1
|
Zhang Y, Zhang Y, Yang Z, Li Q, Chen W, Wen X, Chen H, Cao S. Genome-Wide Identification, Characterization, and Expression Analysis of BES1 Family Genes in ' Tieguanyin' Tea Under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:473. [PMID: 39943035 PMCID: PMC11820857 DOI: 10.3390/plants14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
The BRI1-EMS-SUPPRESSOR 1 (BES1) family comprises plant-specific transcription factors, which are distinguished by atypical bHLH domains. Over the past two decades, genetic and biochemical studies have established that members of the BRI1-EMS-SUPPRESSOR 1 (BES1) family are crucial for regulating the expression of genes involved in brassinosteroid (BR) response in rapeseed. Due to the significance of the BES1 gene family, extensive research has been conducted to investigate its functional properties. This study presents a comprehensive identification and computational analysis of BES1 genes in 'Tieguanyin' (TGY) tea (Camellia sinensis). A total of 10 BES1 genes were initially identified in the TGY genome. Through phylogenetic tree analysis, this study uniquely revealed that CsBES1.2 and CsBES1.5 cluster with SlBES1.8 from Solanum lycopersicum, indicating their critical roles in fruit growth and development. Synteny analysis identified 20 syntenic genes, suggesting the conservation of their evolutionary functions. Analysis of the promoter regions revealed two types of light-responsive cis-elements, with CsBES1.4 exhibiting the highest number of light-related cis-elements (13), followed by CsBES1.9 and CsBES1.10. Additional validation via qRT-PCR experiments showed that CsBES1.9 and CsBES1.10 were significantly upregulated under light exposure, with CsBES1.10 reaching approximately six times the expression level of the control after 4 h. These results suggest that CsBES1.9 and CsBES1.4 could play crucial roles in responding to abiotic stress. This study offers novel insights into the functional roles of the BES1 gene family in 'Tieguanyin' tea and establishes a significant foundation for future research, especially in exploring the roles of these genes in response to abiotic stresses, such as light exposure.
Collapse
Affiliation(s)
- Yanzi Zhang
- Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.L.)
| | - Zhicheng Yang
- College of Future Technologies, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Y.); (W.C.)
| | - Qingyan Li
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.L.)
| | - Weixiang Chen
- College of Future Technologies, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Y.); (W.C.)
| | - Xinyan Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hao Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Kuczyńska A, Michałek M, Ogrodowicz P, Kempa M, Krajewski P, Cardenia V, Rodriguez-Estrada MT, Pérez-Llorca M, Munné-Bosch S, Mikołajczak K. Disorders in brassinosteroids signal transduction triggers the profound molecular alterations in the crown tissue of barley under drought. PLoS One 2025; 20:e0318281. [PMID: 39899562 PMCID: PMC11790124 DOI: 10.1371/journal.pone.0318281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
The advanced molecular tools provide critical inputs in uncovering the regulatory mechanisms underlying plants' adaptation to abiotic stress. Presented holistic studies were done on the barley crown tissue being essential for plant performance under various environmental stimuli. To investigate the effect of brassinosteroids (BRs), the known players in stress management, on molecular response of this tissue to drought, the genotypes with different BRs signal transduction efficiency were employed. Large-scale transcriptomic and proteomic profiling confirmed the specific re-modeling of behavior of the BRs-insensitive barley uzu1.a mutant under drought. On the other hand, a set of genes expressed independently of the genotype was identified, including dehydrin encoding genes. This study also uncovered the candidate genes to be linkers of phytohormones crosstalk. Importantly, we detected the converging upregulation of several proteins and encoding genes under drought, including late embryogenesis abundant proteins and chaperones; they represent a promising target for cereals' improvement. Moreover, the greatest variation between genotypes in accumulation of BRs in the crown tissue exposed to drought was observed for castasterone. Presented multi-omics, high-throughput results enhanced the understanding of molecular response to drought in crown tissue. The new insight was provided into the relationships between gene expression, protein and phytohormone content in barley plants of different BRs signaling.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | | | |
Collapse
|
3
|
Escandón M, Valledor L, Lamelas L, Álvarez JM, Cañal MJ, Meijón M. Multiomics analyses reveal the central role of the nucleolus and its machinery during heat stress acclimation in Pinus radiata. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2558-2573. [PMID: 38318976 DOI: 10.1093/jxb/erae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Global warming is causing rapid changes in mean annual temperature and more severe drought periods. These are major contributors of forest dieback, which is becoming more frequent and widespread. In this work, we investigated how the transcriptome of Pinus radiata changed during initial heat stress response and acclimation. To this end, we generated a high-density dataset employing Illumina technology. This approach allowed us to reconstruct a needle transcriptome, defining 12 164 and 13 590 transcripts as down- and up-regulated, respectively, during a time course stress acclimation experiment. Additionally, the combination of transcriptome data with other available omics layers allowed us to determine the complex inter-related processes involved in the heat stress response from the molecular to the physiological level. Nucleolus and nucleoid activities seem to be a central core in the acclimating process, producing specific RNA isoforms and other essential elements for anterograde-retrograde stress signaling such as NAC proteins (Pra_vml_051671_1 and Pra_vml_055001_5) or helicase RVB. These mechanisms are connected by elements already known in heat stress response (redox, heat-shock proteins, or abscisic acid-related) and with others whose involvement is not so well defined such as shikimate-related, brassinosteriods, or proline proteases together with their potential regulatory elements. This work provides a first in-depth overview about molecular mechanisms underlying the heat stress response and acclimation in P. radiata.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Jóse M Álvarez
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Wang D, Zuo J, Liu S, Wang W, Lu Q, Hao X, Fang Z, Liang T, Sun Y, Guo C, Zhao C, Tang Y. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1219856. [PMID: 37621887 PMCID: PMC10446898 DOI: 10.3389/fpls.2023.1219856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
BRI1 EMS SUPPRESSOR1 (BES1) family members are crucial downstream regulators that positively mediate brassinosteroid signaling, playing vital roles in the regulation of plant stress responses and anther development in Arabidopsis. Importantly, the expression profiles of wheat (Triticum aestivum L.) BES1 genes have not been analyzed comprehensively and systematically in response to abiotic stress or during anther development. In this study, we identified 23 BES1-like genes in common wheat, which were unevenly distributed on 17 out of 21 wheat chromosomes. Phylogenetic analysis clustered the BES1 genes into four major clades; moreover, TaBES1-3A2, TaBES1-3B2 and TaBES1-3D2 belonged to the same clade as Arabidopsis BES1/BZR1 HOMOLOG3 (BEH3) and BEH4, which participate in anther development. The expression levels of 23 wheat BES1 genes were assessed using real-time quantitative PCR under various abiotic stress conditions (drought, salt, heat, and cold), and we found that most TaBES1-like genes were downregulated under abiotic stress, particularly during drought stress. We therefore used drought-tolerant and drought-sensitive wheat cultivars to explore TaBES1 expression patterns under drought stress. TaBES1-3B2 and TaBES1-3D2 expression was high in drought-tolerant cultivars but substantially repressed in drought-sensitive cultivars, while TaBES1-6D presented an opposite pattern. Among genes preferentially expressed in anthers, TaBES1-3B2 and TaBES1-3D2 expression was substantially downregulated in thermosensitive genic male-sterile wheat lines compared to common wheat cultivar under sterile conditions, while we detected no obvious differences under fertile conditions. This result suggests that TaBES1-3B2 and TaBES1-3D2 might not only play roles in regulating drought tolerance, but also participate in low temperature-induced male sterility.
Collapse
Affiliation(s)
- Dezhou Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Jinghong Zuo
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Shan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Weiwei Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Qing Lu
- Agriculture College, Yangtze University, Jingzhou, China
| | - Xiaocong Hao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Zhaofeng Fang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Ting Liang
- Agriculture College, Yangtze University, Jingzhou, China
| | - Yue Sun
- Agriculture College, Yangtze University, Jingzhou, China
| | - Chunman Guo
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| |
Collapse
|
5
|
Zhao X, Li P, Zuo H, Peng A, Lin J, Li P, Wang K, Tang Q, Tadege M, Liu Z, Zhao J. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1051-1070. [PMID: 37162381 DOI: 10.1111/tpj.16279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Junming Lin
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
6
|
Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. PLANT CELL REPORTS 2023; 42:961-974. [PMID: 37079058 DOI: 10.1007/s00299-023-03013-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
7
|
Genome-wide identification, characterization and gene expression of BES1 transcription factor family in grapevine (Vitis vinifera L.). Sci Rep 2023; 13:240. [PMID: 36604456 PMCID: PMC9816167 DOI: 10.1038/s41598-022-24407-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/15/2022] [Indexed: 01/07/2023] Open
Abstract
BES1, as the most important transcription factor responsible for brassinolide (BR) signaling, has been confirmed to play a significant role in regulating plant growth and the improvement of stress resistance. The transcriptional regulatory mechanism of BES1 has been well elucidated in several plants, such as Arabidopsis thaliana (A. thaliana), Triticum aestivum L. (T. aestivum), and Oryza sativa L. (O. sativa). Nevertheless, the genome-wide analysis of the BES1 family in Vitis vinifera L. (V. vinifera). has not been comprehensively carried out. Thus, we have conducted a detailed analysis and identification of the BES1 transcription factors family in V. vinifera; a total of eight VvBES1 genes was predicted, and the phylogenetic relationships, gene structures, and Cis-acting element in their promoters were also analyzed. BES1 genes have been divided into three groups (I, II and III) based on phylogenetic relationship analysis, and most of VvBES1 genes were in group III. Also, we found that VvBES1 genes was located at seven of the total nineteen chromosomes, whereas VvBES1-2 (Vitvi04g01234) and VvBES1-5 (Vitvi18g00924) had a collinearity relationship, and their three copies are well preserved. In addition, the intron-exon model of VvBES1 genes were mostly conserved, and there existed several Cis-acting elements related to stress resistance responsive and phytohormones responsive in BES1s genes promoter. Moreover, the BES1 expressions were different in different V. vinifera organs, and BES1 expressions were different in different V. vinifera varieties under saline-alkali stress and heat stress, the expression of VvBES1 also changed with the prolongation of saline-alkali stress treatment time. The above findings could not only lay a primary foundation for the further validation of VvBES1 function, but could also provide a reference for molecular breeding in V. vinifera.
Collapse
|
8
|
Yao X, Li Y, Chen J, Zhou Z, Wen Y, Fang K, Yang F, Li T, Zhang D, Lin H. Brassinosteroids enhance BES1-required thermomemory in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3492-3504. [PMID: 36130868 DOI: 10.1111/pce.14444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
Heat stress (HS) caused by ambient high temperature poses a threat to plants. In the natural and agricultural environment, plants often encounter repeated and changeable HS. Moderate HS primes plants to establish a molecular 'thermomemory' that enables plants to withstand a later-and possibly more extreme-HS attack. Recent years, brassinosteroids (BRs) have been implicated in HS response, whereas the information is lacking on whether BRs signal transduction modulates thermomemory. Here, we uncover the positive role of BRs signalling in thermomemory of Arabidopsis thaliana. Heat priming induces de novo synthesis and nuclear accumulation of BRI1-Ethyl methyl sulfon-SUPPRESSOR (BES1), which is the key regulator of BRs signalling. BRs promote the accumulation of dephosphorylated BES1 during memory phase, and stoppage of BRs synthesis impairs dephosphorylation. During HS memory, BES1 is required to maintain sustained induction of HS memory genes and directly targets APX2 and HSFA3 for activation. In summary, our results reveal a BES1-required, BRs-enhanced transcriptional control module of thermomemory in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Taotao Li
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Yang J, Wu Y, Li L, Li C. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:1-13. [PMID: 35085861 DOI: 10.1016/j.plaphy.2022.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The BRI1 EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1 (BES1/BZR1) plays a vital role in plant growth and development and stress responses, but there are few studies on poplar BES1 genes. In this study, we identified 14 BES1 genes in the Populus trichocarpa genome and analyzed the expression under hormone treatment and abiotic stress. The PtrBES1 genes were classified into seven subgroups (I-VII) through phylogenetic analysis. All the paralogous gene pairs were shown to be subjected to expansion by segment duplication and purification selection during the PtrBES1 family evolution. Promoter cis-element analysis showed that the PtrBES1 promoter contains stress related cis-elements including ABRE-motif, MBS and TC-rich elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the PtrBES1 genes were upregulated upon NaCl, Polyethylene glycol 6000 (PEG6000) stress as well as the major stress hormone abscisic acid (ABA) treatment. Under the three treatments, PtrBES1-7 showed high expression levels in leaves and roots. Physiological experiments showed that the overexpression PtrBES1-7 line could enhance tolerance to drought stress in P. trichocarpa by improving the ability to scavenge ROS (reactive oxygen species). This is specifically reflected in the fact that the overexpression line contains less ROS (O2- and H2O2) and more antioxidant enzymes (1.42 times SOD and 1.5 times POD) than the control line. The preliminary results of this study provided a solid basis for the future functional studies of the BES1 gene family in P. trichocarpa.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Ye Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Lu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, Sieberer T, Poppenberger B. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO J 2022; 41:e108664. [PMID: 34981847 PMCID: PMC8804921 DOI: 10.15252/embj.2021108664] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Heat stress is a major environmental stress type that can limit plant growth and development. To survive sudden temperature increases, plants utilize the heat shock response, an ancient signaling pathway. Initial results had suggested a role for brassinosteroids (BRs) in this response. Brassinosteroids are growth-promoting steroid hormones whose activity is mediated by transcription factors of the BES1/BZR1 subfamily. Here, we provide evidence that BES1 can contribute to heat stress signaling. In response to heat, BES1 is activated even in the absence of BRs and directly binds to heat shock elements (HSEs), known binding sites of heat shock transcription factors (HSFs). HSFs of the HSFA1 type can interact with BES1 and facilitate its activity in HSE binding. These findings lead us to propose an extended model of the heat stress response in plants, in which the recruitment of BES1 is a means of heat stress signaling cross-talk with a central growth regulatory pathway.
Collapse
Affiliation(s)
- Pablo Albertos
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gönül Dündar
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Philipp Schenk
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sergio Carrera
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Philipp Cavelius
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Sieberer
- Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Sadura I, Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int J Mol Sci 2021; 23:342. [PMID: 35008768 PMCID: PMC8745458 DOI: 10.3390/ijms23010342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cereals, which belong to the Poaceae family, are the most economically important group of plants. Among abiotic stresses, temperature stresses are a serious and at the same time unpredictable problem for plant production. Both frost (in the case of winter cereals) and high temperatures in summer (especially combined with a water deficit in the soil) can result in significant yield losses. Plants have developed various adaptive mechanisms that have enabled them to survive periods of extreme temperatures. The processes of acclimation to low and high temperatures are controlled, among others, by phytohormones. The current review is devoted to the role of brassinosteroids (BR) in cereal acclimation to temperature stress with special attention being paid to the impact of BR on photosynthesis and the membrane properties. In cereals, the exogenous application of BR increases frost tolerance (winter rye, winter wheat), tolerance to cold (maize) and tolerance to a high temperature (rice). Disturbances in BR biosynthesis and signaling are accompanied by a decrease in frost tolerance but unexpectedly an improvement of tolerance to high temperature (barley). BR exogenous treatment increases the efficiency of the photosynthetic light reactions under various temperature conditions (winter rye, barley, rice), but interestingly, BR mutants with disturbances in BR biosynthesis are also characterized by an increased efficiency of PSII (barley). BR regulate the sugar metabolism including an increase in the sugar content, which is of key importance for acclimation, especially to low temperatures (winter rye, barley, maize). BR either participate in the temperature-dependent regulation of fatty acid biosynthesis or control the processes that are responsible for the transport or incorporation of the fatty acids into the membranes, which influences membrane fluidity (and subsequently the tolerance to high/low temperatures) (barley). BR may be one of the players, along with gibberellins or ABA, in acquiring tolerance to temperature stress in cereals (particularly important for the acclimation of cereals to low temperature).
Collapse
Affiliation(s)
- Iwona Sadura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
12
|
Treesubsuntorn C, Setiawan GD, Permana BH, Citra Y, Krobthong S, Yingchutrakul Y, Siswanto D, Thiravetyan P. Particulate matter and volatile organic compound phytoremediation by perennial plants: Affecting factors and plant stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148779. [PMID: 34225152 DOI: 10.1016/j.scitotenv.2021.148779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Air pollution by particulate matter (PM) and volatile organic compounds (VOCs) is a major global issue. Many technologies have been developed to address this problem. Phytoremediation is one possible technology to remediate these air pollutants, and a few studies have investigated the application of this technology to reduce PM and VOCs in a mixture of pollutants. This study aimed to screen plant species capable of PM and VOC phytoremediation and identify plant physiology factors to be used as criteria for plant selection for PM and VOC phytoremediation. Wrightia religiosa removed PM and VOCs. In addition, the relative water content in the plant and ethanol soluble wax showed positive relationships with PM and VOC phytoremediation, with a high correlation coefficient. For plant stress responses, several plant species maintained and/or increased the relative water content after short-term exposure to PM and VOCs. In addition, based on proteomic analysis, most of the proteins in W. religiosa leaves related to photosystems I and II were significantly reduced by PM2.5. When a high water content was achieved in W. religiosa (80% soil humidity), W. religiosa can effectively remove PM. The results suggested that PM can reduce plant photosynthesis. In addition, plants might require a high water supply to maintain their health under PM and VOC stress.
Collapse
Affiliation(s)
- Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Ginting Dwi Setiawan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Yovita Citra
- Department of Biology, Brawijaya University, Malang 65145, Indonesia
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Pathum Thani 12120, Thailand
| | - Dian Siswanto
- Department of Biology, Brawijaya University, Malang 65145, Indonesia
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
13
|
Basit F, Liu J, An J, Chen M, He C, Zhu X, Li Z, Hu J, Guan Y. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44768-44779. [PMID: 34235688 DOI: 10.1007/s11356-021-15087-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/19/2021] [Indexed: 05/07/2023]
Abstract
Biotic and abiotic stresses, especially heavy metal toxicity, are becoming a big problem in agriculture, which pose serious threats to crop production. Plant hormones have recently been used to develop stress tolerance in a variety of plants. Brassinosteroids (BRs) are the sixth class of plant steroid hormones, with pleiotropic effects on plants. Exogenous application of BRs to boost plant tolerance mechanisms to various stresses has been a major research focus. Numerous studies have revealed the role of these steroidal hormones in the up-regulation of stress-related resistance genes, as well as their interactions with other metabolic pathways. BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid, and polyamines to regulate a variety of physiological and developmental processes in plants. BRs regulate expressions of many BR-inducible genes by activating the brassinazole-resistant 1 (BZR1)/BRI1-EMS suppressor 1 (BES1) complex. Moreover, to improve plant development under a variety of stresses, BRs regulate antioxidant enzyme activity, chlorophyll concentration, photosynthetic capability, and glucose metabolism. This review will provide insights into the mechanistic role and actions of brassinosteroids in plants in response to various stresses.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaxin Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyu An
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Min Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Can He
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhan Li
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
15
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
16
|
|