1
|
Zhang RR, Wang YH, Peng XF, Sun YJ, Zhang N, Xiong AS. DcNCED2 promotes ABA synthesis via carotenoid degradation and enhances drought resistance in carrot. PLANT CELL REPORTS 2025; 44:75. [PMID: 40097853 DOI: 10.1007/s00299-025-03467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
KEY MESSAGE Carrot DcNCED2 gene can improve the activity of antioxidant substances, enhance the drought tolerance of plant, and play regulatory roles in the degradation of carotenoids and the synthesis of ABA. Carrot (Daucus carota L.) is a biennial root vegetable crop of Apiaceae. In the process of growth and development, carrot is always subjected to drought stress, resulting in the decline of yield and quality. 9-cis-epoxycarotenoid dioxygenase (NCED) is an important rate-limiting enzyme in the pathway of carotenoid degradation and ABA synthesis, which can directly affect the drought resistance of plants. It is scientifically important to study the molecular mechanism of carrot DcNCED gene in response to drought stress. In this study, expression specificity analysis of DcNCED2 gene showed that the expression level of DcNCED2 gene reached the highest value at 60-75 d after sowing. DcNCED2 gene was transferred into Arabidopsis thaliana and carrot by constructing plant overexpression vector. The transgenic A. thaliana was found to exhibit a drought-tolerant phenotype with longer root length, higher SOD and POD activities, lower MDA content, higher ABA content and related gene expression, and lower lutein and β-carotene content. The results indicated that DcNCED2 gene could improve the drought tolerance of the seedling. The ABA content in leaf of overexpressed DcNCED2 carrot was significantly increased, while the contents of lutein, α-carotene and β-carotene were decreased compared with the wild carrot. The changes of expression levels of most related genes were consistent with the above results. These results indicated that DcNCED2 gene could promote the degradation of carotenoids and the synthesis of ABA in carrot leaves and thus achieve the regulation of abiotic stress in carrot plants.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Feng Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Jie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zareen S, Ali A, Park J, Kang SM, Lee IJ, Pardo JM, Yun DJ, Xu ZY. HOS15 impacts DIL9 protein stability during drought stress in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:2553-2568. [PMID: 39888052 DOI: 10.1111/nph.20398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor of E3 ligase complex, which plays a negative role in drought stress tolerance. However, whether and how HOS15 participates in controlling important transcriptional regulators remains largely unknown. Here, we report that HOS15 physically interacts with and tightly regulates DROUGHT-INDUCED LIKE 19 (DIL9) protein stability. Moreover, application of exogenous abscisic acid (ABA) stabilizes the interaction between DIL9 and HOS15, leading to ABA-induced proteasomal degradation of DIL9 by HOS15. Genetic analysis revealed that DIL9 functions downstream to HOS15 and that the drought tolerance of hos15-2 plants was impaired in dil9/hos15 double mutants. Notably, DIL9 is directly associated with the promoter regions of ABF transcription factors and facilitates their expression, which is pivotal in enhancing ABA-dependent drought tolerance. Collectively, these findings demonstrate that HOS15 consistently degrades DIL9 under normal condition, while stress (drought/ABA) promotes the DIL9 activity for binding to the promoter regions of ABFs and positively regulates their expression in response to dehydration.
Collapse
Affiliation(s)
- Shah Zareen
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Akhtar Ali
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Junghoon Park
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Americo Vespucio 49, Sevilla, 41092, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
3
|
Liu S, Chen T, Li X, Cui J, Tian Y. Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa. Front Genet 2024; 15:1432376. [PMID: 39092431 PMCID: PMC11291230 DOI: 10.3389/fgene.2024.1432376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The Epidermal Patterning Factor/EPF-like (EPF/EPFL) family encodes a specific type of secreted protein in plants and plays an important role in plant growth and development, especially in the process of morphogenesis. To investigate the characteristics of EPF/EPFL gene family members and their regulatory functions in stomatal development of Populus trichocarpa, a total of 15 EPF/EPFL family genes were identified. Then the gene structure, chromosome location, phylogenetic relationship, protein conserved domain and gene expression profile were analyzed. According to phylogenetic analysis, PtEPF/EPFL can be classified into four groups. The gene structure and protein conservation motifs within the EPF family indicate the high conservation of the PtEPF/EPFL sequence. The promoter region of PtEPF/EPFL was found to contain cis-elements in response to stress and plant hormones. In addition, RT-qPCR results indicated that the PtEPF/EPFL have a differentially expressed in different tissues. Under drought stress treatment, a substantial upregulation was observed in the majority of PtEPF/EPFL members, suggesting their potential involvement in drought response. These results provide a theoretical basis for future exploration of the characteristics and functions of more PtEPF/EPFL genes.
Collapse
Affiliation(s)
| | | | | | | | - Yinshuai Tian
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
4
|
Zhang K, Xue M, Qin F, He Y, Zhou Y. Natural polymorphisms in ZmIRX15A affect water-use efficiency by modulating stomatal density in maize. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2560-2573. [PMID: 37572352 PMCID: PMC10651153 DOI: 10.1111/pbi.14153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Stomatal density (SD) is closely related to crop drought resistance. Understanding the genetic basis for natural variation in SD may facilitate efforts to improve water-use efficiency. Here, we report a genome-wide association study for SD in maize seedlings, which identified 18 genetic variants that could be resolved to seven candidate genes. A 3-bp insertion variant (InDel1089) in the last exon of Zea mays (Zm) IRX15A (Irregular xylem 15A) had the most significant association with SD and modulated the translation of ZmIRX15A mRNA by affecting its secondary structure. Dysfunction of ZmIRX15A increased SD, leading to an increase in the transpiration rate and CO2 assimilation efficiency. ZmIRX15A encodes a xylan deposition enzyme and its disruption significantly decreased xylan abundance in secondary cell wall composition. Transcriptome analysis revealed a substantial alteration of the expression of genes involved in stomatal complex morphogenesis and drought response in the loss-of-function of ZmIRX15A mutant. Overall, our study provides important genetic insights into the natural variation of leaf SD in maize, and the identified loci or genes can serve as direct targets for enhancing drought resistance in molecular-assisted maize breeding.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Plant Physiology and BiochemistryEngineering Research Center of Plant Growth RegulatorCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ming Xue
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyCo‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Feng Qin
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan He
- National Maize Improvement Center of ChinaCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and BiochemistryEngineering Research Center of Plant Growth RegulatorCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Wang Y, Liu M, Guo Z, Liang Y, Lu Y, Xu Y, Sun M. Comparative Physiological and Transcriptome Analysis of Crossostephium chinense Reveals Its Molecular Mechanisms of Salt Tolerance. Int J Mol Sci 2023; 24:16812. [PMID: 38069143 PMCID: PMC10706559 DOI: 10.3390/ijms242316812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Crossostephium chinense is a wild species with strong salt tolerance that has great potential to improve the salt tolerance of cultivated chrysanthemums. Conversely, the unique salt-tolerant molecular mechanisms of Cr. chinense are still unclear. This study performed a comparative physiological and transcriptome analysis of Cr. chinense, Chrysanthemum lavandulifolium, and three hybrids to investigate the salt-tolerant molecular mechanisms of Cr. chinense. The physiological results showed that Cr. chinense maintained higher superoxide dismutase (SOD) activity, alleviating oxidative damage to the membrane. KEGG enrichment analysis showed that plant hormone signaling transduction and the MAPK signaling pathway were mostly enriched in Cr. chinense and hybrids under salt stress. Further weighted gene co-expression network analysis (WGCNA) of DEGs suggested that abscisic acid (ABA) signaling transduction may play a significant role in the salt-tolerant mechanisms of Cr. chinense and hybrids. The tissue-specific expression patterns of the candidate genes related to ABA signaling transduction and the MAPK signaling pathway indicate that genes related to ABA signaling transduction demonstrated significant expression levels under salt stress. This study offers important insights into exploring the underlying salt-tolerant mechanisms of Cr. chinense mediated by ABA signaling transduction and broadens our understanding of the breeding strategies for developing salt-tolerant cultivars utilizing salt-tolerant chrysanthemum germplasms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.W.); (M.L.); (Z.G.); (Y.L.); (Y.L.); (Y.X.)
| |
Collapse
|
6
|
Liu Q, Wang F, Li P, Yu G, Zhang X. Overexpression of Lolium multiflorum LmMYB1 Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15280. [PMID: 37894960 PMCID: PMC10607481 DOI: 10.3390/ijms242015280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.
Collapse
Affiliation(s)
- Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| |
Collapse
|
7
|
Ma S, Hu H, Zhang H, Ma F, Gao Z, Li X. Physiological response and transcriptome analyses of leguminous Indigofera bungeana Walp. to drought stress. PeerJ 2023; 11:e15440. [PMID: 37334133 PMCID: PMC10276564 DOI: 10.7717/peerj.15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 06/20/2023] Open
Abstract
Objective Indigofera bungeana is a shrub with high quality protein that has been widely utilized for forage grass in the semi-arid regions of China. This study aimed to enrich the currently available knowledge and clarify the detailed drought stress regulatory mechanisms in I. bungeana, and provide a theoretical foundation for the cultivation and resistance breeding of forage crops. Methods This study evaluates the response mechanism to drought stress by exploiting multiple parameters and transcriptomic analyses of a 1-year-old seedlings of I. bungeana in a pot experiment. Results Drought stress significantly caused physiological changes in I. bungeana. The antioxidant enzyme activities and osmoregulation substance content of I. bungeana showed an increase under drought. Moreover, 3,978 and 6,923 differentially expressed genes were approved by transcriptome in leaves and roots. The transcription factors, hormone signal transduction, carbohydrate metabolism of regulatory network were observed to have increased. In both tissues, genes related to plant hormone signaling transduction pathway might play a more pivotal role in drought tolerance. Transcription factors families like basic helix-loop-helix (bHLH), vian myeloblastosis viral oncogene homolog (MYB), basic leucine zipper (bZIP) and the metabolic pathway related-genes like serine/threonine-phosphatase 2C (PP2C), SNF1-related protein kinase 2 (SnRK2), indole-3-acetic acid (IAA), auxin (AUX28), small auxin up-regulated rna (SAUR), sucrose synthase (SUS), sucrosecarriers (SUC) were highlighted for future research about drought stress resistance in Indigofera bungeana. Conclusion Our study posited I. bungeana mainly participate in various physiological and metabolic activities to response severe drought stress, by regulating the expression of the related genes in hormone signal transduction. These findings, which may be valuable for drought resistance breeding, and to clarify the drought stress regulatory mechanisms of I. bungeana and other plants.
Collapse
Affiliation(s)
- Shuang Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Haiying Hu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Hao Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Fenghua Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Zhihao Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueying Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Bei X, Wang S, Huang X, Zhang X, Zhou J, Zhang H, Li G, Cheng C. Characterization of three tandem-duplicated calcium binding protein (CaBP) genes and promoters reveals their roles in the phytohormone and wounding responses in citrus. Int J Biol Macromol 2023; 227:1162-1173. [PMID: 36473528 DOI: 10.1016/j.ijbiomac.2022.11.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Accumulated evidences have revealed the critical roles of calcium binding protein (CaBP) in growth and stress responses of plants. However, its function in woody plants is poorly understood. In this study, we cloned the CDS, gDNA and promoter sequences of three tandem-duplicated CaBPs (CsCaBP1, CsCaBP2 and CsCaBP3) from Citrus sinensis, analyzed their sequence characteristics, and investigated their gene expression patterns and promoter activities under treatments of CaCl2, several phytohormones and wounding. Results showed that the three CsCaBPs have high sequence similarity. Their expression was strongly induced by CaCl2, ethylene, jasmonic acid, salicylic acid and wounding, and the promoting effect of wounding on their expression was found to be partially ethylene-dependent. Consistently, we identified many phytohormone-related cis-acting elements in their promoters, and their promoter activity could be induced significantly by ethylene, jasmonic acid, salicylic acid and wounding. All the three CsCaBPs can interact with WRKY40, whose encoding gene showed a similar expression pattern to CsCaBPs under phytohormone and wounding treatments. In addition, CsERF14, CsERF21, CsERF3 and CsERF2 could bind to their promoters. The results obtained in this study indicated that the three duplicated CsCaBPs were functionally redundant and played similar roles in the phytohormone and wounding responses of C. sinensis.
Collapse
Affiliation(s)
- Xuejun Bei
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China.
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Xia Huang
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Xiuli Zhang
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Jiayi Zhou
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Huiting Zhang
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Guoguo Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
10
|
Pan X, Wang C, Liu Z, Gao R, Feng L, Li A, Yao K, Liao W. Identification of ABF/AREB gene family in tomato ( Solanum lycopersicum L.) and functional analysis of ABF/AREB in response to ABA and abiotic stresses. PeerJ 2023; 11:e15310. [PMID: 37163152 PMCID: PMC10164373 DOI: 10.7717/peerj.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important regulatory role in plant growth and stress response. The AREB (ABA-responsive element binding protein)/ABF (ABRE-binding factor) are important ABA-signaling components that participate in abiotic stress response. However, genome-scale analysis of ABF/AREB has not been systemically investigated in tomato. This study was conducted to identify tomato ABF/AREB family members and analyze their response to ABA and abiotic stresses. The results show that a total of 10 ABF/AREB members were identified in tomato, which are randomly distributed on five chromosomes. Domain analysis showed that these members exhibit high protein similarity, especially in the basic leucine zipper (bZIP) domain region. Subcellular localization analysis indicated that all 10 ABF/AREB members are localized in the nucleus. Phylogenetic tree analysis showed that tomato ABF/AREB genes are divided into two groups, and they are similar with the orthologs of other plants. The analysis of cis-acting elements showed that most tomato ABF/AREB genes contain a variety of hormones and stress-related elements. Expression profiles of different tissues indicated that SlABF2 and SlABF10 play an important role in fruit ripening. Finally, qRT-PCR analysis revealed that 10 tomato ABF/AREB genes respond to ABA, with SlABF3 being the most sensitive. SlABF3, SlABF5 and SlABF10 positively respond to salt and cold stresses. SlABF1, SlABF3 and SlABF10 are significantly induced under UV radiation treatment. SlABF3 and SlABF5 are significantly induced in osmotic stress. Overall, this study may provide insight into the role of tomato ABF/AREB homologues in plant response to abiotic stresses, which laid a foundation for future functional study of ABF/AREB in tomato.
Collapse
|
11
|
Zhang H, Mao L, Xin M, Xing H, Zhang Y, Wu J, Xu D, Wang Y, Shang Y, Wei L, Cui M, Zhuang T, Sun X, Song X. Overexpression of GhABF3 increases cotton(Gossypium hirsutum L.) tolerance to salt and drought. BMC PLANT BIOLOGY 2022; 22:313. [PMID: 35768771 PMCID: PMC9241229 DOI: 10.1186/s12870-022-03705-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 05/31/2023]
Abstract
Abstract
Background
Plants suffer from various abiotic stresses during their lifetime, of which drought and salt stresses are two main factors limiting crop yield and quality. Previous studies have shown that abscisic acid (ABA) responsive element binding protein (AREB)/ ABRE binding factors (ABFs) in bZIP transcription factors are involved in plant stress response in an ABA-dependent manner. However, little is known about the properties and functions of AREB/ABFs, especially ABF3, in cotton.
Results
Here, we reported the cloning and characterization of GhABF3. Expression of GhABF3 was induced by drought,salt and ABA treatments. Silencing of GhABF3 sensitized cotton to drought and salt stress, which was manifested in decreased cellular antioxidant capacity and chlorophyll content. Overexpression of GhABF3 significantly improved the drought and salinity tolerance of Arabidopsis and cotton. Exogenous expression of GhABF3 resulted in longer root length and less leaf wilting under stress conditions in Arabidopsis thaliana. Overexpressing GhABF3 significantly improved salt tolerance of upland cotton by reducing the degree of cellular oxidation, and enhanced drought tolerance by decreasing leaf water loss rate. The increased expression of GhABF3 up-regulated the transcriptional abundance of downstream ABA-inducible genes under salt stress in Arabidopsis.
Conclusion
In conclusion, our results demonstrated that GhABF3 plays an important role in plant drought and salt tolerance. Manipulation of GhABF3 by biotechnology might be an important strategy to alter the stress resistance of cotton.
Collapse
|
12
|
Screening of Key Indices and the Gene Transcriptional Regulation Analysis Related to Salt Tolerance in Salix matsudana Seedlings. FORESTS 2022. [DOI: 10.3390/f13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pot experiments were performed to comparatively study the differences in 16 salt tolerance indices between the seedlings of six Salix matsudana clones under the stress of various concentrations of NaCl (0, 0.1%, 0.3%, 0.5%, and 0.7%), including the salt injury index, shoot fresh weight, root fresh weight, leaf water content, relative conductivity, malondialdehyde content, and antioxidant enzyme activity. The salt-tolerant clones and key indices of salt tolerance were selected. Transcriptome sequencing analysis was performed on the selected salt-tolerant and salt-sensitive clones under salt stress, and the links between the physiological indices of salt tolerance and gene expression were analyzed. Results: (1) Superoxide dismutase (SOD), peroxidase (POD), chlorophyll, and net photosynthetic rate were closely related to the salt tolerance of Salix matsudana at the seedling stage. The regression equation was constructed as follows: salt tolerance index (y) = 0.224x10 + 0.216x11 + 0.127x12 + 0.191x7 − 0.187 (x10 = chlorophyll, x11 = SOD, x12 = POD, x7 = net photosynthetic rate). (2) The number of differentially expressed genes between the seedlings of salt-tolerant and salt-sensitive clones varied with the time of exposure (0 h, 4 h, 12 h, and 24 h) to 200 mmol·L−1 NaCl stress. The most differentially expressed genes in Sm172 were detected upon 24 h vs. 4 h of salt treatment, while the most in Sm6 were in the 24 h vs. 0 h comparison. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis showed that several differentially expressed genes were involved in carotenoid biosynthesis and plant mitogen-activated protein kinase signaling pathways. The nine highly expressed transcription factor genes (Sm172-f2p30-2392, Sm172-f2p28-2386, Sm6-f8p60-2372, Sm6-f2p39-2263, Sm6-f16p60-2374, Sm6-f3p60-931, Sm6-f2p60-1067, Sm172-f3p54-1980, and Sm172-f3p54-1980) were closely correlated with the four key indices of salt tolerance. These genes could become genetic resources for salt tolerance breeding of Salix matsudana.
Collapse
|
13
|
Huang Y, Zheng Z, Bi X, Guo K, Liu S, Huo X, Tian D, Liu H, Wang L, Zhang Y. Integrated morphological, physiological and omics analyses reveal the arylalkylamine N-acetyltransferase (AANAT) gene contributing to growth, flowering and defence in switchgrass (Panicum virgatum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111165. [PMID: 35151442 DOI: 10.1016/j.plantsci.2021.111165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) catalyses the acetylation of serotonin, a rate-limiting process in melatonin biosynthesis. To obtain better insight into the underlying mechanism of AANAT's actions in switchgrass growth, flowering and defence, we performed integrated morphological, physiological and omics analyses between overexpressed oAANAT transgenic lines in wild-type and transgenic control (expressing only the empty vector) plants. We showed that oAANAT played pivotal roles in modulating plant growth through its regulation of cell elongation, and regulating flowering through photoperiod and GA pathways. In relation to photosynthesis, oAANAT promoted photosynthetic efficiency primarily through regulating leaf anatomical structures, stomatal development and chlorophyll metabolism. Moreover, oAANAT overexpression can trigger a number of defence responses or strategies, including antioxidant enzymatic properties, non-enzymatic capacity, significantly activated phenylpropanoid biosynthesis, and adaptive morphological characteristics. This study unveils the possible molecular mechanisms underlying oAANAT dependent melatonin functions in switchgrass, providing an important starting point for further analyses.
Collapse
Affiliation(s)
- Yanhua Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuexue Huo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Lei Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 2022; 23:ijms23031084. [PMID: 35163008 PMCID: PMC8835272 DOI: 10.3390/ijms23031084] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Drought is one of the major constraints to rain-fed agricultural production, especially under climate change conditions. Plants evolved an array of adaptive strategies that perceive stress stimuli and respond to these stress signals through specific mechanisms. Abscisic acid (ABA) is a premier signal for plants to respond to drought and plays a critical role in plant growth and development. ABA triggers a variety of physiological processes such as stomatal closure, root system modulation, organizing soil microbial communities, activation of transcriptional and post-transcriptional gene expression, and metabolic alterations. Thus, understanding the mechanisms of ABA-mediated drought responses in plants is critical for ensuring crop yield and global food security. In this review, we highlighted how plants adjust ABA perception, transcriptional levels of ABA- and drought-related genes, and regulation of metabolic pathways to alter drought stress responses at both cellular and the whole plant level. Understanding the synergetic role of drought and ABA will strengthen our knowledge to develop stress-resilient crops through integrated advanced biotechnology approaches. This review will elaborate on ABA-mediated drought responses at genetic, biochemical, and molecular levels in plants, which is critical for advancement in stress biology research.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan;
- College of Horticulture, Hainan University, Haikou 570100, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, College of Life Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China;
| | - Eyalira Jacob Okal
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
| | - Hafiz Sohaib Ahmad Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China;
| | - Wei Yuan
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.Y.); (Q.Z.)
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
15
|
Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants. Cells 2021; 10:cells10081996. [PMID: 34440762 PMCID: PMC8394461 DOI: 10.3390/cells10081996] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.
Collapse
|
16
|
Liu T, Zhang X. Transcriptome and Metabolomic Analyses Reveal Regulatory Networks Controlling Maize Stomatal Development in Response to Blue Light. Int J Mol Sci 2021. [PMID: 34065495 DOI: 10.21203/rs.3.rs-152688/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
(1) Background: Blue light is important for the formation of maize stomata, but the signal network remains unclear. (2) Methods: We replaced red light with blue light in an experiment and provided a complementary regulatory network for the stomatal development of maize by using transcriptome and metabolomics analysis. (3) Results: Exposure to blue light led to 1296 differentially expressed genes and 419 differential metabolites. Transcriptome comparisons and correlation signaling network analysis detected 55 genes, and identified 6 genes that work in the regulation of the HY5 module and MAPK cascade, that interact with PTI1, COI1, MPK2, and MPK3, in response to the substitution of blue light in environmental adaptation and signaling transduction pathways. Metabolomics analysis showed that two genes involved in carotenoid biosynthesis and starch and sucrose metabolism participate in stomatal development. Their signaling sites located on the PHI1 and MPK2 sites of the MAPK cascade respond to blue light signaling. (4) Conclusions: Blue light remarkably changed the transcriptional signal transduction and metabolism of metabolites, and eight obtained genes worked in the HY5 module and MAPK cascade.
Collapse
Affiliation(s)
- Tiedong Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiwen Zhang
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Transcriptome and Metabolomic Analyses Reveal Regulatory Networks Controlling Maize Stomatal Development in Response to Blue Light. Int J Mol Sci 2021; 22:ijms22105393. [PMID: 34065495 PMCID: PMC8161096 DOI: 10.3390/ijms22105393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Blue light is important for the formation of maize stomata, but the signal network remains unclear. (2) Methods: We replaced red light with blue light in an experiment and provided a complementary regulatory network for the stomatal development of maize by using transcriptome and metabolomics analysis. (3) Results: Exposure to blue light led to 1296 differentially expressed genes and 419 differential metabolites. Transcriptome comparisons and correlation signaling network analysis detected 55 genes, and identified 6 genes that work in the regulation of the HY5 module and MAPK cascade, that interact with PTI1, COI1, MPK2, and MPK3, in response to the substitution of blue light in environmental adaptation and signaling transduction pathways. Metabolomics analysis showed that two genes involved in carotenoid biosynthesis and starch and sucrose metabolism participate in stomatal development. Their signaling sites located on the PHI1 and MPK2 sites of the MAPK cascade respond to blue light signaling. (4) Conclusions: Blue light remarkably changed the transcriptional signal transduction and metabolism of metabolites, and eight obtained genes worked in the HY5 module and MAPK cascade.
Collapse
|