1
|
Tang W, Yu Y, Xu T. The interplay between extracellular and intracellular auxin signaling in plants. J Genet Genomics 2025; 52:14-23. [PMID: 38969259 DOI: 10.1016/j.jgg.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular and intracellular auxin, which contributes to the intricate role of auxin in plant development.
Collapse
Affiliation(s)
- Wenxin Tang
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongqiang Yu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Arouisse B, Thoen MPM, Kruijer W, Kunst JF, Jongsma MA, Keurentjes JJB, Kooke R, de Vos RCH, Mumm R, van Eeuwijk FA, Dicke M, Kloth KJ. Bivariate GWA mapping reveals associations between aliphatic glucosinolates and plant responses to thrips and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:674-686. [PMID: 39316617 DOI: 10.1111/tpj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although plants harbor a huge phytochemical diversity, only a fraction of plant metabolites is functionally characterized. In this work, we aimed to identify the genetic basis of metabolite functions during harsh environmental conditions in Arabidopsis thaliana. With machine learning algorithms we predicted stress-specific metabolomes for 23 (a)biotic stress phenotypes of 300 natural Arabidopsis accessions. The prediction models identified several aliphatic glucosinolates (GLSs) and their breakdown products to be implicated in responses to heat stress in siliques and herbivory by Western flower thrips, Frankliniella occidentalis. Bivariate GWA mapping of the metabolome predictions and their respective (a)biotic stress phenotype revealed genetic associations with MAM, AOP, and GS-OH, all three involved in aliphatic GSL biosynthesis. We, therefore, investigated thrips herbivory on AOP, MAM, and GS-OH loss-of-function and/or overexpression lines. Arabidopsis accessions with a combination of MAM2 and AOP3, leading to 3-hydroxypropyl dominance, suffered less from thrips feeding damage. The requirement of MAM2 for this effect could, however, not be confirmed with an introgression line of ecotypes Cvi and Ler, most likely due to other, unknown susceptibility factors in the Ler background. However, AOP2 and GS-OH, adding alkenyl or hydroxy-butenyl groups, respectively, did not have major effects on thrips feeding. Overall, this study illustrates the complex implications of aliphatic GSL diversity in plant responses to heat stress and a cell-content-feeding herbivore.
Collapse
Affiliation(s)
- Bader Arouisse
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Manus P M Thoen
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
- Enza Seeds, Enkhuizen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Jonathan F Kunst
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A Jongsma
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Rik Kooke
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
4
|
Nguyen-Hoang A, Sandell FL, Himmelbauer H, Dohm JC. Spinach genomes reveal migration history and candidate genes for important crop traits. NAR Genom Bioinform 2024; 6:lqae034. [PMID: 38633427 PMCID: PMC11023180 DOI: 10.1093/nargab/lqae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Spinach (Spinacia oleracea) is an important leafy crop possessing notable economic value and health benefits. Current genomic resources include reference genomes and genome-wide association studies. However, the worldwide genetic relationships and the migration history of the crop remained uncertain, and genome-wide association studies have produced extensive gene lists related to agronomic traits. Here, we re-analysed the sequenced genomes of 305 cultivated and wild spinach accessions to unveil the phylogeny and history of cultivated spinach and to explore genetic variation in relation to phenotypes. In contrast to previous studies, we employed machine learning methods (based on Extreme Gradient Boosting, XGBoost) to detect variants that are collectively associated with agronomic traits. Variant-based cluster analyses revealed three primary spinach groups in the Middle East, Asia and Europe/US. Combining admixture analysis and allele-sharing statistics, migration routes of spinach from the Middle East to Europe and Asia are presented. Using XGBoost machine learning models we predict genomic variants influencing bolting time, flowering time, petiole color, and leaf surface texture and propose candidate genes for each trait. This study enhances our understanding of the history and phylogeny of domesticated spinach and provides valuable information on candidate genes for future genetic improvement of the crop.
Collapse
Affiliation(s)
- An Nguyen-Hoang
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Felix L Sandell
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Juliane C Dohm
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
5
|
Smith ES, Nimchuk ZL. What a tangled web it weaves: auxin coordination of stem cell maintenance and flower production. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6950-6963. [PMID: 37661937 PMCID: PMC10690728 DOI: 10.1093/jxb/erad340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Robust agricultural yields require consistent flower production throughout fluctuating environmental conditions. Floral primordia are produced in the inflorescence meristem, which contains a pool of continuously dividing stem cells. Daughter cells of these divisions either retain stem cell identity or are pushed to the SAM periphery, where they become competent to develop into floral primordia after receiving the appropriate signal. Thus, flower production is inherently linked to regulation of the stem cell pool. The plant hormone auxin promotes flower development throughout its early phases and has been shown to interact with the molecular pathways regulating stem cell maintenance. Here, we will summarize how auxin signaling contributes to stem cell maintenance and promotes flower development through the early phases of initiation, outgrowth, and floral fate establishment. Recent advances in this area suggest that auxin may serve as a signal that integrates stem cell maintenance and new flower production.
Collapse
Affiliation(s)
- Elizabeth Sarkel Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Ricci A, Polverini E, Bruno S, Dramis L, Ceresini D, Scarano A, Diaz-Sala C. New Insights into the Enhancement of Adventitious Root Formation Using N,N'-Bis(2,3-methylenedioxyphenyl)urea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3610. [PMID: 37896073 PMCID: PMC10610038 DOI: 10.3390/plants12203610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Adventitious rooting is a process of postembryonic organogenesis strongly affected by endogenous and exogenous factors. Although adventitious rooting has been exploited in vegetative propagation programs for many plant species, it is a bottleneck for vegetative multiplication of difficult-to-root species, such as many woody species. The purpose of this research was to understand how N,N'-bis-(2,3-methylenedioxyphenyl)urea could exert its already reported adventitious rooting adjuvant activity, starting from the widely accepted knowledge that adventitious rooting is a hormonally tuned progressive process. Here, by using specific in vitro bioassays, histological analyses, molecular docking simulations and in vitro enzymatic bioassays, we have demonstrated that this urea derivative does not interfere with polar auxin transport; it inhibits cytokinin oxidase/dehydrogenase (CKX); and, possibly, it interacts with the apoplastic portion of the auxin receptor ABP1. As a consequence of this dual binding capacity, the lifespan of endogenous cytokinins could be locally increased and, at the same time, auxin signaling could be favored. This combination of effects could lead to a cell fate transition, which, in turn, could result in increased adventitious rooting.
Collapse
Affiliation(s)
- Ada Ricci
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Eugenia Polverini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lucia Dramis
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Daniela Ceresini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Antonio Scarano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Carmen Diaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| |
Collapse
|
7
|
Fiedler L, Friml J. Rapid auxin signaling: Unknowns old and new. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102443. [PMID: 37666097 DOI: 10.1016/j.pbi.2023.102443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
To respond to auxin, the chief orchestrator of their multicellularity, plants evolved multiple receptor systems and signal transduction cascades. Despite decades of research, however, we are still lacking a satisfactory synthesis of various auxin signaling mechanisms. The chief discrepancy and historical controversy of the field is that of rapid and slow auxin effects on plant physiology and development. How is it possible that ions begin to trickle across the plasma membrane as soon as auxin enters the cell, even though the best-characterized transcriptional auxin pathway can take effect only after tens of minutes? Recently, unexpected progress has been made in understanding this and other unknowns of auxin signaling. We provide a perspective on these exciting developments and concepts whose general applicability might have ramifications beyond auxin signaling.
Collapse
Affiliation(s)
- Lukáš Fiedler
- Institute of Science and Technology Austria (ISTA), 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400, Klosterneuburg, Austria.
| |
Collapse
|
8
|
Lomin SN, Kolachevskaya OO, Arkhipov DV, Romanov GA. Canonical and Alternative Auxin Signaling Systems in Mono-, Di-, and Tetraploid Potatoes. Int J Mol Sci 2023; 24:11408. [PMID: 37511169 PMCID: PMC10380454 DOI: 10.3390/ijms241411408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.
Collapse
Affiliation(s)
- Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Oksana O Kolachevskaya
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
9
|
Alloun W, Berkani M, Benaissa A, Shavandi A, Gares M, Danesh C, Lakhdari D, Ghfar AA, Chaouche NK. Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: Model development. CHEMOSPHERE 2023; 326:138394. [PMID: 36925000 DOI: 10.1016/j.chemosphere.2023.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic responses in plants and functions as a chemical signal between plant hosts and their symbionts. The Actinobacteria strain of AW22 with high IAA production ability was isolated in Algeria for the first time and was characterized as Streptomyces rubrogriseus through chemotaxonomic analysis and 16 S rDNA sequence alignment. The suitable medium for a maximum IAA yield was engineered in vitro and in silico using machine learning-assisted modeling. The primary low-cost feedstocks comprised various concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. Further, we combined the Box-Behnken design from response surface methodology (BBD-RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The critical process parameters screened via Plackett-Burman design (PBD) served as BBD and ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using thin-layer chromatography (TLC) and (HPLC) revealed Rf values equal to 0.69 and a retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum IAA yield of 188.290 ± 0.38 μg/mL using the process parameters generated by the ANN-GA model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25.8 °C; and pH 9, after eight days of incubation. An R2 of 99.98%, adding to an MSE of 1.86 × 10-5 at 129 epochs, postulated higher reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM modeling exhibiting an R2 of 76.28%. The validation experiments resulted in a 4.55-fold and 4.46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, respectively, confirming the validity of both models.
Collapse
Affiliation(s)
- Wiem Alloun
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria.
| | - Mohammed Berkani
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria.
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amin Shavandi
- 3BIO-BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| | - Maroua Gares
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| | - Camellia Danesh
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| | - Delloula Lakhdari
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria; Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noreddine Kacem Chaouche
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| |
Collapse
|
10
|
Wang Y, Yan X, Xu M, Qi W, Shi C, Li X, Ma J, Tian D, Shou J, Wu H, Pan J, Li B, Wang C. Transmembrane kinase 1-mediated auxin signal regulates membrane-associated clathrin in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:82-99. [PMID: 36114789 DOI: 10.1111/jipb.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in eukaryotic cells that directly regulates abundance of plasma membrane proteins. Clathrin triskelia are composed of clathrin heavy chains (CHCs) and light chains (CLCs), and the phytohormone auxin differentially regulates membrane-associated CLCs and CHCs, modulating the endocytosis and therefore the distribution of auxin efflux transporter PIN-FORMED2 (PIN2). However, the molecular mechanisms by which auxin regulates clathrin are still poorly understood. Transmembrane kinase (TMKs) family proteins are considered to contribute to auxin signaling and plant development; it remains unclear whether they are involved in PIN transport by CME. We assessed TMKs involvement in the regulation of clathrin by auxin, using genetic, pharmacological, and cytological approaches including live-cell imaging and immunofluorescence. In tmk1 mutant seedlings, auxin failed to rapidly regulate abundance of both CHC and CLC and to inhibit PIN2 endocytosis, leading to an impaired asymmetric distribution of PIN2 and therefore auxin. Furthermore, TMK3 and TMK4 were shown not to be involved in regulation of clathrin by auxin. In summary, TMK1 is essential for auxin-regulated clathrin recruitment and CME. TMK1 therefore plays a critical role in the establishment of an asymmetric distribution of PIN2 and an auxin gradient during root gravitropism.
Collapse
Affiliation(s)
- Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiyang Qi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chunjie Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianxin Shou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
11
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
12
|
Science is a rollercoaster. NATURE PLANTS 2022; 8:1129-1130. [PMID: 36241738 DOI: 10.1038/s41477-022-01267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
13
|
Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, Monzer A, Rodriguez L, Roosjen M, Verstraeten I, Živanović BD, Zou M, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann WA, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan S, Teplova A, Kinoshita T, Weijers D, Rakusová H. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 2022; 609:575-581. [PMID: 36071161 DOI: 10.1038/s41586-022-05187-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/03/2022] [Indexed: 12/22/2022]
Abstract
The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - Michelle Gallei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Zuzana Gelová
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Alexander Johnson
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ewa Mazur
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Aline Monzer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Inge Verstraeten
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Minxia Zou
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lukáš Fiedler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Caterina Giannini
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Mónika Hrtyan
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Marek Randuch
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Nikola Rýdza
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Koji Takahashi
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Shutang Tan
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Anastasia Teplova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Hana Rakusová
- Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Martínez-Gómez Á, Poveda J, Escobar C. Overview of the use of biochar from main cereals to stimulate plant growth. FRONTIERS IN PLANT SCIENCE 2022; 13:912264. [PMID: 35982693 PMCID: PMC9378993 DOI: 10.3389/fpls.2022.912264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The total global food demand is expected to increase up to 50% between 2010 and 2050; hence, there is a clear need to increase plant productivity with little or no damage to the environment. In this respect, biochar is a carbon-rich material derived from the pyrolysis of organic matter at high temperatures with a limited oxygen supply, with different physicochemical characteristics that depend on the feedstock and pyrolysis conditions. When used as a soil amendment, it has shown many positive environmental effects such as carbon sequestration, reduction of greenhouse gas emissions, and soil improvement. Biochar application has also shown huge benefits when applied to agri-systems, among them, the improvement of plant growth either in optimal conditions or under abiotic or biotic stress. Several mechanisms, such as enhancing the soil microbial diversity and thus increasing soil nutrient-cycling functions, improving soil physicochemical properties, stimulating the microbial colonization, or increasing soil P, K, or N content, have been described to exert these positive effects on plant growth, either alone or in combination with other resources. In addition, it can also improve the plant antioxidant defenses, an evident advantage for plant growth under stress conditions. Although agricultural residues are generated from a wide variety of crops, cereals account for more than half of the world's harvested area. Yet, in this review, we will focus on biochar obtained from residues of the most common and relevant cereal crops in terms of global production (rice, wheat, maize, and barley) and in their use as recycled residues to stimulate plant growth. The harvesting and processing of these crops generate a vast number and variety of residues that could be locally recycled into valuable products such as biochar, reducing the waste management problem and accomplishing the circular economy premise. However, very scarce literature focused on the use of biochar from a crop to improve its own growth is available. Herein, we present an overview of the literature focused on this topic, compiling most of the studies and discussing the urgent need to deepen into the molecular mechanisms and pathways involved in the beneficial effects of biochar on plant productivity.
Collapse
Affiliation(s)
- Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Li L, Gallei M, Friml J. Bending to auxin: fast acid growth for tropisms. TRENDS IN PLANT SCIENCE 2022; 27:440-449. [PMID: 34848141 DOI: 10.1016/j.tplants.2021.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The phytohormone auxin is the major growth regulator governing tropic responses including gravitropism. Auxin build-up at the lower side of stimulated shoots promotes cell expansion, whereas in roots it inhibits growth, leading to upward shoot bending and downward root bending, respectively. Yet it remains an enigma how the same signal can trigger such opposite cellular responses. In this review, we discuss several recent unexpected insights into the mechanisms underlying auxin regulation of growth, challenging several existing models. We focus on the divergent mechanisms of apoplastic pH regulation in shoots and roots revisiting the classical Acid Growth Theory and discuss coordinated involvement of multiple auxin signaling pathways. From this emerges a more comprehensive, updated picture how auxin regulates growth.
Collapse
Affiliation(s)
- Lanxin Li
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
17
|
Xia T, Zhan Y, Mu Y, Zhang J, Xu W. MNSs-mediated N-glycan processing is essential for auxin homeostasis in Arabidopsis roots during alkaline response. iScience 2022; 25:104298. [PMID: 35602943 PMCID: PMC9118167 DOI: 10.1016/j.isci.2022.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/30/2021] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Early steps in the endoplasmic reticulum (ER) lumen and cis-Golgi comprise trimming of N-glycans by class I α-mannosidases (MNSs) play crucial roles in root growth and stress response. Herein, we found that the root growth inhibition in the mns1 mns2 mns3 mutant was partially rescued under alkaline condition, and inhibitor treatment to disrupt auxin transport counteracted this alkaline-maintained root growth. Further study showed that indole-3-acetic acid (IAA) levels were undetectable in mns1 mns2 mns3 at normal condition and recovered at alkaline condition, which corroborate our N-glycopeptide profiling, from which N-glycopeptides related with IAA biosynthesis, amino acid conjugates hydrolysis, and response showed differential abundance between normal and alkaline conditions in mns1 mns2 mns3. Overall, our results linked the need for MNSs-mediated N-glycan processing in the ER and cis-Golgi with maintenance of auxin homeostasis and transport in Arabidopsis roots during the response to alkaline stress. Root growth inhibition of the mns1 mns2 mns3 mutant was rescued at alkaline pH Auxin homeostasis was changed between normal and alkaline pH in mns1 mns2 mns3 Disrupting auxin transport inhibited the alkaline-rescued root growth in mns1 mns2 mns3
Collapse
Affiliation(s)
- Tianyu Xia
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yujie Zhan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yangjie Mu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
- Corresponding author
| |
Collapse
|
18
|
Zhou M, Zhu S, Mo X, Guo Q, Li Y, Tian J, Liang C. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency. Cells 2022; 11:cells11040651. [PMID: 35203302 PMCID: PMC8870294 DOI: 10.3390/cells11040651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.
Collapse
Affiliation(s)
- Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Qi Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Yaxue Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| |
Collapse
|
19
|
Pernisová M, Vernoux T. Auxin Does the SAMba: Auxin Signaling in the Shoot Apical Meristem. Cold Spring Harb Perspect Biol 2021; 13:a039925. [PMID: 33903154 PMCID: PMC8634999 DOI: 10.1101/cshperspect.a039925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants, in contrast to animals, are unique in their capacity to postembryonically develop new organs due to the activity of stem cell populations, located in specialized tissues called meristems. Above ground, the shoot apical meristem generates aerial organs and tissues throughout plant life. It is well established that auxin plays a central role in the functioning of the shoot apical meristem. Auxin distribution in the meristem is not uniform and depends on the interplay between biosynthesis, transport, and degradation. Auxin maxima and minima are created, and result in transcriptional outputs that drive the development of new organs and contribute to meristem maintenance. To uncover and understand complex signaling networks such as the one regulating auxin responses in the shoot apical meristem remains a challenge. Here, we will discuss our current understanding and point to important research directions for the future.
Collapse
Affiliation(s)
- Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
- Functional Genomics and Proteomics, National Centre for Biomolecula Research, Faculty of Science, Masaryk University and CEITEC MU, 62500 Brno, Czech Republic
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
20
|
Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 2021; 599:273-277. [PMID: 34707283 PMCID: PMC7612300 DOI: 10.1038/s41586-021-04037-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.
Collapse
Affiliation(s)
- Lanxin Li
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Mark Roosjen
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules, Division of Biological Science, Nagoya University Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Lesia Rodriguez
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Wouter Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hong Ren
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Plants and Crops, HortiCell, Ghent University, Ghent, Belgium
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dolf Weijers
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules, Division of Biological Science, Nagoya University Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - William M Gray
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
21
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
22
|
Schwechheimer C, Yalovsky S, Žárský V. Auxin does not inhibit endocytosis of PIN1 and PIN2 auxin efflux carriers. PLANT PHYSIOLOGY 2021; 186:kiab132. [PMID: 33742679 PMCID: PMC8195515 DOI: 10.1093/plphys/kiab132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354 Freising, Germany
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague, Czech Republic
| |
Collapse
|
23
|
Konstantinova N, Korbei B, Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int J Mol Sci 2021; 22:2749. [PMID: 33803128 PMCID: PMC7963156 DOI: 10.3390/ijms22052749] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general.
Collapse
Affiliation(s)
| | | | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; (N.K.); (B.K.)
| |
Collapse
|