1
|
Artins A, Martins MCM, Meyer C, Fernie AR, Caldana C. Sensing and regulation of C and N metabolism - novel features and mechanisms of the TOR and SnRK1 signaling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1268-1280. [PMID: 38349940 DOI: 10.1111/tpj.16684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Carbon (C) and nitrogen (N) metabolisms are tightly integrated to allow proper plant growth and development. Photosynthesis is dependent on N invested in chlorophylls, enzymes, and structural components of the photosynthetic machinery, while N uptake and assimilation rely on ATP, reducing equivalents, and C-skeletons provided by photosynthesis. The direct connection between N availability and photosynthetic efficiency allows the synthesis of precursors for all metabolites and building blocks in plants. Thus, the capacity to sense and respond to sudden changes in C and N availability is crucial for plant survival and is mediated by complex yet efficient signaling pathways such as TARGET OF RAPAMYCIN (TOR) and SUCROSE-NON-FERMENTING-1-RELATED PROTEIN KINASE 1 (SnRK1). In this review, we present recent advances in mechanisms involved in sensing C and N status as well as identifying current gaps in our understanding. We finally attempt to provide new perspectives and hypotheses on the interconnection of diverse signaling pathways that will allow us to understand the integration and orchestration of the major players governing the regulation of the CN balance.
Collapse
Affiliation(s)
- Anthony Artins
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Marina C M Martins
- in Press - Scientific Consulting and Communication Services, 05089-030, São Paulo, São Paulo, Brazil
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| |
Collapse
|
2
|
Lu P, Dai SY, Yong LT, Zhou BH, Wang N, Dong YY, Liu WC, Wang FW, Yang HY, Li XW. A Soybean Sucrose Non-Fermenting Protein Kinase 1 Gene, GmSNF1, Positively Regulates Plant Response to Salt and Salt-Alkali Stress in Transgenic Plants. Int J Mol Sci 2023; 24:12482. [PMID: 37569858 PMCID: PMC10419833 DOI: 10.3390/ijms241512482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.
Collapse
Affiliation(s)
- Ping Lu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Si-Yu Dai
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Ling-Tao Yong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Bai-Hui Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Yuan-Yuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Wei-Can Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Fa-Wei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Hao-Yu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiao-Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| |
Collapse
|
3
|
Liu Y, Cao L, Wu X, Wang S, Zhang P, Li M, Jiang J, Ding X, Cao X. Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153881. [PMID: 36463657 DOI: 10.1016/j.jplph.2022.153881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Protein kinases play crucial roles in the regulation of plant resistance to various stresses. In this work, we determined that GsSnRK1.1 was actively responsive to saline-alkali, drought, and abscisic acid (ABA) stresses by histochemical staining and qRT-PCR analyses. The wild-type GsSnRK1.1 but not the kinase-dead mutant, GsSnRK1.1(K49M), demonstrated in vitro kinase activity by phosphorylating GsABF2. Intriguingly, we found that GsSnRK1.1 could complement the loss of SNF1 kinase in yeast Msy1193 (-snf1) mutant, rescue growth defects of yeast cells on medium with glycerol as a carbon resource, and promote yeast resistance to NaCl or NaHCO3. To further elucidate GsSnRK1.1 function in planta, we knocked out SnRK1.1 gene from the Arabidopsis genome by the CRISPR/Cas9 approach, and then expressed GsSnRK1.1 and a series of mutants into snrk1.1-null lines. The transgenic Arabidopsis lines were subjected to various abiotic stress treatments. The results showed that GsSnRK1.1(T176E) mutant with enhanced protein kinase activity significantly promoted, but GsSnRK1.1(K49M) and GsSnRK1.1(T176A) mutants with disrupted protein kinase activity abrogated, plant stomatal closure and tolerance to abiotic stresses. In conclusion, this study provides the molecular clues to fully understand the physiological functions of plant SnRK1 protein kinases.
Collapse
Affiliation(s)
- Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Wu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Sai Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaoying Cao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
4
|
Trejo‐Fregoso R, Rodríguez I, Ávila A, Juárez‐Díaz JA, Rodríguez‐Sotres R, Martínez‐Barajas E, Coello P. Phosphorylation of S11 in PHR1 negatively controls its transcriptional activity. PHYSIOLOGIA PLANTARUM 2022; 174:e13831. [PMID: 36444477 PMCID: PMC10107491 DOI: 10.1111/ppl.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Plant responses to phosphate starvation (-Pi) are very well characterized at the biochemical and molecular levels. The expression of thousands of genes is modified under this stress condition, depending on the action of Phosphate starvation response 1 (PHR1). Existing data indicate that neither the PHR1 transcript nor the quantity or localization of its protein increase during nutrient stress, raising the question of how its activity is regulated. Here, we present data showing that SnRK1 kinase is able to phosphorylate some phosphate starvation response proteins (PSRs), including PHR1. Based on a model of the three-dimensional structure of the catalytic subunit SnRK1α1, docking simulations predicted the binding modes of peptides from PHT1;8, PHO1 and PHR1 with SnRK1. PHR1 recombinant protein interacted in vitro with the catalytic subunits SnRK1α1 and SnRK1α2. A BiFC assay corroborated the in vivo interaction between PHR1 and SnRK1α1 in the cytoplasm and nucleus. Analysis of phosphorylated residues suggested the presence of one phosphorylated site containing the SnRK1 motif at S11, and mutation in this residue disrupted the incorporation of 32 P, suggesting that it is a major phosphorylation site. Electrophoretic mobility shift assay results indicated that the binding of PHR1 to P1BS motifs was not influenced by phosphorylation. Importantly, transient expression assays in Arabidopsis protoplasts showed a decrease in PHR1 activity in contrast with the S11A mutant, suggesting a role for Ser11 as a negative regulatory phosphorylation site. Taken together, these findings suggest that phosphorylation of PHR1 at Ser11 is a mechanism to control the PHR1-mediated adaptive response to -Pi.
Collapse
Affiliation(s)
| | - Iván Rodríguez
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| | - Alejandra Ávila
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| | | | | | | | - Patricia Coello
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| |
Collapse
|
5
|
Jin H, Han X, Wang Z, Xie Y, Zhang K, Zhao X, Wang L, Yang J, Liu H, Ji X, Dong L, Zheng H, Hu W, Liu Y, Wang X, Zhou X, Zhang Y, Qian W, Zheng W, Shen Q, Gou M, Wang D. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection. EMBO J 2022; 41:e110521. [PMID: 35929182 PMCID: PMC9475517 DOI: 10.15252/embj.2021110521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1‐SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus‐derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA‐degrading nuclease 1 (HvSDN1) and impedes HvSDN1‐catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1‐HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1‐carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1‐catalyzed vsiRNA degradation and suggest new ways for engineering BYDV‐resistant crops.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lina Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Jin Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Huiyun Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiang Ji
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Weijuan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wenming Zheng
- National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
6
|
Li Q, Sun Q, Wang D, Liu Y, Zhang P, Lu H, Zhang Y, Zhang S, Wang A, Ding X, Xiao J. Quantitative phosphoproteomics reveals the role of wild soybean GsSnRK1 as a metabolic regulator under drought and alkali stresses. J Proteomics 2022; 258:104528. [PMID: 35182787 DOI: 10.1016/j.jprot.2022.104528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
Drought and alkali stresses cause detrimental effects on plant growth and development. SnRK1 protein kinases act as key energy and stress sensors by phosphorylation-mediated signaling in the regulation of plant defense reactions against adverse environments. To understand SnRK1-dependent phosphorylation events in signaling pathways triggered by abiotic factors, we employed quantitative phosphoproteomics to compare the global changes in phosphopeptides and phosphoproteins in 2kinm mutant Arabidopsis (SnRK1.1 T-DNA knockout and SnRK1.2 knockdown by β-estradiol-induced RNAi) complemented with wild soybean GsSnRK1(wt) or dominant negative mutant GsSnRK1(K49M) in response to drought and alkali stresses. Among 4014 phosphopeptides (representing 2380 phosphoproteins) identified in this study, we finalized 74 phosphopeptides (representing 61 phosphoproteins), and 75 phosphopeptides (representing 57 phosphoproteins) showing significant changes in phosphorylation levels under drought and alkali treatments respectively. Function enrichment and protein-protein interaction analyses indicated that the differentially-expressed phosphoproteins (DPs) under drought and alkali stresses were mainly involved in signaling transduction, stress response, carbohydrate and energy metabolism, transport and membrane trafficking, RNA splicing and processing, DNA binding and gene expression, and protein synthesis/folding/degradation. These results provide assistance to identify bona fide and novel SnRK1 phosphorylation substrates and shed new light on the biological functions of SnRK1 kinase in responses to abiotic stresses. SIGNIFICANCE: These results provide assistance to identify novel SnRK1 phosphorylation substrates and regulatory proteins, and shed new light on investigating the potential roles of reversible phosphorylation in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| | - Jialei Xiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Tyutereva EV, Murtuzova AV, Voitsekhovskaja OV. Autophagy and the Energy Status of Plant Cells. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:19. [DOI: 10.1134/s1021443722020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2025]
Abstract
Abstract
In plant cells the homeostatic control of energy balance involves the production and recycling of adenylates with macroergic bonds, ATP and ADP. The maintenance of anabolic processes requires the relative saturation of the adenylate pool with high energy phosphoanhydride bonds. The bulk of ATP synthesis is carried out both in mitochondria and in chloroplasts while optimal ATP levels within other cell compartments are maintained by adenylate kinases (AK). AK activity was recently found in cytosol, mitochondria, plastids and the nucleus. ATP synthesis in energy-producing organelles, as well as redistribution of nutrients among cellular compartments, requires fine-tuned regulation of ion homeostasis. A special role in energy metabolism is played by autophagy, a process of active degradation of unwanted and/or damaged cell components and macromolecules within the central lytic vacuole. So-called constitutive autophagy controls the quality of cellular contents under favorable conditions, i.e., when the cellular energy status is high. Energy depletion can lead to the activation of the pro-survival process of autophagic removal and utilization of damaged structures; the breakdown products are then used for ATP regeneration and de novo synthesis of macromolecules. Mitophagy and chlorophagy maintain the populations of healthy and functional energy-producing “stations”, preventing accumulation of defective mitochondria and chloroplasts as potential sources of dangerous reactive oxygen species. However, the increase of autophagic flux above a threshold level can lead to the execution of the vacuolar type of programmed cell death (PCD). In this case autophagy also contributes to preservation of energy through support of the outflow of nutrients from dying cells to healthy neighboring tissues. In plants, two central protein kinases, SnRK1 (Snf1-related protein kinase 1) and TOR (target of rapamycin), are responsible for the regulation of the metabolic switch between anabolic and catabolic pathways. TOR promotes the energy-demanding metabolic reactions in response to nutrient availability and simultaneously suppresses catabolism including autophagy. SnRK1, the antagonist of TOR, senses a decline in cellular energy supply and reacts by inducing autophagy through several independent pathways. Here, we provide an overview of the recent knowledge about the interplay between SnRK1 and TOR, autophagy and PCD in course of the regulation of energy balance in plants.
Collapse
|
8
|
Chen W, Li Y, Yan R, Ren L, Liu F, Zeng L, Sun S, Yang H, Chen K, Xu L, Liu L, Fang X, Liu S. SnRK1.1-mediated resistance of Arabidopsis thaliana to clubroot disease is inhibited by the novel Plasmodiophora brassicae effector PBZF1. MOLECULAR PLANT PATHOLOGY 2021; 22:1057-1069. [PMID: 34165877 PMCID: PMC8358996 DOI: 10.1111/mpp.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a series of strategies to combat pathogen infection. Plant SnRK1 is probably involved in shifting carbon and energy use from growth-associated processes to survival and defence upon pathogen attack, enhancing the resistance to many plant pathogens. The present study demonstrated that SnRK1.1 enhanced the resistance of Arabidopsis thaliana to clubroot disease caused by the plant-pathogenic protozoan Plasmodiophora brassicae. Through a yeast two-hybrid assay, glutathione S-transferase pull-down assay, and bimolecular fluorescence complementation assay, a P. brassicae RxLR effector, PBZF1, was shown to interact with SnRK1.1. Further expression level analysis of SnRK1.1-regulated genes showed that PBZF1 inhibited the biological function of SnRK1.1 as indicated by the disequilibration of the expression level of SnRK1.1-regulated genes in heterogeneous PBZF1-expressing A. thaliana. Moreover, heterogeneous expression of PBZF1 in A. thaliana promoted plant susceptibility to clubroot disease. In addition, PBZF1 was found to be P. brassicae-specific and conserved. This gene was significantly highly expressed in resting spores. Taken together, our results provide new insights into how the plant-pathogenic protist P. brassicae employs an effector to overcome plant resistance, and they offer new insights into the genetic improvement of plant resistance against clubroot disease.
Collapse
Affiliation(s)
- Wang Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Yan Li
- Hubei Collaborative Innovation Center for Grain IndustryYangtze UniversityJingzhouChina
- School of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanHubeiChina
| | - Ruibin Yan
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Li Ren
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Fan Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Lingyi Zeng
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Shengnan Sun
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Huihui Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Kunrong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Li Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Lijiang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Xiaoping Fang
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Shengyi Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| |
Collapse
|