1
|
Mao M, Zhang Y, Lin X, Li B, Chen Z. The CIN-like transcription factor CsTCP2 positively regulates the theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2025; 306:141619. [PMID: 40049498 DOI: 10.1016/j.ijbiomac.2025.141619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Theanine is a non-protein amino acid that accumulates only in the tea plant and has high economic value and unique health benefits. Recently some theanine synthases have been identified, but the transcriptional regulatory mechanism of theanine anabolism remains largely unclear. In this work, transcription factor CsTCP2, which belonged to the CIN subclass of the TCP gene family, was cloned from cDNA of Yinghong 9,and found that the CsTCP2 localized in nucleus and exhibited transcriptional activation activity in tobacco and yeast cells. Moreover, Dual luciferase, Y1H, and EMSA analysis revealed that CsTCP2 can promote CsGS1b expression by binding to the MeJA-responsive cis-acting element of proCsGS1b. Overexpression or knockdown of CsTCP2 significantly increased or decreased the expression of CsGS1b and the accumulation of theanine in callus, respectively. In addition, it was found that CsTCP2 is involved in the photosynthesis pathway and various free amino acid synthesis pathways, which can regulate theanine synthesis by influencing the photosynthesis, as well as the accumulation of free amino acids can positively determine the quality of tea plants.
Collapse
Affiliation(s)
- Miaomiao Mao
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China.
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China.
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China.
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
2
|
Luo Q, He HF. Accumulation of theanine in tea plant (Camellia sinensis (L.) O. Kuntze): Biosynthesis, transportation and strategy for improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112406. [PMID: 39889353 DOI: 10.1016/j.plantsci.2025.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Theanine, specifically biosynthesized and accumulated in Camellia sinensis (L.) O. Kuntze, is widely recognized as the most positive ingredient related to the quality of tea. Therefore, genetic factors related to the biosynthesis of theanine in tea plant, CsAlaDC, CsGGTs and CsMYBs, etc., were elaborated and proved to be influential. Oppositely, TFs acting on the growth and development of tea plants, CsPIF, CsHO as well as CsGDH were demonstrated to be negative for biosynthesis of theanine. Since root is the original assembly site, transportation is indispensable for the accumulation of theanine in leaf. CsAAP7.2 was elucidated to be involved in the transportation of theanine crossing the vascular system to vegetative tissues. In order to promote the accumulation of theanine, strategies were proposed in aspect of processing, cultivation, fertilizer as well as germplasm innovation. Appropriate processing technology, scientific planting manner and fertilizer application, coupling with domestication of excellent varieties portrayed out the future orientation of theanine. Purpose of the review was to summarize advantages achieved in related to metabolism of theanine, and to motivate more intensive and more effective means to promote the accumulation of theanine in tea plant.
Collapse
Affiliation(s)
- Qianting Luo
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Rd., Rizhao, P. R. China.; School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Rd., Jinan 250117, P. R. China
| | - Hua-Feng He
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Rd., Rizhao, P. R. China..
| |
Collapse
|
3
|
Wang Q, Yu J, Lin W, Ahammed GJ, Wang W, Ma R, Shi M, Ge S, Mohamed AS, Wang L, Li Q, Li X. L-Theanine Metabolism in Tea Plants: Biological Functions and Stress Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2025; 14:492. [PMID: 39943054 PMCID: PMC11820798 DOI: 10.3390/plants14030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
L-theanine, a unique non-protein amino acid predominantly found in tea plants (Camellia sinensis), plays a pivotal role in plant responses to abiotic stress and significantly influences tea quality. In this review, the metabolism and transport mechanisms of L-theanine are comprehensively discussed, highlighting its spatial distribution in tea plants, where it is most abundant in young leaves and less so in roots, stems, and older leaves. The biosynthesis of L-theanine occurs through the enzymatic conversion of glutamate and ethylamine, catalyzed by theanine synthase, primarily in the roots, from where it is transported to aerial parts of the plant for further catabolism. Environmental factors such as temperature, light, drought, elevated CO2, nutrient unavailability, and heavy metals significantly affect theanine biosynthesis and hydrolysis, with plant hormones and transcription factors playing crucial regulatory roles. Furthermore, it has been demonstrated that applying L-theanine exogenously improves other crops' resistance to a range of abiotic stresses, suggesting its potential utility in improving crop resilience amid climate change. This review aims to elucidate the physiological mechanisms and biological functions of L-theanine metabolism under stress conditions, providing a theoretical foundation for enhancing tea quality and stress resistance in tea cultivation.
Collapse
Affiliation(s)
- Qianying Wang
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Jingbo Yu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Wenchao Lin
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
- Nanping Agriculture and Rural Bureau, Nanping 353199, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenli Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Ruihong Ma
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Mengyao Shi
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Ahmed S. Mohamed
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
- Horticultural Crops Technology Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Liyuan Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| |
Collapse
|
4
|
Zan J, Chen W, Yuan H, Jiang Y, Zhu H. Evaluation of key taste components in Huangjin green tea based on electronic tongue technology. Food Res Int 2025; 201:115569. [PMID: 39849718 DOI: 10.1016/j.foodres.2024.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/22/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
A random forest algorithm combined with correlation analysis, was employed to identify key taste compounds in Huangjin green tea by using an electronic tongue. A total of 45 commercial Huangjin green teas were analysed for their amino acids, catechins, gallic acid, and caffeine using an amino acid analyser and HPLC. In this study, taste compounds of 30 were quantified, and 16 of these compounds exhibited taste activity values greater than 1 in the tea samples, including 6 amino acids, 8 catechins, as well as gallic acid and caffeine. Among these compounds, 5 compounds showed relatively high importance and strong correlations (P < 0.05) with the response of electronic tongue; specific for theanine, glutamic acid, lysine, gallocatechin, and catechin. A taste reconstruction experiment further confirmed that these 5 compounds significantly contributed to the overall taste profile, particularly enhancing the umami flavour.
Collapse
Affiliation(s)
- Jiezhong Zan
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Wenxue Chen
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Haibo Yuan
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yongwen Jiang
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongkai Zhu
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
5
|
Wei J, Mu X, Wang S, Wei Q, Zhu L, Zhang X, Zhang J, Liu X, Wen B, Li M, Liu J. Integrated metabolome and transcriptome analysis provides insights into the mechanisms of terpenoid biosynthesis in tea plants (Camellia sinensis). Food Res Int 2025; 201:115542. [PMID: 39849697 DOI: 10.1016/j.foodres.2024.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/01/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Volatile terpenoids are major substances responsible for the floral and fruity scents of teas. However, little is known about the regulatory mechanisms of terpenoid biosynthesis pathways in tea plants. 'Zhenfeng Yesheng tea' (ZFYS), a distinctive tea tree germplasm resource in Guizhou province, is known for its unique flavor characterized by a mellow taste and a floral aroma. Here, we conducted metabolome and transcriptome analyses of 'ZFYS', 'Jinguanyin tea' (JGY), and 'Longjing 43 tea' (LJ43) leaves to obtain the global correlation of MYB TFs with terpene synthase (TPS) genes and differential accumulated metabolites. In total, 292 differentially accumulated metabolites (DAMs) were identified and chemically classified, with 26.37% of them being terpenoids. Among these, 33 key volatile terpenoids significantly accumulated in 'ZFYS', 'LJ43', and 'JGY' leaves, mainly contributing to the floral and sweet scents. In addition, a total of 6330, 7238, and 8557 unigenes were obtained in "JGY vs LJ43", "ZFYS vs JGY", and "ZFYS vs LJ43" comparisons, respectively. The results of transcriptome analysis, correlation analysis, and quantitative real-time PCR (qRT-PCR) analysis revealed significant correlations between candidate CsTPSs and CsMYBs. The expression levels of CsMYB59, CsMYB167 and CsMYB178 showed that they had a strong positive correlation with CsTPS01, -03, -15, -53, -69 and -79, suggesting their potential function in regulating sesquiterpenoid biosynthesis. In conclusion, this study provides comprehensive metabolomics and transcriptomics profiles of the germplasm of 'ZFYS' tea plants and reveals the underlying key genes involved in volatile terpenoid biosynthesis.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xingyu Mu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Qi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Luqin Zhu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiangna Zhang
- College of Tea Science, Xinyang Agriculture and Forestry University, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang, Henan 46400, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Chen Z, Yu Z, Liu T, Yao X, Zhang S, Hu Y, Luo M, Wan Y, Lu L. CsSPX3-CsPHL7-CsGS1/CsTS1 module mediated Pi-regulated negatively theanine biosynthesis in tea ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae242. [PMID: 39534409 PMCID: PMC11554760 DOI: 10.1093/hr/uhae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P) is the macronutrients essential for the development and growth of plants, but how external inorganic phosphate (Pi) level and signaling affect tea plant growth and characteristic secondary metabolite biosynthesis are not understood. Theanine is major secondary metabolites, and its contents largely determine tea favor and nutrition qualities. Here, we found theanine contents in tea leaves and roots declined as Pi concentration increased in tea plants after Pi feeding. The transcriptome analysis of global gene expression in tea leaves under Pi feeding suggested a wide range of genes involved in Pi/N transport and responses were altered. Among them, CsSPX3 and CsPHL7 transcript levels in response to Pi feeding to tea plants, their expression patterns were generally opposite to these of major theanine biosynthesis genes, indicating possible regulatory correlations. Biochemical analyses showed that CsSPX3 interacted with CsPHL7, and CsPHL7 negatively regulated theanine biosynthesis genes CsGS1 and CsTS1. Meanwhile, VIGS and transient overexpression systems in tea plants verified the functions of CsSPX3 and CsPHL7 in mediating Pi-feeding-repressed theanine biosynthesis. This study offers fresh insights into the regulatory mechanism underlying Pi repression of theanine biosynthesis, and the CsSPX3-CsPHL7-CsGS1/CsTS1 module plays a role in high Pi inhibition of theanine production in tea leaves. It has an instructional significance for guiding the high-quality tea production in tea garden fertilization.
Collapse
Affiliation(s)
- Zhouzhuoer Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Zhixun Yu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - TingTing Liu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Shiyu Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Yilan Hu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Mingyuan Luo
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Yue Wan
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Tang Q, Xiang Y, Gao W, Zhu L, Xu Z, Li Y, Yue Z. TeaTFactor: A Prediction Tool for Tea Plant Transcription Factors Based on BERT. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2123-2132. [PMID: 39150804 DOI: 10.1109/tcbb.2024.3444466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A transcription factor (TF) is a sequence-specific DNA-binding protein, which plays key roles in cell-fate decision by regulating gene expression. Predicting TFs is key for tea plant research community, as they regulate gene expression, influencing plant growth, development, and stress responses. It is a challenging task through wet lab experimental validation, due to their rarity, as well as the high cost and time requirements. As a result, computational methods are increasingly popular to be chosen. The pre-training strategy has been applied to many tasks in natural language processing (NLP) and has achieved impressive performance. In this paper, we present a novel recognition algorithm named TeaTFactor that utilizes pre-training for the model training of TFs prediction. The model is built upon the BERT architecture, initially pre-trained using protein data from UniProt. Subsequently, the model was fine-tuned using the collected TFs data of tea plants. We evaluated four different word segmentation methods and the existing state-of-the-art prediction tools. According to the comprehensive experimental results and a case study, our model is superior to existing models and achieves the goal of accurate identification. In addition, we have developed a web server at http://teatfactor.tlds.cc, which we believe will facilitate future studies on tea transcription factors and advance the field of crop synthetic biology.
Collapse
|
8
|
Wu Y, Li T, Huang W, Zhang J, Wei Y, Wang Y, Li L, Ning J. Investigation of the quality of Lu'an Guapian tea during Grain Rain period by sensory evaluation, objective quantitative indexes and metabolomics. Food Chem X 2024; 23:101595. [PMID: 39071934 PMCID: PMC11283131 DOI: 10.1016/j.fochx.2024.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
The harvest date is a crucial factor in determining tea quality. For Lu'an Guapian (LAGP) tea, Grain Rain period (GRP) represents a pivotal phase in the transformation of tea quality. The sensory evaluation, computer vision and E-tongue revealed that the liquor color score, B and G values of tea infusion were increased during GRP, while the astringency, bitterness intensities and the R value of the tea infusion were decreased. Consequently, the tea infusion exhibited a greener hue and the taste became appropriate during GRP. Non-targeted metabolomics revealed that the majority of amino acids and derivatives was reduced during GRP. Furthermore, flavonoids, in particular flavonol glycosides, exhibited considerable variation during GRP. Finally, nine metabolites were identified as markers for quality transformation during GRP by PLS and Random Forest. This study investigated the quality of LAGP teas during GRP and filled the gap in the variation of LAGP tea quality during GRP.
Collapse
Affiliation(s)
- Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| |
Collapse
|
9
|
Zhang C, Li Y, Mei P, Gong Y, Liu D, Ye Y, Wen W, Yao M, Ma C. Developmental-specific regulation promotes the free amino acids accumulation in chlorotic tea plants (Camellia sinensis). JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154371. [PMID: 39461266 DOI: 10.1016/j.jplph.2024.154371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Chlorophyll-deficient tea plant exhibits a significantly higher accumulation of free amino acids (FAAs) than normal tea plants. This study focused on the impact of leaf color and the developmental stage on FAAs in six tea germplasms while maintaining all other conditions. The total FAAs content initially increased as the leaf matured during the one-bud-two-leaves (1B2L) and one-bud-three-leaves (1B3L) stages in green germplasms, then decreased or stabilized in the one-bud-four-leaves (1B4L) stage. In contrast, chlorotic germplasms showed continuous FAAs' content increase from 1B2L to 1B4L, thus being significantly positively correlated with total chlorophyll content. Interestingly, ethylamine content decreased with leaf maturation in both chlorotic and green germplasms, thus showing a significant negative correlation with L-theanine content only in chlorotic germplasms. Comparative RNA-seq analysis linked FAAs accumulation in chlorotic germplasm's 1B3L to photosynthesis inhibition and in 1B4L to nitrogen assimilation promotion. Feeding experiments revealed higher L-theanine synthesis and degradation abilities in chlorotic shoots versus green shoots, with synthesis efficiency exceeding degradation efficiency. Overall, this study uncovers a developmental-specific FAAs accumulation pattern in chlorotic germplasms and offers novel insights into the precise regulation by leaf color and developmental stage.
Collapse
Affiliation(s)
- Chenyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yuanyuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Piao Mei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
10
|
Li J, Wen T, Zhang R, Hu X, Guo F, Zhao H, Wang P, Wang Y, Ni D, Wang M. Metabolome profiling and transcriptome analysis unveiling the crucial role of magnesium transport system for magnesium homeostasis in tea plants. HORTICULTURE RESEARCH 2024; 11:uhae152. [PMID: 38994447 PMCID: PMC11237192 DOI: 10.1093/hr/uhae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 07/13/2024]
Abstract
Magnesium (Mg2+) is a crucial nutrient for the growth and development of Camellia sinensis and is closely related to the quality of tea. However, the underlying mechanisms responding to low-Mg 2+ stress in tea plants remain largely unknown. In this study, photosynthetic parameters, metabolomics, and transcriptomics were utilized to explore the potential effects of low Mg2+ on the growth and metabolism of C. sinensis. Low-Mg2+ treatment increased the ratio of shoot dry weight to root dry weight but decreased the photosynthesis of C. sinensis. Forty and thirty metabolites were impacted by Mg2+ shortage in C. sinensis shoots and roots, respectively. Integrated transcriptome and metabolome analyses revealed the possible reasons for the decreased contents of chlorophyll and catechins and the increased theanine content in C. sinensis roots. Weighted gene co-expression network analysis indicated that the Mg2+ transport system was essential in the regulation of Mg2+ homeostasis in C. sinensis, in which CsMGT5 was identified to be the key regulator according to CsMGT5-overexpressing and complementary assays in Arabidopsis thaliana. Moreover, silencing of CsMGT5 in vivo reduced the content of chlorophyll in C. sinensis shoots. In addition, CsMGT5 might collaborate with ammonium transporters to keep the amino acid content steady, suggesting its potential application for tea quality improvement. All these findings demonstrate the key roles of CsMGTs for Mg2+ homeostasis in C. sinensis, providing a theoretical basis for Mg2+ efficient utilization in plants.
Collapse
Affiliation(s)
- Jing Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiming Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinlong Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Pu Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingle Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Chen F, He Y, Yao X, Zho B, Tian S, Yin J, Lu L. CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2024; 268:131725. [PMID: 38677697 DOI: 10.1016/j.ijbiomac.2024.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The distinctive flavor and numerous health benefits of tea are attributed to the presence of theanine, a special amino acid found in tea plants. Nitrogen metabolite is greatly impacted by drought; however, the molecular mechanism underlying the synthesis of theanine in drought-stricken tea plants is still not clear. Through the drought transcriptome data of tea plants, we have identified a gene CsMOF1 that appears to play a role in theanine biosynthesis under drought stress, presenting a significantly negative correlation with both theanine content and the expression of CsGS1. Further found that CsMOF1 is a transcription factor containing a MYB binding domain, localized in the nucleus. Upon silencing CsMOF1, there was a prominent increase in the level of the theanine and glutamine, as well as the expression of CsGS1, while glutamic acid content decreased significantly. Conversely, overexpression of CsMOF1 yielded opposite effects. Dual luciferase reporter assay and electromobility shift assays demonstrated that CsMOF1 binds to the promoter of CsGS1, thereby inhibiting its activity. These results indicate that CsMOF1 plays a crucial role in theanine biosynthesis in tea plants under drought stress, acting as a transcriptional repressor related to theanine biosynthesis. This study provides new insights into the tissue-specific regulation of theanine biosynthesis and aids with the cultivation of new varieties of tea plants.
Collapse
Affiliation(s)
- Feng Chen
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yuan He
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Bokun Zho
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Jie Yin
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
12
|
He L, Sui Y, Che Y, Liu L, Liu S, Wang X, Cao G. New Insights into the Genetic Basis of Lysine Accumulation in Rice Revealed by Multi-Model GWAS. Int J Mol Sci 2024; 25:4667. [PMID: 38731885 PMCID: PMC11083390 DOI: 10.3390/ijms25094667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.
Collapse
Affiliation(s)
- Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lihua Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
13
|
Kong W, Zhao P, Zhang Q, Yang J, Zhu Q, Zhang Y, Deng X, Chen X, Lin J, Zhang X. Chromatin accessibility mediated transcriptome changes contribute to flavor substance alterations and jasmonic acid hyperaccumulation during oolong tea withering process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:679-693. [PMID: 37921032 DOI: 10.1111/tpj.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Ping Zhao
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
- College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yanbing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiao Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
- College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| |
Collapse
|
14
|
Xie N, Huang X, Zhou J, Song X, Lin J, Yan M, Zhu M, Li J, Wang K. The R2R3-MYB transcription factor CsMYB42 regulates theanine biosynthesis in albino tea leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111850. [PMID: 37648117 DOI: 10.1016/j.plantsci.2023.111850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Theanine is a unique secondary metabolite in tea plants and contributes to the umami taste and health benefits of tea. However, theanine biosynthesis in tea plants is not fully understood, and its mechanism of transcriptional regulation remains poorly reported. Theanine content was significantly correlated with the expression of theanine biosynthesis-related gene CsGS1c and transcription factor CsMYB42 in different leaf positions and picking times, but there was no significant correlation in different tissues of albino tea plant 'Anjibaicha'. This suggests that CsMYB42 may regulate CsGS1c to synthesize theanine in albino tea leaves, and the regulation is tissue specific. CsMYB42 is a nuclear-localized R2R3-MYB transcription factor gene with transcriptional activation activity. Yeast one-hybrid assay and electrophoretic mobility shift assay confirmed the direct binding of CsMYB42 to the promoter of CsGS1c. Luciferase assay showed that CsMYB42 activates the CsGS1c expression. Furthermore, the inhibition of CsMYB42 using an antisense oligonucleotide in tea leaves decreased CsGS1c expression and theanine content. These results indicate that CsMYB42 plays a crucial role in activating the expression of CsGS1c and may be involved in the biosynthesis of theanine in albino tea leaves. This study provides fresh insights into the tissue-specific regulation of theanine biosynthesis, which laid a foundation for breeding high-theanine tea plants.
Collapse
Affiliation(s)
- Nianci Xie
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jiaxin Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofeng Song
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Junming Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Meihong Yan
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
15
|
Zhong N, Zhao X, Yu P, Huang H, Bao X, Li J, Zheng H, Xiao L. Characterization of the Sensory Properties and Quality Components of Huangjin Green Tea Based on Molecular Sensory-Omics. Foods 2023; 12:3234. [PMID: 37685167 PMCID: PMC10486783 DOI: 10.3390/foods12173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Huangjin green tea (HJC) is one of the most famous regional green teas in China, and has gained attention for its unique flavor. Research on HJC has focused mainly on the synthesis of L-theanine, with fewer studies concentrating on sensory characteristics. In this study, molecular sensory science techniques, including color analysis, gas chromatography-ion mobility spectrometry, and E-tongue, were used to characterize the sensory properties of HJC, with Fuding Dabai and Anji Baicha teas used as conventional and high amino acid controls, respectively. The sensory characteristics and main quality components of HJC lie somewhere between these two other teas, and somewhat closer to the conventional control. They were difficult to distinguish by color, but significant differences exist in terms of volatile organic compounds (VOCs), E-tongue values on bitterness and astringency, and their contents of major taste components. VOCs such as (E)-2-octenal, linalool, ethyl acrylate, ethyl acetate, and 2-methyl-3-furanethiol were found to be the main differential components that contributed to aroma, significantly influencing the tender chestnut aroma of HJC. Free amino acids, tea polyphenols, and ester catechins were the main differential components responsible for taste, and its harmonious phenol-to-ammonia ratio was found to affect the fresh, mellow, heavy, and brisk taste of HJC.
Collapse
Affiliation(s)
- Ni Zhong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xi Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Hao Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xiaocun Bao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Jin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Hongfa Zheng
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
16
|
Kong W, Zhu Q, Zhang Q, Zhu Y, Yang J, Chai K, Lei W, Jiang M, Zhang S, Lin J, Zhang X. 5mC DNA methylation modification-mediated regulation in tissue functional differentiation and important flavor substance synthesis of tea plant ( Camellia sinensis L.). HORTICULTURE RESEARCH 2023; 10:uhad126. [PMID: 37560013 PMCID: PMC10407603 DOI: 10.1093/hr/uhad126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Yiwang Zhu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Kun Chai
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Wenlong Lei
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
17
|
Liu S, Rao J, Zhu J, Li G, Li F, Zhang H, Tao L, Zhou Q, Tao Y, Zhang Y, Huang K, Wei C. Integrated physiological, metabolite and proteomic analysis reveal the glyphosate stress response mechanism in tea plant (Camellia sinensis). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131419. [PMID: 37099910 DOI: 10.1016/j.jhazmat.2023.131419] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Glyphosate residues can tremendously impact the physiological mechanisms of tea plants, thus threatening tea security and human health. Herein, integrated physiological, metabolite, and proteomic analyses were performed to reveal the glyphosate stress response mechanism in tea plant. After exposure to glyphosate (≥1.25 kg ae/ha), the leaf ultrastructure was damaged, and chlorophyll content and relative fluorescence intensity decreased significantly. The characteristic metabolites catechins and theanine decreased significantly, and the 18 volatile compounds content varied significantly under glyphosate treatments. Subsequently, tandem mass tags (TMT)-based quantitative proteomics was employed to identify the differentially expressed proteins (DEPs) and to validate their biological functions at the proteome level. A total of 6287 proteins were identified and 326 DEPs were screened. These DEPs were mainly catalytic, binding, transporter and antioxidant active proteins, involved in photosynthesis and chlorophyll biosynthesis, phenylpropanoid and flavonoid biosynthesis, sugar and energy metabolism, amino acid metabolism, and stress/defense/detoxification pathway, etc. A total of 22 DEPs were validated by parallel reaction monitoring (PRM), demonstrating that the protein abundances were consistent between TMT and PRM data. These findings contribute to our understanding of the damage of glyphosate to tea leaves and molecular mechanism underlying the response of tea plants to glyphosate.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Jia Rao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Youze Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China.
| |
Collapse
|
18
|
Ma H, Liu N, Sun X, Zhu M, Mao T, Huang S, Meng X, Li H, Wang M, Liang H. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. Int J Biol Macromol 2023:125372. [PMID: 37321436 DOI: 10.1016/j.ijbiomac.2023.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tea (Camellia sinensis), one of the most important beverage crops originated from China and is now cultivated worldwide, provides numerous secondary metabolites that account for its health benefits and rich flavor. However, the lack of an efficient and reliable genetic transformation system has seriously hindered the gene function investigation and precise breeding of C. sinensis. In this study, we established a highly efficient, labor-saving, and cost-effective Agrobacterium rhizogenes-mediated hairy roots genetic transformation system for C. sinensis, which can be used for gene overexpression and genome editing. The established transformation system was simple to operate, bypassing tissue culture and antibiotic screening, and only took two months to complete. We used this system to conduct function analysis of transcription factor CsMYB73 and found that CsMYB73 negatively regulates L-theanine synthesis in tea plant. Additionally, callus formation was successfully induced using transgenic roots, and the transgenic callus exhibited normal chlorophyll production, enabling the study of the corresponding biological functions. Furthermore, this genetic transformation system was effective for multiple C. sinensis varieties and other woody plant species. By overcoming technical obstacles such as low efficiency, long experimental periods, and high costs, this genetic transformation will be a valuable tool for routine gene investigation and precise breeding in tea plants.
Collapse
Affiliation(s)
- Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, China.
| | - Ningge Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Mengling Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Tingfeng Mao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xinyue Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hangfei Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Min Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huiling Liang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
19
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1144-1165. [PMID: 35277905 DOI: 10.1111/tpj.15729] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 05/20/2023]
Abstract
Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
21
|
Lin S, Chen Z, Chen T, Deng W, Wan X, Zhang Z. Theanine metabolism and transport in tea plants ( Camellia sinensis L.): advances and perspectives. Crit Rev Biotechnol 2022; 43:327-341. [PMID: 35430936 DOI: 10.1080/07388551.2022.2036692] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Theanine, a tea plant-specific non-proteinogenic amino acid, is the most abundant free amino acid in tea leaves. It is also one of the most important quality components of tea because it endows the "umami" taste, relaxation-promoting, and many other health benefits of tea infusion. Its content in tea leaves is directly correlated with the quality and price of green tea. Theanine biosynthesis primarily occurs in roots and is transported to new shoots in tea plants. Recently, great advances have been made in theanine metabolism and transport in tea plants. Along with the deciphering of the genomic sequences of tea plants, new genes in theanine metabolic pathway were discovered and functionally characterized. Theanine transporters were identified and were characterized on the affinity for: theanine, substrate specificity, spatiotemporal expression, and the role in theanine root-to-shoot transport. The mechanisms underlying the regulation of theanine accumulation by: cultivars, seasons, nutrients, and environmental factors are also being rapidly uncovered. Transcription factors were identified to be critical regulators of theanine biosynthesis. In this review, we summarize the progresses in theanine: biosynthesis, catabolism, and transport processes. We also discuss the future studies on theanine in tea plants, and application of the knowledge to crops to synthesize theanine to improve the health-promoting quality of non-tea crops.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
22
|
Zhang Y, Fu J, Zhou Q, Li F, Shen Y, Ye Z, Tang D, Chi N, Li L, Ma S, Inayat MA, Guo T, Zhao J, Li P. Metabolite Profiling and Transcriptome Analysis Revealed the Conserved Transcriptional Regulation Mechanism of Caffeine Biosynthesis in Tea and Coffee Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3239-3251. [PMID: 35245048 DOI: 10.1021/acs.jafc.1c06886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeine is a characteristic bioactive compound in tea and coffee plants, which is synthesized and accumulated extensively in leaves and seeds. However, little is known about the regulatory mechanism of caffeine synthesis in plants. This study compared the caffeine metabolite between tea and coffee plants. We found that tea leaves contained significantly higher caffeine than coffee leaves, which is perhaps due to more members of N-methyltransferase (NMT) genes as well as higher expression levels in tea plants. Substantial numbers of transcription factors were predicted to be involved in caffeine biosynthesis regulation, combining weighted gene co-expression network analysis and the cis-element of NMT promoter analysis in tea and coffee plants. Furthermore, analysis of the transcription factors from the caffeine-related modules suggested that the regulatory mechanism of caffeine biosynthesis was probably partly conservative in tea and coffee plants. This study provides an essential resource for the regulatory mechanism of caffeine biosynthesis in plants.
Collapse
Affiliation(s)
- Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiying Zhou
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ning Chi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Lanqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mallano Ali Inayat
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 679600, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Luo Y, Huang XX, Song XF, Wen BB, Xie NC, Wang KB, Huang JA, Liu ZH. Identification of a WRKY transcriptional activator from Camellia sinensis that regulates methylated EGCG biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac024. [PMID: 35184160 PMCID: PMC9071374 DOI: 10.1093/hr/uhac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Naturally occurring methylated catechins, especially methylated EGCG in tea leaves are known to have many health benefits. Although the genes involved in methylated EGCG biosynthesis have been studied extensively, the transcriptional factors controlling methylated EGCG biosynthesis are still poorly understood. In the present study, a WRKY domain-containing protein termed CsWRKY57like was identified, which belongs to group IIc of the WRKY family, and contains one conserved WRKY motif. CsWRKY57like was found to localize in the nucleus, function as a transcriptional activator, and its expression positively correlated with methylated EGCG level. In addition, CsWRKY57like activated the transcription of three genes related to methylated EGCG biosynthesis, including CCoAOMT, CsLAR, and CsDFR by specifically interacting with their promoters via binding to the cis-acting element (C/T)TGAC(T/C). Further assays revealed that CsWRKY57like physically interacts with CsVQ4, and participates in the metabolic regulation of O-methylated catechin biosynthesis. Collectively, we conclude that CsWRKY57like may positively impact the biosynthesis of methylated EGCG in the tea plant, which comprehensively enriches the regulatory network of WRKY TFs associated with methylated EGCG and provide a potential strategy for the breeding of specific tea plant cultivars with high methylated EGCG .
Collapse
Affiliation(s)
- Yong Luo
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiang-xiang Huang
- Key Laboratory of Tea Science of Ministry of Education & National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao-feng Song
- Key Laboratory of Tea Science of Ministry of Education & National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Bei-bei Wen
- College of Tea Science, Guizhou University, Guiyang, 550025
| | - Nian-ci Xie
- Key Laboratory of Tea Science of Ministry of Education & National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Kun-bo Wang
- Key Laboratory of Tea Science of Ministry of Education & National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Jian-an Huang
- Key Laboratory of Tea Science of Ministry of Education & National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Zhong-hua Liu
- Key Laboratory of Tea Science of Ministry of Education & National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
24
|
Yu Y, Kou X, Gao R, Chen X, Zhao Z, Mei H, Li J, Jeyaraj A, Thangaraj K, Periakaruppan R, Zhuang J, Chen X, Arkorful E, Li X. Glutamine Synthetases Play a Vital Role in High Accumulation of Theanine in Tender Shoots of Albino Tea Germplasm "Huabai 1". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13904-13915. [PMID: 34775761 DOI: 10.1021/acs.jafc.1c04567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Theanine (N-ethyl-γ-l-glutamine) is a special nonprotein amino acid that contributes to the umami taste and health function of tea. Although recent studies on tea breeding have focused on albino tea because of its umami taste, a factor of higher theanine concentration, the mechanism of biosynthesis of l-theanine is still unclear. In this study, four glutamine synthetase genes (CsGSs) were obtained and functionally characterized by overexpressing them in Arabidopsis. The enzyme activities of the purified CsGS proteins from Escherichia coli were detected. The results showed that CsGSs have a dual function in the synthesis of glutamine and theanine in vivo and in vitro. Interestingly, l-theanine was abundantly synthesized in the tender shoots of "Huabai 1". In the white tender shoots, the cytosol CsGS1.2 might exhibit increased expression to compensate for decreasing levels of chloroplast CsGS2, which plays a vital role in high accumulation of theanine in "Huabai 1". In addition, CsGS2 was most likely the key l-theanine synthases in green tissues of tea. The present findings will provide basis for and considerably broaden the scope of understanding the function of CsGSs and the mechanism of l-theanine accumulation in the tender shoots of "Huabai 1", and will be useful for breeding and screening tea with high l-theanine content.
Collapse
Affiliation(s)
- Ying Yu
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xiaobing Kou
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Ruoshi Gao
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xuefei Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Zhen Zhao
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Kuberan Thangaraj
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Rajiv Periakaruppan
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Jing Zhuang
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Emmanuel Arkorful
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| |
Collapse
|
25
|
Huang X, Ou S, Li Q, Luo Y, Lin H, Li J, Zhu M, Wang K. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:739951. [PMID: 34804087 PMCID: PMC8600361 DOI: 10.3389/fpls.2021.739951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polyphenol oxidase (PPO) plays a role in stress response, secondary metabolism, and other physiological processes during plant growth and development, and is also a critical enzyme in black tea production. However, the regulatory mechanisms of PPO genes and their activity in tea plants are still unclear. In this study, we measured PPO activity in two different tea cultivars, Taoyuandaye (TYDY) and Bixiangzao (BXZ), which are commonly used to produce black tea and green tea, respectively. The expression pattern of CsPPO1 was assessed and validated via transcriptomics and quantitative polymerase chain reaction in both tea varieties. In addition, we isolated and identified an R2R3-MYB transcription factor CsMYB59 that may regulate CsPPO1 expression. CsMYB59 was found to be a nuclear protein, and its expression in tea leaves was positively correlated with CsPPO1 expression and PPO activity. Transcriptional activity analysis showed that CsMYB59 was a transcriptional activator, and the dual-luciferase assay indicated that CsMYB59 could activate the expression of CsPPO1 in tobacco leaves. In summary, our study demonstrates that CsMYB59 represents a transcriptional activator in tea plants and may mediate the regulation of PPO activity by activating CsPPO1 expression. These findings provide novel insights into the regulatory mechanism of PPO gene in Camellia sinensis, which might help to breed tea cultivars with high PPO activity.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuqiong Ou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yong Luo
- School of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou, China
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Identification, Molecular Characteristic, and Expression Analysis of PIFs Related to Chlorophyll Metabolism in Tea Plant ( Camellia sinensis). Int J Mol Sci 2021; 22:ijms222010949. [PMID: 34681609 PMCID: PMC8539375 DOI: 10.3390/ijms222010949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
The phytochrome-interacting factors (PIFs) proteins belong to the subfamily of basic helix–loop–helix (bHLH) transcription factors and play important roles in chloroplast development and chlorophyll biosynthesis. Currently, knowledge about the PIF gene family in Camellia sinensis remains very limited. In this study, seven PIF members were identified in the C. sinensis genome and named based on homology with AtPIF genes in Arabidopsis thaliana. All C. sinensis PIF (CsPIF) proteins have both the conserved active PHYB binding (APB) and bHLH domains. Phylogenetic analysis revealed that CsPIFs were clustered into four groups—PIF1, PIF3, PIF7, and PIF8—and most CsPIFs were clustered in pairs with their corresponding orthologs in Populus tremula. CsPIF members in the same group tended to display uniform or similar exon–intron distribution patterns and motif compositions. CsPIF genes were differentially expressed in C. sinensis with various leaf colors and strongly correlated with the expression of genes involved in the chlorophyll metabolism pathway. Promoter analysis of structural genes related to chlorophyll metabolism found DNA-binding sites of PIFs were abundant in the promoter regions. Protein–protein interaction networks of CsPIFs demonstrated a close association with phytochrome, PIF4, HY5, TOC1, COP1, and PTAC12 proteins. Additionally, subcellular localization and transcriptional activity analysis suggested that CsPIF3b was nuclear localized protein and possessed transcriptional activity. We also found that CsPIF3b could activate the transcription of CsHEMA and CsPOR in Nicotiana benthamiana leaves. This work provides comprehensive research of CsPIFs and would be helpful to further promote the regulation mechanism of PIF on chlorophyll metabolism in C. sinensis.
Collapse
|
27
|
Mo F, Li H, Li Y, Chen X, Wang M, Li Z, Deng N, Yang Y, Huang X, Zhang R, Deng W. Physiological, biochemical, and transcriptional regulation in a leguminous forage Trifolium pratense L. responding to silver ions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:531-546. [PMID: 33773229 DOI: 10.1016/j.plaphy.2021.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Trifolium pratense L. (red clover) is an important leguminous crop with great potential for Ag-contaminated environment remediation. Whereas, the molecular mechanisms of Ag tolerance in red clover are largely unknown. Red clover seedlings were used for physiological and transcriptomic investigation under 0, 20, 50, and 100 mg/L Ag+ stress in our research to reveal potential molecular resistance mechanism. Research showed that red clover possessed fairly strong Ag absorbance capacity, the Ag level reached 0.14 and 2.35 mg/g·FW in the leaves and roots under 100 mg/L AgNO3 stress condition. Root fresh weight, root dry weight, root water content, and photosynthetic pigments contents were significantly decreased with elevating AgNO3 concentration. Obvious withered plant tissue, microstructure disorder, and disrupted organelles were observed. In vitro evaluations (e.g., PI and DCFH-DA staining) represented that AgNO3 at high concentration (100 mg/L) exhibited obvious inhibition on cell viability, which was due possibly to the induction of reactive oxygen species (ROS) accumulation. A total of 44643 differentially expressed genes (DEGs) were identified under Ag stress, covering 27155 upregulated and 17488 downregulated genes. 12 stress-responsive DEGs was authenticated utilizing real-time quantitative PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the DEGs were mostly related to metal ion binding (molecular function), nucleus (cellular component), and defense response (biological process). Involved DEGs in sequence-specific DNA binding transcription factor activity, response to various hormones (e.g., abscisic acid, IAA/Auxin, salicylic acid, and etc), calcium signal transduction, and protein ubiquitination were concluded to play crucial roles in Ag tolerance of red clover. On the other hand, Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated several stress responsive pathways such as plant-pathogen interaction, phenylpropanoid biosynthesis, ubiquitin mediated proteolysis, hormone signal transduction, and autophagy. Several down-regulated genes (e.g., RSF2, RCD1, DOX1, and etc) were identified indicating possible metabolic disturbance. Besides, protein-protein interaction network (PPI) identified several pivotal genes such as ribosomal proteins, TIR, and ZAT.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Xi Chen
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Xin Huang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Ran Zhang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Wenhe Deng
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| |
Collapse
|
28
|
Anti-inflammatory effect of herbal traditional medicine extract on molecular regulation in allergic asthma. Allergol Select 2021; 5:148-156. [PMID: 33884360 PMCID: PMC8056319 DOI: 10.5414/als400545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/28/2021] [Indexed: 01/06/2023] Open
Abstract
Asthma is an important global health problem, and the main cause of asthma is allergic reaction and immune system dysregulation. Airway inflammation causes bronchial narrowing, and goblet cell hyperplasia leads to mucus hypersecretion that leads to airflow obstruction and difficulty breathing. The Th2 cytokines can induce allergic asthma. Camellia, Adhatoda, and Glycyrrhiza are the traditional medicines that are used in some countries. In the current study, we evaluated three herbal extracts on airway inflammatory responses in asthmatic mice. The asthma model was induced in mice that were divided into 6 groups: Phosphate-buffered saline (PBS) group, ovalbumin (OVA) group, OVA-budesonide group, OVA-Glycyrrhiza group, OVA-Camellia group, and OVA-Adhatoda group. Measurements of IL-4, IL-5, IL-13, glutamate oxaloacetate transaminase (GOT), glutamic pyruvic transaminase (GPT), IgE, histamine, percentages of eosinophils in bronchoalveolar lavage fluid (BALf), gene expression of COX-2, CCL24, CCL11, eotaxin, and histopathological study of lung were done. Adhatoda significantly attenuated the IL-4, IgE, and histamine levels. Glycyrrhiza attenuated the levels of IL-5, IL-13, GTP, GOT (on day 51), mRNA expression of eotaxin, CCL24, CCL11, and COX-2, eosinophil infiltration, mucus secretion, and goblet cell hyperplasia. Camellia decreased IL-13, GTP, COX-2 mRNA expression, mucus secretion, and goblet cell hyperplasia on day 31 and 51. We evaluated effect of three plants on allergic bio-factors. Glycyrrhiza as main anti-inflammatory treatment, Adhatoda as anti-allergic, and Camellia as anti-mucus releasing treatment can be used in attacks of allergic asthma.
Collapse
|
29
|
Zhang Y, Li P, She G, Xu Y, Peng A, Wan X, Zhao J. Molecular Basis of the Distinct Metabolic Features in Shoot Tips and Roots of Tea Plants ( Camellia sinensis): Characterization of MYB Regulator for Root Theanine Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3415-3429. [PMID: 33719427 DOI: 10.1021/acs.jafc.0c07572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The physiological and metabolic differences between shoot tips and roots of tea plants are significant, and understanding them is required for improvement of tea quality and plant growth. A high-quality full-length transcriptome sequencing on tea plant roots and shoot tips by PacBio SMRT technology was done to gain a further understanding. Approximately 160699 and 166120 full-length transcripts were recovered in roots and shoots, respectively, including 31232 and 41068 novel isoforms and 16960 and 26029 alternative splicing (AS) isoforms. These supported 21699 full-length reads and 31232 and 41068 novel transcripts from root and shoot, respectively, including 1679 long noncoding RNAs (lncRNAs) and 2772 fusion transcripts, which significantly upgrade the Camellia sinensis genome annotation. The respective 6475 and 6981 transcripts in roots and shoots differ in 3'-untranslated regions. Meanwhile, extensive analyses of novel transcripts, ASs, and lncRNAs also revealed a large number of ASs and lincRNAs closely related to the regulation of characteristic secondary metabolites including catechins, theanine, and caffeine. Finally, a root-specific CsMYB6 was characterized to regulate theanine biosynthesis by genetic and molecular analyses. CsMYB6 directly bound to and activate the promoter of theanine synthetase gene (CsTSI). The study lays a foundation for the further investigation of metabolic genomics and regulation in tea plants.
Collapse
Affiliation(s)
- Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Anqi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
30
|
Wen B, Li J, Luo Y, Zhang X, Wang K, Liu Z, Huang J. Identification and expression profiling of MYB transcription factors related to l-theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2020; 164:4306-4317. [PMID: 32861783 DOI: 10.1016/j.ijbiomac.2020.08.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The MYB proteins belong to a large family of transcription factors in plant genomes and play significant roles in primary and secondary metabolism. Although several CsMYB genes have been identified in Camellia sinensis, few CsMYBs involved in l-theanine biosynthesis have been analyzed. In this study, we screened and identified 20 CsMYBs related to l-theanine biosynthesis. Transcriptomic analysis revealed that the expression profiles of the CsMYBs were positively or negatively related to dynamic changes in the l-theanine content. Validation of selected l-theanine biosynthetic and CsMYB genes was conducted by qRT-PCR. The results illustrated that most of the structural and CsMYB genes were downregulated with a decrease in the l-theanine levels. Protein-protein interaction networks of CsMYB5, CsMYB12 and CsMYB94 proteins demonstrated that they might form complexes with bHLH and WD 40 proteins. Multiple DNA-binding sites of the R2R3-MYB protein were observed in promoter regions of structural genes, indicating CsMYB family proteins might be involved in l-theanine metabolism via the attachment of AC elements. Moreover, CsMYB73 demonstrated binding specificity to the promoter region of CsGDH2 (CsGDH2-pro). These findings provide fundamental understanding of specific members of the CsMYBs related to the l-theanine biosynthesis pathway.
Collapse
Affiliation(s)
- Beibei Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yong Luo
- School of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou, Hunan 423000, PR China
| | - Xiangna Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|