1
|
Zheng Q, Meng X, Fan X, Chen S, Sang K, Yu J, Zhou Y, Xia X. Regulation of PILS genes by bZIP transcription factor TGA7 in tomato plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112359. [PMID: 39701304 DOI: 10.1016/j.plantsci.2024.112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Auxin plays a pivotal role in plant growth regulation. The PIN-FORMED (PIN) proteins facilitate long-distance polar auxin transport, whereas the recently identified PIN-LIKES (PILS) proteins regulate intracellular auxin homeostasis. However, the auxin transport mechanisms in horticultural crops remain largely unexplored. Here, we identified and characterized PILS genes in tomato (Solanum lycopersicum). Promoter analysis revealed enrichment in TGA[C/T]G motifs, suggesting transcriptional regulation by TGA factors in the bZIP family. Subcellular localization studies confirmed that all tomato PILS proteins localize in the endoplasmic reticulum. PILS2 exhibited the highest expression across examined tissues, and its close homologue PILS6 showed a similar but less pronounced expression pattern. Silencing PILS2 significantly inhibited shoot and root growth. Phylogenetic and expression analyses identified the homologs of Arabidopsis TGA1, TGA3, TGA4, and TGA7 in tomato genome, with tomato TGA7 showing higher expression in roots. Notably, silencing tomato TGA7, but not TGA1, TGA3, or TGA4, strongly impaired shoot and root growth. Molecular assays demonstrated that TGA7 directly binds to the PILS2 promoter to activate its transcription. These findings uncover a TGA7-PILS2 regulatory module that governs plant growth and offer new insights into the function and regulation of PILS genes in tomato.
Collapse
Affiliation(s)
- Qixiang Zheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaole Meng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaojing Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kangqi Sang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China.
| |
Collapse
|
2
|
Han K, Lai M, Zhao T, Yang X, An X, Chen Z. Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. Crit Rev Biotechnol 2025; 45:214-235. [PMID: 38830825 DOI: 10.1080/07388551.2024.2344576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/08/2023] [Indexed: 06/05/2024]
Abstract
Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.
Collapse
Affiliation(s)
- Kaiyuan Han
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Lai
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Tianyun Zhao
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiong Yang
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xinmin An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
4
|
Zuo J, Wei C, Liu X, Jiang L, Gao J. Multifunctional Transcription Factor YABBY6 Regulates Morphogenesis, Drought and Cold Stress Responses in Rice. RICE (NEW YORK, N.Y.) 2024; 17:69. [PMID: 39509069 PMCID: PMC11543963 DOI: 10.1186/s12284-024-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The roles of plant-specific transcription factor family YABBY may vary among different members. OsYABBY6 is a rice YABBY gene, whose function is not well elucidated so far. In this paper, we show that OsYABBY6 is a nucleus-localized protein with transcriptional activation activity. OsYABBY6 is predominantly expressed in the palea and lemma, as well as in the sheath, culm and node. OsYABBY6 RNA interference (RNAi) plants exhibited altered plant height and larger grain size. Under cold treatment, OsYABBY6 overexpression (OE) plants had up-regulated expression of cold responsive genes, and accumulated less reactive oxygen species but more proline compared to wild type, resulting in improved cold tolerance. On the other hand, RNAi plants showed enhanced drought tolerance compared to the wild type by slower water loss, less reactive oxygen species but more proline and soluble sugar accumulation. In addition, endogenous abscisic acid (ABA) level was reduced in OsYABBY6 RNAi plants, and RNAi and OE plants were more and less sensitive to ABA treatment, respectively. Accordingly, we deduce that OsYABBY6 positively regulates cold response but negatively regulates drought response through different pathways. Our study reveals the crucial roles of OsYABBY6 in plant architecture and grain development, as well as in abiotic stress response, providing new insights into the functions of YABBYs in rice.
Collapse
Affiliation(s)
- Jia Zuo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Cuijie Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiaozhu Liu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
- , 266 Xincun West Road, Zibo, 255000, China.
| | - Jing Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
- , 266 Xincun West Road, Zibo, 255000, China.
| |
Collapse
|
5
|
Li S, Lu K, Zhang L, Fan L, Lv W, Liu DJ, Feng G. Low-dose 60Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression. PLANT MOLECULAR BIOLOGY 2024; 114:107. [PMID: 39333431 DOI: 10.1007/s11103-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Cucumber (Cucumis sativus L.) is a major vegetable crop grown globally, with a cultivation history of more than 3000 years. The limited genetic diversity, low rate of intraspecific variation, and extended periods of traditional breeding have resulted in slow progress in their genetic research and the development of new varieties. Gamma (γ)-ray irradiation potentially accelerates the breeding progress; however, the biological and molecular effects of γ-ray irradiation on cucumbers are unknown. Exposing cucumber seeds to 0, 50, 100, 150, 200, and 250 Gy doses of 60Co-γ-ray irradiation, this study aimed to investigate the resulting phenotype and physiological characteristics of seedling treatment to determine the optimal irradiation dose. The results showed that low irradiation doses (50-100 Gy) enhanced root growth, hypocotyl elongation, and lateral root numbers, promoting seedling growth. However, high irradiation doses (150-250 Gy) significantly inhibited seed germination and growth, decreasing the survival rate of seedlings. More than 100 Gy irradiation significantly decreased the total chlorophyll content while increasing the malondialdehyde (MDA) and H2O2 content in cucumber. Transcriptome sequencing analysis at 0, 50, 100, 150, 200, and 250 Gy doses showed that gene expression significantly differed between low and high irradiation doses. Gene Ontology enrichment and functional pathway enrichment analyses revealed that the auxin response pathway played a crucial role in seedling growth under low irradiation doses. Further, gene function analysis revealed that small auxin up-regulated gene CsSAUR37 was a key gene that was overexpressed in response to low irradiation doses, promoting primary root elongation and enhancing lateral root numbers by regulating the expression of protein phosphatase 2Cs (PP2Cs) and auxin synthesis genes.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Ke Lu
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - La Zhang
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Lianxue Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Lv
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Da Jun Liu
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China.
| | - Guojun Feng
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China.
| |
Collapse
|
6
|
Yang M, Wang Y, Chen C, Xin X, Dai S, Meng C, Ma N. Transcription factor WRKY75 maintains auxin homeostasis to promote tomato defense against Pseudomonas syringae. PLANT PHYSIOLOGY 2024; 195:1053-1068. [PMID: 38245840 DOI: 10.1093/plphys/kiae025] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to P. syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against P. syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.
Collapse
Affiliation(s)
- Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Yixuan Wang
- School of Landscape Architecture, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Xin Xin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| |
Collapse
|
7
|
Wang M, Wang Q, Wang X, Wang D, Yin X, Qiao Y, Ma M, Du Y, Wang B. Exploring the potential of Paris polyphylla var. yunnanensis pollen manipulation in modifying seed dormancy. FRONTIERS IN PLANT SCIENCE 2024; 15:1389357. [PMID: 38841278 PMCID: PMC11152045 DOI: 10.3389/fpls.2024.1389357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
Paris polyphylla var. yunnanensis, a well-known Chinese medicinal herb, shows a unique physiological trait characterized by the cyclic opening and closing of its anthers after pollen maturation. The aim of this study was to explore the implications of this phenomenon on breeding. RNA sequencing coupled with methylation sequencing was used to scrutinize and compare gene expression profiles and methylation alterations in pollen and seeds during anther opening and closing, along with cold exposure. Genes enriched within Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were examined to identify gene clusters susceptible to temperature-related methylation changes in both pollen and seeds. Four pollen treatment models, namely, normal control, "pollen protected from low temperatures," "pollen from just-opened anther," and "pollen from close-blocked anther," were used to produce corresponding seeds via artificial pollination. Subsequently, qRT-PCR was used to validate modifications in the expression patterns of marker genes in pollinated seeds under diverse treatment scenarios. Genes exhibiting significant differences in expression between anthers and normal tissues, along with gene regions linked to methylation variations attributed to low-temperature-treated pollen and seeds, were identified through transcriptomic analysis. Convergence was observed in three signaling pathways: oxidative phosphorylation (ko00190), plant hormone signal transduction (Ko04075), and zeatin biosynthesis (ko00908). Notably, gene clusters prone to temperature-induced methylation changes, such as NADH-ubiquinone oxidoreductase chain 5, plasma membrane ATPase 4, cytochrome c oxidase subunit 2, cis-zeatin O-glucosyltransferase, ABSCISIC ACID-INSENSITIVE 5-like protein 4, and indole-3-acetic acid-amido synthetase (IAAS), were identified. Evaluation using various pollen pollination models revealed altered expression patterns of five dormancy-regulating marker genes: IAAS, sucrose synthase (SUS), gibberellin 2-oxidase (GA2ox), ABA INSENSITIVE 2 (ABI2), and auxin-repressed protein (ARP), in seeds pollinated with pollen from close-blocked anthers, cold-protected pollen, and pollen from freshly opened anthers. The close-blocked anther treatment led to significantly upregulated expression of IAAS, SUS, GA2ox, and ABI2, whereas ARP expression decreased markedly, indicating a propensity toward prolonged seed dormancy. Conversely, in the low-temperature-protected anther model, SUS, ARP, GA2ox, and IAAS exhibited reduced expression levels, whereas the expression of ABI2 was upregulated, overall facilitating seed germination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Wang
- School of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Shen H, Luo B, Ding Y, Xiao H, Chen G, Yang Z, Hu Z, Wu T. The YABBY Transcription Factor, SlYABBY2a, Positively Regulates Fruit Septum Development and Ripening in Tomatoes. Int J Mol Sci 2024; 25:5206. [PMID: 38791245 PMCID: PMC11121019 DOI: 10.3390/ijms25105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The tomato fruit is a complex organ and is composed of various structures from the inside out, such as columella, septum, and placenta. However, our understanding of the development and function of these internal structures remains limited. In this study, we identified a plant-specific YABBY protein, SlYABBY2a, in the tomato (Solanum lycopersicum). SlYABBY2a exhibits relatively high expression levels among the nine YABBY genes in tomatoes and shows specific expression in the septum of the fruit. Through the use of a gene-editing technique performed by CRISPR/Cas9, we noticed defects in septum development in the Slyabby2a mutant fruits, leading to the inward concavity of the fruit pericarp and delayed septum ripening. Notably, the expression levels of key genes involved in auxin (SlFZY4, SlFZY5, and SlFZY6) and ethylene (SlACS2) biosynthesis were significantly downregulated in the septum of the Slalkbh10b mutants. Furthermore, the promoter activity of SlYABBY2a was regulated by the ripening regulator, SlTAGL1, in vivo. In summary, these discoveries provide insights into the positive regulation of SlYABBY2a on septum development and ripening and furnish evidence of the coordinated regulation of the auxin and ethylene signaling pathways in the ripening process, which expands our comprehension of septum development in the internal structure of the fruit.
Collapse
Affiliation(s)
- Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Baobing Luo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Yingfeng Ding
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Haojun Xiao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| |
Collapse
|
9
|
Hua B, Wu J, Han X, Bian X, Xu Z, Sun C, Wang R, Zhang W, Liang F, Zhang H, Li S, Li Z, Wu S. Auxin homeostasis is maintained by sly-miR167-SlARF8A/B-SlGH3.4 feedback module in the development of locular and placental tissues of tomato fruits. THE NEW PHYTOLOGIST 2024; 241:1177-1192. [PMID: 37985404 DOI: 10.1111/nph.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The locular gel, produced by the placenta, is important for fruit flavor and seed development in tomato. However, the mechanism underlying locule and placenta development is not fully understood yet. Here, we show that two SlARF transcription factors, SlARF8B and SlARF8A (SlARF8A/B), promote the development of locular and placenta tissues. The expression of both SlARF8A and SlARF8B is repressed by sly-microRNA167 (sly-miR167), allowing for the activation of auxin downstream genes. In slarf8a, slarf8b, and slarf8a/b mutants, the auxin (IAA) levels are decreased, whereas the levels of inactive IAA conjugates including IAA-Ala, IAA-Asp, and IAA-Glu are increased. We further find that SlARF8B directly inhibits the expression of SlGH3.4, an acyl acid amino synthetase that conjugates the amino acids to IAA. Disruption of such auxin balance by the increased expression of SlGH3.4 or SlGH3.2 results in defective locular and placental tissues. Taken together, our findings reveal an important regulatory module constituted by sly-miR167-SlARF8A/B-SlGH3.4 during the development of locular and placenta tissues of tomato fruits.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqian Han
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renyin Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Fei Liang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
11
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
12
|
Liao C, Shen H, Gao Z, Wang Y, Zhu Z, Xie Q, Wu T, Chen G, Hu Z. Overexpression of SlCRF6 in tomato inhibits leaf development and affects plant morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111921. [PMID: 37949361 DOI: 10.1016/j.plantsci.2023.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Cytokinin response factors (CRFs) are transcription factors (TFs) that are specific to plants and have diverse functions in plant growth and stress responses. However, the precise roles of CRFs in regulating tomato plant architecture and leaf development have not been comprehensively investigated. Here, we identified a novel CRF, SlCRF6, which is involved in the regulation of plant growth via the gibberellin (GA) signaling pathway. SlCRF6-overexpressing (SlCRF6-OE) plants displayed pleiotropic phenotypic changes, including reduced internode length and leaf size, which caused dwarfism in tomato plants. This dwarfism could be alleviated by application of exogenous GA3. Remarkably, quantitative real-time PCR (qRTPCR), a dual luciferase reporter assay and a yeast one-hybrid (Y1H) assay revealed that SlCRF6 promoted the expression of SlDELLA (a GA signal transduction inhibitor) in vivo. Furthermore, transgenic plants displayed variegated leaves and diminished chlorophyll content, resulting in decreased photosynthetic efficiency and less starch than in wild-type (WT) plants. The results of transient expression assays and Y1H assays indicated that SlCRF6 suppressed the expression of SlPHAN (leaf morphology-related gene). Collectively, these findings suggest that SlCRF6 plays a crucial role in regulating tomato plant morphology, leaf development, and the accumulation of photosynthetic products.
Collapse
Affiliation(s)
- Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
13
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Yu Y, Hu H, Voytas DF, Doust AN, Kellogg EA. The YABBY gene SHATTERING1 controls activation rather than patterning of the abscission zone in Setaria viridis. THE NEW PHYTOLOGIST 2023; 240:846-862. [PMID: 37533135 DOI: 10.1111/nph.19157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023]
Abstract
Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Daniel F Voytas
- College of Biological Sciences, University of Minnesota, St Paul, MN, 55108, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
15
|
Ai G, Huang R, Zhang D, Li M, Li G, Li W, Ahiakpa JK, Wang Y, Hong Z, Zhang J. SlGH3.15, a member of the GH3 gene family, regulates lateral root development and gravitropism response by modulating auxin homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111638. [PMID: 36796648 DOI: 10.1016/j.plantsci.2023.111638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Multiple Gretchen Hagen 3 (GH3) genes have been implicated in a range of processes in plant growth and development through their roles in maintaining hormonal homeostasis. However, there has only been limited study on the functions of GH3 genes in tomato (Solanum lycopersicum). In this work, we investigated the important function of SlGH3.15, a member of the GH3 gene family in tomato. Overexpression of SlGH3.15 led to severe dwarfism in both the above- and below-ground sections of the plant, accompanied by a substantial decrease in free IAA content and reduction in the expression of SlGH3.9, a paralog of SlGH3.15. Exogenous supply of IAA negatively affected the elongation of the primary root and partially restored the gravitropism defects in SlGH3.15-overexpression lines. While no phenotypic change was observed in the SlGH3.15 RNAi lines, double knockout lines of SlGH3.15 and SlGH3.9 were less sensitive to treatments with the auxin polar transport inhibitor. Overall, these findings revealed important roles of SlGH3.15 in IAA homeostasis and as a negative regulator of free IAA accumulation and lateral root formation in tomato.
Collapse
Affiliation(s)
- Guo Ai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dedi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miao Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guobin Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wangfang Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - John K Ahiakpa
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
16
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
17
|
A Genomic Analysis of Bacillus megaterium HT517 Reveals the Genetic Basis of Its Abilities to Promote Growth and Control Disease in Greenhouse Tomato. Int J Genomics 2022; 2022:2093029. [PMID: 36605453 PMCID: PMC9810399 DOI: 10.1155/2022/2093029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus megaterium is well known as a plant growth-promoting rhizobacterium, but the relevant molecular mechanisms remain unclear. This study aimed to elucidate the effects of B. megaterium HT517 on the growth and development of and the control of disease in greenhouse tomato and its mechanism of action. A pot experiment was conducted to determine the effect of B. megaterium on tomato growth, and this experiment included the HT517 group (3.2 × 108 cfu/pot) and the control group (inoculated with the same amount of sterilized suspension). An antagonistic experiment and a plate confrontation experiment were conducted to study the antagonistic effect of B. megaterium and Fusarium oxysporum f.sp. lycopersici. Liquid chromatography-mass spectrometry was used to determine the metabolite composition and metabolic pathway of HT517. PacBio+Illumina HiSeq sequencing was utilized for map sequencing of the samples. An in-depth analysis of the functional genes related to the secretion of these substances by functional bacteria was conducted. HT517 could secrete organic acids that solubilize phosphorus, promote root growth, secrete auxin, which that promotes early flowering and fruiting, and alkaloids, which control disease, and reduce the incidence of crown rot by 51.0%. The complete genome sequence indicated that the strain comprised one circular chromosome with a length of 5,510,339 bp (including four plasmids in the genome), and the GC content accounted for 37.95%. Seven genes (pyk, aceB, pyc, ackA, gltA, buk, and aroK) related to phosphate solubilization, five genes (trpA, trpB, trpS, TDO2, and idi) related to growth promotion, eight genes (hpaB, pheS, pheT, ileS, pepA, iucD, paaG, and kamA) related to disease control, and one gene cluster of synthetic surfactin were identified in this research. The identification of molecular biological mechanisms for extracellular secretion by the HT517 strain clarified that its organic acids solubilized phosphorus, that auxin promoted growth, and that alkaloids controlled tomato diseases.
Collapse
|
18
|
Yang T, He Y, Niu S, Zhang Y. A YABBY gene CRABS CLAW a (CRCa) negatively regulates flower and fruit sizes in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111285. [PMID: 35643610 DOI: 10.1016/j.plantsci.2022.111285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
CRABS CLAW (CRC) is a YABBY transcription factor that plays a pivotal role in carpel development and flower meristem determinacy. Here, we characterized a CRC homolog SlCRCa and elucidated its specific roles in tomato (Solanum lycopersicum). SlCRCa is highly expressed in the petals and stamens, and is responsive to gibberellin (GA) treatment. Overexpression of SlCRCa in tomato reduces the sizes of petals, stamens, and fruits, while the inverse phenotypes are induced by knockdown of SlCRCa. Furthermore, histological investigation suggests that the smaller or larger fruits in SlCRCa-overexpressing or SlCRCa-RNAi plants are mainly determined by the decreases or increases in cell layers and cell sizes in pericarp, respectively. Through transcriptome and qRT-PCR analyses, we speculate that SlCRCa inhibits cell division by regulating the transcription of cell division-related genes, and also suppresses cell expansion by modulating the expansin genes and GA pathway in tomato fruits. Besides, SlCRCa is involved in the feedback regulation of GA biosynthesis. Our findings reveal that SlCRCa negatively regulates fruit size by affecting cell division and cell expansion, and it is also an inhibitor of floral organ sizes in tomato.
Collapse
Affiliation(s)
- Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Yu He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Shaobo Niu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
20
|
Lu S, Wang P, Nai G, Li Y, Su Y, Liang G, Chen B, Mao J. Insight into VvGH3 genes evolutional relationship from monocotyledons and dicotyledons reveals that VvGH3-9 negatively regulates the drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:70-86. [PMID: 35033858 DOI: 10.1016/j.plaphy.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The Gretchen Hagen3 (GH3) gene family is necessary for growth and development in plants and is regulated by osmotic stress and various hormones. Although it has been reported in many plants, the evolutionary relationship of GH3 in grape has not been systematically analyzed from the perspective of monocotyledonous and dicotyledonous. This study identified and analyzed 188 GH3 genes, which were distinctly divided into 9 subgroups, and found these subgroups have obviously been clustered between monocotyledonous and dicotyledonous. VvGH3-x genes had higher synteny with apple and Arabidopsis than that of rice, and the average Ka/Ks value in monocotyledons was higher than that of dicotyledons. The codon usage index showed that monocotyledons preferred to use G3s, C3s, and GC3s, while dicotyledons preferred to use A3s and T3s. The GH3 genes of grape exhibited different expression patterns in various tissues, different abiotic stresses, and hormonal treatments. The subcellular localization showed that VvGH3-9 was expressed in the nucleus and cytoplasm. Additionally, under 20% PEG treatment, the IAA and ABA contents, relative expression levels of VvGH3-9, relative electrical conductivity (REC), as well as MDA were obviously increased in VvGH3-9 overexpression lines at 72 h. In contrast, compared to WT, the contents of proline and H2O2, the activities of POD, SOD, and CAT, and the relative expression levels of drought responsive genes were significantly decreased in overexpressing lines. Collectively, this study provided helpful insight for the evolution of GH3 genes and presented some possibilities to study the functions of GH3 genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanli Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
21
|
Wang L, Liu Y, Gao L, Yang X, Zhang X, Xie S, Chen M, Wang YH, Li J, Shen Y. Identification of Candidate Forage Yield Genes in Sorghum ( Sorghum bicolor L.) Using Integrated Genome-Wide Association Studies and RNA-Seq. FRONTIERS IN PLANT SCIENCE 2022; 12:788433. [PMID: 35087554 PMCID: PMC8787639 DOI: 10.3389/fpls.2021.788433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 05/26/2023]
Abstract
Genetic dissection of forage yield traits is critical to the development of sorghum as a forage crop. In the present study, association mapping was performed with 85,585 SNP markers on four forage yield traits, namely plant height (PH), tiller number (TN), stem diameter (SD), and fresh weight per plant (FW) among 245 sorghum accessions evaluated in four environments. A total of 338 SNPs or quantitative trait nucleotides (QTNs) were associated with the four traits, and 21 of these QTNs were detected in at least two environments, including four QTNs for PH, ten for TN, six for SD, and one for FW. To identify candidate genes, dynamic transcriptome expression profiling was performed at four stages of sorghum development. One hundred and six differentially expressed genes (DEGs) that were enriched in hormone signal transduction pathways were found in all stages. Weighted gene correlation network analysis for PH and SD indicated that eight modules were significantly correlated with PH and that three modules were significantly correlated with SD. The blue module had the highest positive correlation with PH and SD, and the turquoise module had the highest negative correlation with PH and SD. Eight candidate genes were identified through the integration of genome-wide association studies (GWAS) and RNA sequencing. Sobic.004G143900, an indole-3-glycerol phosphate synthase gene that is involved in indoleacetic acid biosynthesis, was down-regulated as sorghum plants grew in height and was identified in the blue module, and Sobic.003G375100, an SD candidate gene, encoded a DNA repair RAD52-like protein 1 that plays a critical role in DNA repair-linked cell cycle progression. These findings demonstrate that the integrative analysis of omics data is a promising approach to identify candidate genes for complex traits.
Collapse
Affiliation(s)
- Lihua Wang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Li Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xiaocui Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xu Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shaoping Xie
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Meng Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yixin Shen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Chandrasekaran M, Boopathi T, Paramasivan M. A status-quo review on CRISPR-Cas9 gene editing applications in tomato. Int J Biol Macromol 2021; 190:120-129. [PMID: 34474054 DOI: 10.1016/j.ijbiomac.2021.08.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Epigenetic changes are emancipated in horticultural crops including tomato due to a variety of environmental factors. These modifications rely on plant phenotypes mediated by genetic architecture consequently resulting in hereditary epigenetic memory. Genome editing strategies like CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/CRISPR-associated protein 9 (Cas9) technologies have revolutionized plants biology foreseeing stable inheritance of epigenetic modifications. CRISPR/Cas9 strategy poses as explicit advancement in providing precise genome editing with minimal off-target mutations, ease of experimental design, higher efficiency, versatility, and cost-effectiveness. Dicot crops, especially tomato remain an ideal candidate for CRISPR/Cas9 based gene modulations thereby augmenting productivity and yields. In the present review, key questions on CRISPR/Cas9 applications aid in enhanced growth based on optimal gene discovery, de novo modification, trait improvement, and biotic/abiotic stress management are discussed. In addition, comparative scenario in tomato and similar horticultural crops are adequately summarized for the pros and cons. Further, limitations hampering potential benefits and success phenomena of the lab to field transition of gene editing alterations are discussed collaterally in addressing futuristic optimization for CRISPR/Cas9 research in tomato.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | | | | |
Collapse
|
23
|
Zhang T, Li C, Li D, Liu Y, Yang X. Roles of YABBY transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants. JOURNAL OF PLANT RESEARCH 2020; 133:751-763. [PMID: 33033876 DOI: 10.1007/s10265-020-01227-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 05/06/2023]
Abstract
The YABBY family is a class of plant-specific transcription factors comprising a typical N-terminal C2C2-type zinc finger domain and a C-terminal helix-loop-helix YABBY domain. YABBY transcription factors play important roles in multiple biological processes, including polarity establishment in plant leaves, the formation and development of reproductive organs, the response to plant hormone signals, resistance to stress, crop breeding and agricultural production. The aim of this review is to summarize our current understanding of the roles, functions and value of the YABBY family in plants, with particular emphasis on new insights into the molecular and physiological mechanisms involved in the YABBY-mediated modulation of polarity establishment, morphogenesis and development, and phytohormone and stress responses in plants. In addition, we propose that this transcription factor family presents great value and potential for research, application and development in crop breeding and agricultural production in the future.
Collapse
Affiliation(s)
- Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|