1
|
Boateng ID, Yang XM, Yin H, Liu W. Separation and purification of polyprenols from Ginkgo biloba leaves by silver ion anchored on imidazole-based ionic liquid functionalized mesoporous MCM-41 sorbent. Food Chem 2024; 450:139284. [PMID: 38640543 DOI: 10.1016/j.foodchem.2024.139284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/11/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Polyprenols (PPs) are compounds with excellent biological activities and are applied in food, pharmaceutical, and cosmetic industries. However, its strong non-polar nature makes it difficult to separate with many saturated impurities (such as saturated fatty acids) extracted together. Complexation extraction is an effective method for separating saturated and polyunsaturated compounds. In this study, mesoporous silica MCM-41 was modified by imidazole-based ionic liquids (IL) followed by coating these MCM-41-supported IL compounds with silver salt to construct π-complexing adsorbent (AgBF4/IL•MCM-41) to enrich PPs from Ginkgo biloba leaves (GBL) extract. The mesoporous π-complexing sorbent was characterized by small-angle X-ray scattering (SAXS), FTIR, and nitrogen adsorption-desorption. The effect of the ratio of silver salt to IL•MCM-41 on the adsorption capacity of polyprenols from GBL was compared, and the dosage of AgBF4 was determined to be 1.5 mmol/g IL•MCM-41. Adsorption isotherms and kinetics indicate that the π-complexing adsorbent has excellent PPs adsorption performance (153 mg/g at 30 °C) and a fast adsorption rate (the time to reach adsorption equilibrium is 210 s). The PPs were separated using the fixed bed after treatment for only one cycle with AgBF4/IL•MCM-41, and the content of PPs in the product was increased from 38.54% to 70.2%, with a recovery rate of 86.6%. The π-complexing adsorbent showed excellent reusability for ≥3 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States..
| | - Xiao-Ming Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hengbo Yin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Weimin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Yuan H, Zhang C, Zhou P, Yang X, Tao R, Ye J, Wang C. Preparation of polyprenol/poly (β-amino ester)/galactose targeted micelle carrier for enhancing cancer therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
3
|
Valeeva LR, Dzhabrailova SM, Sharipova MR. cis-Prenyltransferases of Marchantia polymorpha: Phylogenetic Analysis and Perspectives for Use as Regulators of Antimicrobial Agent Synthesis. Mol Biol 2022. [DOI: 10.1134/s002689332206019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Tang HV, Berryman DL, Mendoza J, Yactayo-Chang JP, Li QB, Christensen SA, Hunter CT, Best N, Soubeyrand E, Akhtar TA, Basset GJ, Block AK. Dedicated farnesyl diphosphate synthases circumvent isoprenoid-derived growth-defense tradeoffs in Zea mays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:207-220. [PMID: 35960639 DOI: 10.1111/tpj.15941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.
Collapse
Affiliation(s)
- Hoang V Tang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - David L Berryman
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Jessica P Yactayo-Chang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Qin-Bao Li
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Shawn A Christensen
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Charles T Hunter
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Norman Best
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Columbia, MO, USA
| | - Eric Soubeyrand
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Tariq A Akhtar
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Anna K Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
5
|
Desai HS, Yan T, Yu F, Sun AW, Villanueva M, Nesvizhskii AI, Backus KM. SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines. Mol Cell Proteomics 2022; 21:100218. [PMID: 35219905 PMCID: PMC9010637 DOI: 10.1016/j.mcpro.2022.100218] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive oxygen and nitrogen species have been implicated in numerous pathophysiological processes, deciphering which cysteines are sensitive to oxidative modification and the specific nature of these modifications is essential to understanding protein and cellular function in health and disease. While established mass spectrometry-based proteomic platforms have improved our understanding of the redox proteome, the widespread adoption of these methods is often hindered by complex sample preparation workflows, prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis workflows. Here, we present the SP3-Rox redox proteomics method that combines tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to achieve high throughput and high coverage proteome-wide identification of redox-sensitive cysteines. By implementing a customized workflow in the free FragPipe computational pipeline, we achieve accurate MS1-based quantitation, including for peptides containing multiple cysteine residues. Application of the SP3-Rox method to cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state changes that occur during T cell activation. High-coverage Cys oxidation state quantification using custom isotopic probes. FragPipe-IonQuant accurately quantifies Cys labeling comparably to Skyline. PTMProphet enables site-of-labeling localization for multi-Cys–containing peptides. SP3-Rox identifies changes in Cys oxidation during T cell activation.
Collapse
Affiliation(s)
- Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander W Sun
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.
| |
Collapse
|