascular cambium. In relation to this, a dynamic yet intricate GRN should operate in the vascular cambium, in coordination with environmental changes. Despite the significance of root crops as food sources, GRNs wired to mediate secondary growth in the storage root have just begun to emerge, specifically with the study of the radish. Gene expression data available with regard to other important root crops are not detailed enough for us directly to infer underlying molecular mechanisms. Thus, in this review, we provide a general overview of the regulatory programs governing the development and functions of the vascular cambium in model systems, and the role of the vascular cambium on the growth and yield potential of the storage roots in root crops. We then undertake a reanalysis of recent gene expression data generated for major root crops and discuss common GRNs involved in the vascular cambium-driven secondary growth in storage roots using the wealth of information available in Arabidopsis. Finally, we propose future engineering schemes for improving root crop yields by modifying potential key nodes in GRNs.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chulmin Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Kamran
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|